Predatory Behaviour and Biology of a Mosquito

Total Page:16

File Type:pdf, Size:1020Kb

Predatory Behaviour and Biology of a Mosquito CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarBank@NUS PREDATORY BEHAVIOUR AND BIOLOGY OF A MOSQUITO-EATING JUMPING SPIDER, PARACYRBA WANLESSI JEREMY WOON REN WEI B.Sc. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2007 1 ACKNOWLEDGEMENTS First and foremost, I would like to thank Associate Professor Li Daiqin for all the guidance and support throughout these years spent under his supervision and without whom this thesis would never have been possible. My thanks to Prof. Robert Jackson for the invaluable comments when I was first starting out on this project. I would also like to thank our collaborator in the University of Malaya, Dr. Rosli Hashim, for putting me up in the field station. My thanks also go out to Ms. Goh Poh Moi, for always making sure I had a constant supply of mosquitoes for over three long years. To all the labmates I’ve had, both past and present, for all the lunch/tea sessions and all the madness that we do to keep ourselves sane – the lab was more than just an office thanks to you guys. To my fieldtrip companions throughout the years: Reuben, Kathy and especially Norman, who single-handedly drove me back from K.L. with my swollen face, Yin Yin, Aijie, Eunice and Laura. Special thanks to Matthew Lim, for all the advice throughout my project and Andrew Tham for all the exercise and corn. I would most especially like to thank Chin Yujia, for doing much of the preliminary work and bearing the brunt of the “streamlining” process, for the entertainment, and also for the mushrooms. My deepest gratitude goes to my family, for their enthusiasm in searching out for anything “spider” to give me, and supporting me throughout. Lastly, but most importantly, to my future wife, Tingting, for everything you have done to encourage me, helping out in any way possible and for just being there. i TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii ABSTRACT iv LIST OF TABLES v LIST OF FIGURES viii CHAPTER 1 GENERAL INTRODUCTION 1 Optimal Foraging Theory 1 Diet and Preference: Specialist vs. Generalist predators 3 Preference vs. OFT 5 Spiders as predators 7 Salticids 10 Prey preference in salticids 12 Myrmecophagic salticids 13 Araneophagic salticids 16 Culicivorous salticids 22 CHAPTER 2 PREY PREFERENCE OF PARACYRBA WANLESSI 26 Introduction 27 Materials and Methods 32 Results 41 Discussion 50 Conclusion 68 ii CHAPTER 3 DIET AND GROWTH OF PARACYRBA WANLESSI 69 Introduction 69 Materials and Methods 71 Results 76 Discussion 91 Conclusion 99 CHAPTER 4 A STUDY ON THE HABITAT OF PARACYRBA 100 WANLESSI Introduction 100 Materials and Methods 108 Results 113 Discussion 115 Conclusion 119 CHAPTER 5 GENERAL DISCUSSION 120 Paracyrba wanlessi as a specialist inhabitant of 120 fallen bamboo internodes Paracyrba wanlessi as a specialist predator 123 Does Paracyrba wanlessi forage optimally? 125 Future research on Paracyrba wanlessi 127 Conclusions 130 REFERENCES 131 iii ABSTRACT Spiders are commonly envisaged as generalist predators, but recent studies have shown that certain species of jumping spiders (Araneae: Salticidae) demonstrate a pronounced prey preference towards particular prey types. Some salticid species have even been shown to mature faster and grow to larger sizes when fed with their preferred prey type. Paracyrba wanlessi, a salticid from the subfamily Spartaeinae, is known to feed on a large proportion of larval and adult mosquitoes in nature. However, it is currently unclear if the observed proportion of mosquito prey taken in nature is indicative of an actual prey preference or if it is merely due to the relative abundance of various prey types in their natural habitat. I performed a series of prey choice tests using adult P. wanlessi to examine if they show a preference for mosquitoes over other insects as prey, and also the effect of hunger levels on their preference. My results demonstrated that P. wanlessi showed a distinct preference for adult female Aedes albopictus mosquitoes over blood fed mosquitoes, fruit flies and cricket nymphs. Surprisingly, even though half their natural diet was reported to consist of aquatic mosquito larvae, prey preference tests in the laboratory revealed that spiders would almost always choose adults over larval mosquitoes. I also conducted growth rate experiments to investigate whether the development of P. wanlessi was influenced if the spiders were fed on strict diets of Drosophila melanogaster, blood fed and non-blood fed female Ae. albopictus, or a mixed diet of all three prey types. Spiders reared on a mixed diet showed best overall growth and lowest mortality, followed closely by those reared on a non-blood fed mosquito diet. Contrary to expectations, spiders reared on blood fed mosquitoes did poorly, with high mortality rates and few spiders reaching maturity in 352 days. Spiders reared on D. melanogaster fared the worst, with 89% mortality prior to maturity. My findings have implications for the current understanding of vision-based prey preference and predatory specialization in salticids, as well as for the ecology of the phytothelm communities of bamboo internodes, the natural habitat of P. wanlessi. iv LIST OF TABLES Table Title Page Table 2-1. Results from prey choice tests with Paracyrba wanlessi when 45 simultaneously presented with two live prey, adult female Ae. albopictus mosquitoes and D. melanogaster in 227 successful trials. Table 2-2. Results from prey choice tests with Paracyrba wanlessi when 46 simultaneously presented with two live prey, adult female Ae. albopictus mosquitoes and cricket A. domesticus nymphs in 167 successful trials. Table 2-3. Results from prey choice tests with Paracyrba wanlessi when 47 simultaneously presented with two live prey, blood fed and non-blood fed female Ae. albopictus mosquitoes in 116 successful trials. Table 2-4. Results from prey choice tests with juvenile Paracyrba wanlessi 48 when simultaneously presented with two live prey, Ae. albopictus and Cx. quinquefasciatus mosquitoes in 62 successful trials. Table 2-5. Results from prey choice tests with Paracyrba wanlessi when 49 simultaneously presented with two live prey, adult female and larval Ae. albopictus mosquitoes in 122 successful trials. v Table 3-1. Number of individuals of each prey type fed to each spider in 73 their respective groups per week. Spiders in the mixed diet (MX) group were fed one prey type each week, cycling through the 3 prey types, e.g. week 1: blood fed mosquitoes, week 2: non-blood fed mosquitoes, week 3: D. melanogaster before repeating the entire cycle. Table 3-2. Weight of prey consumed for each prey type fed to each spider 76 in their respective groups per week. Spiders in the mixed diet (MX) group were fed one prey type each week, cycling through the three prey types, e.g. week 1: blood fed mosquitoes, week 2: non-blood fed mosquitoes, week 3: D. melanogaster before repeating the entire cycle. Table 3-3. One-way ANOVA of the within-group effects of gender on age 79 to maturity of male and female adult P. wanlessi Table 3-4. One-way ANOVA of the effect of diet on age to maturity of 79 male and female adult P. wanlessi Table 3-5. Summary of life history data for P. wanlessi reared on four 81 different diets Table 3-6. One-way ANOVA of the within-group effects of gender on 83-84 weight and seven body dimensions of male and female 6th instar P. wanlessi Table 3-7. One-way ANOVA and Tukey’s HSD post-hoc multiple 86 comparison tests of weight and seven body dimensions of 4th instar P. wanlessi reared on different diets vi Table 3-8. One-way ANOVA and Tukey’s HSD post-hoc multiple 88 comparison tests of weight and seven body dimensions of 6th instar male P. wanlessi reared on different diets Table 3-9. One-way ANOVA and Tukey’s HSD post-hoc multiple 90 comparison tests of weight and seven body dimensions of 6th instar female P. wanlessi reared on different diets vii LIST OF FIGURES Figure Title Page Fig. 1-1. Adult female Paracyrba wanlessi 25 Fig. 1-2. Adult male Paracyrba wanlessi 25 Fig. 2-1. Schematic diagram of test arena (top-down view) used in live prey 39 choice tests for terrestrial prey pairs. A. Testing arena. The two prey types to be tested are introduced into this area first before allowing the spider to enter at a later time. B. Attached chamber with a blocked connection to allow a spider to be detained until the appropriate time. When the spider is allowed to enter, some individuals occasionally prove reluctant to move at all, in which case the plunger is used to push the spider into the arena. Fig. 2-2. Schematic diagram of test arena used to test terrestrial prey against 40 aquatic mosquito larvae. A. Top-down view. Aquatic larvae are placed in a pool filling the 71 mm square depression in the middle of the arena. The pool has sloping sides down to a 20 mm square base. B. Side view of the arena showing the depth of the pool with sloping sides and also the entrance where the spider is allowed to enter the arena and where the connecting chamber is attached. Fig. 3-1. Schematic diagram showing the five carapace dimensions 75 measured on the exuviae of spiders to determine growth. Fig. 3-2. Survivorship values at each instar for P. wanlessi raised on four 80 different diets. Fig. 4-1. General habitat of P. wanlessi is secondary rainforest interspersed 103 with bamboo clumps along a stream, Sungei Gombak viii Fig.
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
    Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance.
    [Show full text]
  • A Novel Trade-Off for Batesian Mimics Running Title
    Out of the frying pan and into the fire: A novel trade-off for Batesian mimics Running title: Salticids that mimic ants and get eaten by ant specialists Ximena J. Nelson*†, Daiqin Li§ and Robert R. Jackson† *Department of Psychology, Animal Behaviour Laboratory, Macquarie University, Sydney, NSW 2109, Australia Email: [email protected] Phone: 61-2-98509232 Fax: 61-2-98509231 §Department of Biological Sciences, National University of Singapore, Singapore †School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Key words: Ants, Batesian mimicry, myrmecophagy, predation, spiders, trade-off Abstract A mimicry system was investigated in which the models were ants (Formicidae) and both the mimics and the predators were jumping spiders (Salticidae). By using motionless lures in simultaneous-presentation prey-choice tests, how the predators respond specifically to the static appearance of ants and ant mimics was determined. These findings suggest a rarely considered adaptive trade-off for Batesian mimics of ants. Mimicry may be advantageous when it deceives ant-averse potential predators, but disadvantageous in encounters with ant- eating specialists. Nine myrmecophagic (ant-eating) species (from Africa, Asia, Australia and North America) and one araneophagic (spider-eating) species (Portia fimbriata from Queensland) were tested with ants (5 species), with myrmecomorphic (ant-like) salticids (6 species of Myrmarachne) and with non-ant-like prey (dipterans and ordinary salticids). The araneophagic salticid chose an ordinary salticid and chose flies significantly more often than ants. P. fimbriata also chose the ordinary salticid and chose flies significantly more often than myrmecomorphic salticids. However, there was no significant difference in how P.
    [Show full text]
  • Evarcha Culicivora Chooses Blood-Fed Anopheles Mosquitoes but Other
    MVE mve˙986 Dispatch: October 6, 2011 Journal: MVE CE: Hybrid-CE View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal Name Manuscript No. B Author Received: No of pages: 3 TS: Suresh provided by UC Research Repository Medical and Veterinary Entomology (2011), doi: 10.1111/j.1365-2915.2011.00986.x 1 1 2 SHORT COMMUNICATION 2 3 3 4 4 5 5 6 Evarcha culicivora chooses blood-fed Anopheles 6 7 7 8 mosquitoes but other East African jumping spiders do 8 9 9 10 not 10 11 11 12 12 13 R. R. J A C K S O N1,2 andX.J.NELSON1 13 14 14 AQ1 1 2 15 Department of Xxx, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand and Department of 15 16AQ2 Xxx, International Centre of Insect Physiology and Ecology, Mbita Point, Kenya 16 17 17 18 18 19 Abstract. Previous research using computer animation and lures made from dead 19 20 prey has demonstrated that the East African salticid Evarcha culicivora Wesolowska & 20 21AQ3 Jackson (Araneae: Salticidae) feeds indirectly on vertebrate blood by actively choosing 21 22 blood-carrying female mosquitoes as prey, and also that it singles out mosquitoes of 22 23AQ4 the genus Anopheles (Diptera: Culicidae) by preference. Here, we demonstrate that 23 24 E. culicivora’s preference is expressed when the species is tested with living prey 24 25 and that it is unique to E. culicivora. As an alternative hypothesis, we considered 25 26 26 the possibility that the preference for blood-fed female anopheline mosquitoes might 27 27 28 be widespread in East African salticids.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • Speculative Hunting by an Araneophagic Salticid Spider
    SPECULATIVE HUNTINGBY ANARANEOPHAGICSAL TICID SPIDER by ROBERT J.CLARK , DUANE P.HARLAND and ROBERT R.JACKSON 1,2) (Departmentof Zoology,University of Canterbury, Private Bag 4800, Christchurch, New Zealand) (Acc.3-VII-2000) Summary Portia mbriata ,anaraneophagic jumping spider ( Salticidae),makes undirected leaps ( er- raticleaping with no particulartarget being evident) in the presence of chemicalcues from Jacksonoidesqueenslandicus ,anothersalticid and a commonprey of P. mbriata. Whether undirectedleaping by P. mbriata functionsas hunting by speculation is investigatedexperi- mentally.Our rsthypothesis, that undirected leaps provoke movement by J.queenslandicus , wasinvestigated using living P. mbriata andthree types of luresmade from dead, dry arthro- pods (P. mbriata, J.queenslandicus and Muscadomestica ).When a living P. mbriata made undirectedleaps or aspring-drivendevice made the lures suddenly move up and down, sim- ulatingundirected leaping, J.queenslandicus respondedby wavingits palps and starting to walk.There was no statisticalevidence that the species from which the lure was made in u- enced J.queenslandicus ’responsein these tests. Our second hypothesis, that J.queenslandi- cus revealsits location to P. mbriata bymoving, was investigated by recording P. mbriata’s reaction to J.queenslandicus when J.queenslandicus reactedto luressimulating undirected leaping.In these tests, P. mbriata respondedby turning toward J.queenslandicus and waving its palps. Keywords: Portia mbriata , Jacksonoidesqueenslandicus ,jumpingspiders, predation, spec- ulativehunting. 1) Correspondingauthor; e-mail address: [email protected] 2) WethankPhil T aylorand David Blest for useful discussion and valuable comments on the manuscript.Financial support was provided by theNational Science Foundation ( GrantBNS 861078)and the Marsden Fund of New Zealand(Grant UOC512). c KoninklijkeBrill NV ,Leiden,2000 Behaviour137, 1601-1612 ® 1602 CLARK, HARLAND&JACKSON Introduction Ageneralproblem facing predators is howto locate prey(Curio, 1976).
    [Show full text]
  • Visual Perception in Jumping Spiders (Araneae,Salticidae)
    Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods .....................................................................................................................................................................
    [Show full text]
  • Dynamics of Salticid-Ant Mimicry Systems
    ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation.
    [Show full text]
  • Predatory Behavior of Jumping Spiders
    Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies.
    [Show full text]
  • Spider Biodiversity Patterns and Their Conservation in the Azorean
    Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae:
    [Show full text]
  • The Study of Hidden Habitats Sheds Light on Poorly Known Taxa: Spiders of the Mesovoid Shallow Substratum
    A peer-reviewed open-access journal ZooKeys 841: 39–59 (2019)The study of hidden habitats sheds light on poorly known taxa... 39 doi: 10.3897/zookeys.841.33271 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum Enrique Ledesma1, Alberto Jiménez-Valverde1, Alberto de Castro2, Pablo Aguado-Aranda1, Vicente M. Ortuño1 1 Research Team on Soil Biology and Subterranean Ecosystems, Department of Life Science, Faculty of Science, University of Alcalá, Alcalá de Henares, Madrid, Spain 2 Entomology Department, Aranzadi Science Society, Donostia - San Sebastián, Gipuzkoa, Spain Corresponding author: Enrique Ledesma ([email protected]); Alberto Jiménez-Valverde ([email protected]) Academic editor: P. Michalik | Received 22 January 2019 | Accepted 5 March 2019 | Published 23 April 2019 http://zoobank.org/52EA570E-CA40-453D-A921-7785A9BD188B Citation: Ledesma E, Jiménez-Valverde A, de Castro A, Aguado-Aranda P, Ortuño VM (2019) The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. ZooKeys 841: 39–59. https:// doi.org/10.3897/zookeys.841.33271 Abstract The scarce and biased knowledge about the diversity and distribution of Araneae species in the Iberian Peninsula is accentuated in poorly known habitats such as the Mesovoid Shallow Substratum (MSS). The aim of this study was to characterize the spiders inventory of the colluvial MSS of the Sierra de Guadar- rama National Park, and to assess the importance of this habitat for the conservation of the taxon. Thirty-three localities were selected across the high peaks of the Guadarrama mountain range and they were sampled for a year using subterranean traps specially designed to capture arthropods in the MSS.
    [Show full text]