Monitoring and Sampling Manual 2018

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring and Sampling Manual 2018 Monitoring and Sampling Manual Environmental Protection (Water) Policy 2009 Prepared by: Water Quality and Investigation, Department of Environment and Science (DES) © State of Queensland, 2018. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email <[email protected]>. Citation DES. 2018. Monitoring and Sampling Manual: Environmental Protection (Water) Policy. Brisbane: Department of Environment and Science Government. Acknowledgements The revision and update of this manual was led by Dr Suzanne Vardy, with the valued assistance of Dr Phillipa Uwins, Leigh Anderson and Brenda Baddiley. Thanks are given to many experts who reviewed and contributed to the documents relating to their field of expertise. This includes government staff from within the Department of Environment and Science, Department of Agriculture and Fisheries, Department of Natural Resources, Mines and Energy and many from outside government. Special thanks is given to staff from James Cook University, University of Queensland, Griffith University and the Great Barrier Reef Marine Park Authority, Hydrobiology Pty Ltd and Ecotox Services for their contribution to the manual and/or expert review of documents. Particular thanks is also given to Paulina Kaniewska for facilitating the review and update of this manual, to Sally Beecham for editing and formatting the manual, to Reinier Mann and Michael Warne for their final edits, and to Munro Mortimer for his input to both the original manual and this one. June 2018 Version history Refer to the individual sections of this document for the version history of each section. Version 1 February 2018 Version 2 June 2018 iii Contents Foreword ....................................................................................................................................................................... 1 Purpose ......................................................................................................................................................................... 2 Section A: Sampling Design and Preparation .............................................................................................................. 1 1. Sampling scope and design ............................................................................................................................... 2 1.1. Purpose and scope ..................................................................................................................................... 2 1.2. Associated documents................................................................................................................................ 2 1.3. Introduction ................................................................................................................................................. 2 1.4. Importance of understanding the system being sampled ........................................................................... 3 1.5. Why Sample? ............................................................................................................................................. 4 1.6. Spatial boundaries of sampling .................................................................................................................. 5 1.7. What to sample ........................................................................................................................................... 5 1.8. Where to sample ......................................................................................................................................... 6 1.9. When to sample .......................................................................................................................................... 6 1.9.1. How many samples should be collected? ............................................................................................... 7 1.9.2. Is grab sampling adequate or should composite samples be taken? ..................................................... 7 1.10. Quality Control ........................................................................................................................................ 7 1.11. Cost effectiveness ................................................................................................................................... 8 1.12. References and additional reading ......................................................................................................... 8 2. Preparation for sampling .................................................................................................................................... 9 2.1. Purpose and scope ..................................................................................................................................... 9 2.2. Associated documents................................................................................................................................ 9 2.3. Health and safety ........................................................................................................................................ 9 2.4. Permits and approvals ................................................................................................................................ 9 2.5. Skills, training and experience .................................................................................................................... 9 2.6. Things to consider when preparing for field work ....................................................................................... 9 2.6.1. Preparation of a sampling schedule........................................................................................................ 9 2.6.2. Naming of sites and samples ................................................................................................................ 10 2.6.3. The Sample Register ............................................................................................................................ 10 2.6.4. Communicating with the laboratory ....................................................................................................... 10 2.6.4.1. Before sampling ................................................................................................................................. 10 2.6.4.2. After sampling .................................................................................................................................... 11 2.6.5. Anticipating potential court action ......................................................................................................... 11 2.6.6. Sample containers, preservation, storage and holding times ............................................................... 11 2.6.6.1. Sample containers ............................................................................................................................. 11 2.6.6.2. Preservation, storage, and holding times .......................................................................................... 12 2.6.7. Transportation of samples .................................................................................................................... 12 2.6.7.1. Packing samples ............................................................................................................................... 12 2.6.7.1.1. Samples requiring refrigeration ...................................................................................................... 13 2.6.7.1.2. Samples requiring freezing immediately after collection ............................................................... 13 2.6.7.2. Chain of custody (COC) documents .................................................................................................. 13 iv 2.6.8. Security of samples ............................................................................................................................... 13 2.6.8.1. Sample seals or evidence bags ........................................................................................................ 13 2.6.8.2. Locked carrier boxes ......................................................................................................................... 14 2.7. Preparation of equipment ......................................................................................................................... 14 2.8. Essential items .......................................................................................................................................... 14 2.9. References and additional reading ..........................................................................................................
Recommended publications
  • Identifying British Insects and Arachnids: an Annotated Bibliography of Key Works Edited by Peter C
    Cambridge University Press 0521632412 - Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works Edited by Peter C. Barnard Index More information Index This index includes all the higher taxonomic categories mentioned in the book, from orders down to families, but page numbers are given only for the main occurrences of those names. It therefore also acts as a complete alphabetic list of the higher taxa of British insects and arachnids (except for the numerous families of mites). Acalyptratae 173, 188 Anyphaenidae 327 Acanthosomatidae 55 Aphelinidae 198, 293, 308 Acari 320, 330 Aphelocheiridae 55 Acartophthalmidae 173, 191 Aphididae 56, 62 Acerentomidae 23 Aphidoidea 56, 61 Acrididae 39 Aphrophoridae 56 Acroceridae 172, 180, 181 Apidae 198, 217 Aculeata 197, 206 Apioninae 83, 134 Adelgidae 56, 62, 64 Apocrita 197, 198, 206, 227 Adelidae 146 Apoidea 198, 214 Adephaga 82, 91 Arachnida 320 Aderidae 83, 126, 127 Aradidae 55 Aeolothripidae 52 Araneae 320, 326 Aepophilidae 55 Araneidae 327 Aeshnidae 31 Araneomorphae 327 Agelenidae 327 Archaeognatha 21, 25, 26 Agromyzidae 173, 188, 193 Arctiidae 146, 162 Alexiidae 83 Argidae 197, 201 Aleyrodidae 56, 67, 68 Argyronetidae 327 Aleyrodoidea 56, 66 Arthropleona 22 Alucitidae 146 Aschiza 173, 184 Alucitoidea 146 Asilidae 172, 180, 181, 182 Alydidae 55, 58 Asiloidea 172, 181 Amaurobiidae 327 Asilomorpha 172, 180, 182 Amblycera 48 Asteiidae 173, 189 Anisolabiidae 41 Asterolecaniidae 56, 70 Anisopodidae 172, 175, 177 Atelestidae 172, 183, 185 Anisopodoidea 172 Athericidae 172, 181 Anisoptera 31 Attelabidae 83, 134 Anobiidae 82, 119 Atypidae 327 Anoplura 48 Auchenorrhyncha 54, 55, 59 Anthicidae 83, 90, 126 Aulacidae 198, 228 Anthocoridae 55, 57, 58 Aulacigastridae 173, 192 Anthomyiidae 173, 174, 186, 187 Anthomyzidae 173, 188 Baetidae 28 Anthribidae 83, 88, 133, 134 Beraeidae 142 © Cambridge University Press www.cambridge.org Cambridge University Press 0521632412 - Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works Edited by Peter C.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Draft Index of Keys
    Draft Index of Keys This document will be an update of the taxonomic references contained within Hawking 20001 which can still be purchased from MDFRC on (02) 6024 9650 or [email protected]. We have made the descision to make this draft version publicly available so that other taxonomy end-users may have access to the information during the refining process and also to encourage comment on the usability of the keys referred to or provide information on other keys that have not been reffered to. Please email all comments to [email protected]. 1Hawking, J.H. (2000) A preliminary guide to keys and zoological information to identify invertebrates form Australian freshwaters. Identification Guide No. 2 (2nd Edition), Cooperative Research Centre for Freshwater Ecology: Albury Index of Keys Contents Contents ................................................................................................................................................. 2 Introduction ............................................................................................................................................. 8 Major Group ............................................................................................................................................ 8 Minor Group ................................................................................................................................................... 8 Order .............................................................................................................................................................
    [Show full text]
  • The Water Bugs (Hemiptera; Heteroptera) from the Western Thong Pha Phum Research Project Area, Kanchanaburi Province, Thailand
    รายงานการวิจัยในโครงการ 38-51 ชุดโครงการทองผาภูมิตะวันตก The Water Bugs (Hemiptera; Heteroptera) from the Western Thong Pha Phum Research Project Area, Kanchanaburi Province, Thailand Chariya Lekprayoon*, Marut Fuangarworn and Ezra Mongkolchaichana Chulalongkorn University, Bangkok *[email protected] Abstracts: Water bugs belong to the order Hemiptera, suborder Heteroptera which contains two kinds of members; semiaquatic (Gerromorpha), and true water bugs (Nepomorpha). They play a major role as biological control agents, and ecologically as food for higher trophic levels (birds and fish). This study is aimed at ascertaining the basic biodiversity and distribution, as well as biological and ecological based data, of water bugs in Thailand and to this aim this part the research was conducted at 4 locations of lotic habitats during May 2002 to April 2003 and at 4 wetland locations during May 2005 to June 2006, in the western Thong Pha Phum research project area. Data on the physical factors of each location were recorded at the time of collection of water bugs. Fifty-six species, from 49 genera and 14 families, were identified but this is an underestimate of the true biodiversity with and more than 16 different morphospecies likely to represent but true different species still in the process of identification. Timasius chesadai Chen, Nieser and Lekprayoon, 2006 (Hebridae) was found and described as a new species and the first record from Thailand. To aid future researchers, a key to families of Heteroptera within the Thong Pha Phum area of Thailand was prepared and is presented along with summary biological and ecological information at the family level. This report on species diversity of water bugs suggests that at least 72 species are expected to have been found from the west Thong Pha Phum area, a small part of Thailand.
    [Show full text]
  • The Little Things That Run the City How Do Melbourne’S Green Spaces Support Insect Biodiversity and Promote Ecosystem Health?
    The Little Things that Run the City How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Luis Mata, Christopher D. Ives, Georgia E. Garrard, Ascelin Gordon, Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk, Kirsten Parris and Sarah A. Bekessy The Little Things that Run the City – How do Melbourne’s green spaces support insect biodiversity and promote ecosystem health? Report prepared for the City of Melbourne, November 2015 Coordinating authors Luis Mata Christopher D. Ives Georgia E. Garrard Ascelin Gordon Sarah Bekessy Interdisciplinary Conservation Science Research Group Centre for Urban Research School of Global, Urban and Social Studies RMIT University 124 La Trobe Street Melbourne 3000 Contributing authors Anna Backstrom, Kate Cranney, Tessa R. Smith, Laura Stark, Daniel J. Bickel, Saul Cunningham, Amy K. Hahs, Dieter Hochuli, Mallik Malipatil, Melinda L Moir, Michaela Plein, Nick Porch, Linda Semeraro, Rachel Standish, Ken Walker, Peter A. Vesk and Kirsten Parris. Cover artwork by Kate Cranney ‘Melbourne in a Minute Scavenger’ (Ink and paper on paper, 2015) This artwork is a little tribute to a minute beetle. We found the brown minute scavenger beetle (Corticaria sp.) at so many survey plots for the Little Things that Run the City project that we dubbed the species ‘Old Faithful’. I’ve recreated the map of the City of Melbourne within the beetle’s body. Can you trace the outline of Port Phillip Bay? Can you recognise the shape of your suburb? Next time you’re walking in a park or garden in the City of Melbourne, keep a keen eye out for this ubiquitous little beetle.
    [Show full text]
  • Identification Guide to the Australian Odonata Australian the to Guide Identification
    Identification Guide to theAustralian Odonata www.environment.nsw.gov.au Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW National Library of Australia Cataloguing-in-Publication data Theischinger, G. (Gunther), 1940– Identification Guide to the Australian Odonata 1. Odonata – Australia. 2. Odonata – Australia – Identification. I. Endersby I. (Ian), 1941- . II. Department of Environment and Climate Change NSW © 2009 Department of Environment, Climate Change and Water NSW Front cover: Petalura gigantea, male (photo R. Tuft) Prepared by: Gunther Theischinger, Waters and Catchments Science, Department of Environment, Climate Change and Water NSW and Ian Endersby, 56 Looker Road, Montmorency, Victoria 3094 Published by: Department of Environment, Climate Change and Water NSW 59–61 Goulburn Street Sydney PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131555 (information & publication requests) Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au The Department of Environment, Climate Change and Water NSW is pleased to allow this material to be reproduced in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. ISBN 978 1 74232 475 3 DECCW 2009/730 December 2009 Printed using environmentally sustainable paper. Contents About this guide iv 1 Introduction 1 2 Systematics
    [Show full text]
  • Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises
    Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises Michael J. Raupach1*, Lars Hendrich2*, Stefan M. Ku¨ chler3, Fabian Deister1,Je´rome Morinie`re4, Martin M. Gossner5 1 Molecular Taxonomy of Marine Organisms, German Center of Marine Biodiversity (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany, 2 Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 3 Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany, 4 Taxonomic coordinator – Barcoding Fauna Bavarica, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 5 Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technische Universita¨tMu¨nchen, Freising-Weihenstephan, Germany Abstract During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance ,2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances .2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well.
    [Show full text]
  • On the Benthic Water Bug Aphelocheirus Aestivalis (FABRICIUS 1794) (Heteroptera, Aphelocheiridae): Minireview 9-19 © Österr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomologica Austriaca Jahr/Year: 2012 Band/Volume: 0019 Autor(en)/Author(s): Papacek Miroslav Artikel/Article: On the benthic water bug Aphelocheirus aestivalis (FABRICIUS 1794) (Heteroptera, Aphelocheiridae): Minireview 9-19 © Österr. Ent. Ges. [ÖEG]/Austria; download unter www.biologiezentrum.at Entomologica Austriaca 19 9-19 Linz, 16.3.2012 On the benthic water bug Aphelocheirus aestivalis (FABRICIUS 1794) (Heteroptera, Aphelocheiridae): Minireview M. PAPÁČEK Abstract: PAPÁČEK M.: On the benthic water bug Aphelocheirus aestivalis (FABRICIUS 1794) (Heteroptera, Aphelocheiridae): Minireview. Diagnostic characters of Aphelochirus aestivalis are listed, re-examined and figured in detail. Distribution, habitats, conservation status and biology of the species are briefly reviewed. Key words: Aphelocheirus aestivalis, diagnosis, distribution, habitats, biology. Introduction Aphelocheirus (Aphelocheirus) aestivalis (FABRICIUS 1794) was described as Naucoris aestivalis by FIEBER (1794: 66) who also characterized type material locality only by brief note: ‘Habitat in Galliae aquis Muf. Dom. Bofc.’. Historical name Gallia was used by Romans for Belgium, France, northern Italy, western Switzerland and parts of the Netherland and Germany. FABRICIUS (1794) meant most probably France. Exact holo- type locality is unknown and holotype is missing. For this reason LANSBURY (1965, p. 109) designated the lectotype (&, France) that is deposited in The Oxford University Museum, Hope Entomological Collections, Oxford, Great Britain. Furthermore KANYUKOVA (1995, p. 61) surveyed the synonymy of A. aestivalis (shortened version see below): Aphelocheirus breviceps HORVÁTH 1895: 160 (syn. KANYUKOVA 1974: 1730) Aphelocheirus kervillei KUHLGATZ 1898: 114 (syn. HORVÁTH 1899: 262) Aphelocheirus nigrita HORVÁTH 1899: 257, 263 (syn.
    [Show full text]
  • In Australien - Systematik Im Fluss
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomologica Austriaca Jahr/Year: 2010 Band/Volume: 0017 Autor(en)/Author(s): Theischinger Günther Artikel/Article: Der GSI-Clade (Odonata, Libelluloidea) in Australien - Systematik im Fluss. 49-66 © Österr. Ent. Ges. [ÖEG]/Austria; download unter www.biologiezentrum.at Entomologica Austriaca 17 49-66 Linz, 19.3.2010 Der GSI-Clade (Odonata, Libelluloidea) in Australien – Systematik im Fluss G. THEISCHINGER A b s t r a c t : GSI, a taxon recently (WARE et al. 2007) established for a monophyletic group (clade) of higher Libelluloidea, is discussed. Details are presented on the history of discovery and systematic integration of the Australian members of the group. Information is also given on morphological characters of adults and larvae, distribution, biology, behaviour, conservation, collecting and preparation, and pressing research priorities are pointed out. K e y w o r d s : GSI, Australia, systematics, morphology, distribution, biology, behaviour. Einleitung In der Folge wird ein unlängst hauptsächlich auf der Basis molekularer Studien einge- führtes Taxon (WARE et al. 2007) der höheren Libelluloidea vorgestellt. Abgehandelt werden Details der Entdeckungs-, Erforschungs- und Systematisierungsgeschichte und andere Aspekte der australischen Vertreter der Gruppe, an deren Erforschung ich über die letzten 40 Jahre nicht nur als Zuschauer beteiligt war. Was ist GSI GSI, Abkürzung für "Gomphomacromia-Synthemis-Idionyx", ist die Bezeichnung für eine monophyletische Gruppe (Clade) von Großlibellen (Anisoptera), die nach neuesten DNA-Untersuchungen (WARE et al. 2007) die Schwestergruppe aller verbliebenen höhe- ren Libelluloidea (Corduliiden+Libelluliden+Macromiiden), der artenreichsten Gruppe der Libellen, darstellt.
    [Show full text]
  • The Classification and Diversity of Dragonflies and Damselflies (Odonata)*
    Zootaxa 3703 (1): 036–045 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9F5D2E03-6ABE-4425-9713-99888C0C8690 The classification and diversity of dragonflies and damselflies (Odonata)* KLAAS-DOUWE B. DIJKSTRA1, GÜNTER BECHLY2, SETH M. BYBEE3, RORY A. DOW1, HENRI J. DUMONT4, GÜNTHER FLECK5, ROSSER W. GARRISON6, MATTI HÄMÄLÄINEN1, VINCENT J. KALKMAN1, HARUKI KARUBE7, MICHAEL L. MAY8, ALBERT G. ORR9, DENNIS R. PAULSON10, ANDREW C. REHN11, GÜNTHER THEISCHINGER12, JOHN W.H. TRUEMAN13, JAN VAN TOL1, NATALIA VON ELLENRIEDER6 & JESSICA WARE14 1Naturalis Biodiversity Centre, PO Box 9517, NL-2300 RA Leiden, The Netherlands. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3Department of Biology, Brigham Young University, 401 WIDB, Provo, UT. 84602 USA. E-mail: [email protected] 4Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium. E-mail: [email protected] 5France. E-mail: [email protected] 6Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832- 1448, USA. E-mail: [email protected]; [email protected] 7Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031 Japan. E-mail: [email protected] 8Department of Entomology, Rutgers University, Blake Hall, 93 Lipman Drive, New Brunswick, New Jersey 08901, USA.
    [Show full text]
  • Taxonomic and Molecular Studies in Cleridae and Hemiptera
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2015 TAXONOMIC AND MOLECULAR STUDIES IN CLERIDAE AND HEMIPTERA John Moeller Leavengood Jr. University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Leavengood, John Moeller Jr., "TAXONOMIC AND MOLECULAR STUDIES IN CLERIDAE AND HEMIPTERA" (2015). Theses and Dissertations--Entomology. 18. https://uknowledge.uky.edu/entomology_etds/18 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • The Impact of Fossil Distributions on Biogeographic Reconstruction
    Copyedited by: OUP Insect Systematics and Diversity, 1(1), 2017, 73–80 doi: 10.1093/isd/ixx005 Paleontology Research Relevant Relicts: The Impact of Fossil Distributions on Biogeographic Reconstruction Phillip Barden,1,3 and Jessica L. Ware2 1New Jersey Institute of Technology, Newark, NJ, 2Rutgers, The State University of New Jersey, Newark, NJ, and 3Corresponding author, e-mail: [email protected] Subject Editor: James Whitfield Received 16 May 2017; Editorial decision 9 September 2017 Abstract Localized extinction can play a significant role in obscuring reconstructions of historical biogeography. Insects, one of the most diverse clades in the tree of life, have complex patterns of local endemism, patterns of relictual distributions, and clades which are rather widespread and cosmopolitan. At the same time, insects have a rich fossil record that can contribute to the inference of ancestral geographical distributions, in light of present ranges. Here, we review current and ancestral insect distributions to explore the impact of fossil ranges on ancestral area reconstruction. Known examples of relictual distributions within Phasmatodea and termites are discussed, while we test the impact of fossil inclusion on biogeographic reconstruction within ants and dragonflies. The inclusion of fossil distributions increases the breadth of ancestral ranges across several nodes in ant and dragonfly phylogenies, which has implications for biogeographically based interpretations of past evolutionary ecology for these groups. More broadly, the incorporation of fossil data into estimates of ancestral distributions will not only improve the accuracy of those estimates but also provide additional temporal context. Key words: biogeography, dragonfly, fossil, termite, ant Present-day distributions of organisms are the direct consequence biogeographic history of organisms remains unclear given available of past instances of dispersal, vicariance, and extinction (Wiens and methodology.
    [Show full text]