Australasian Arachnology 76 Features a Comprehensive Update on the Taxonomy Change of Address and Systematics of Jumping Spiders of Australia by Marek Zabka
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance. -
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Salticidae (Arachnida, Araneae) of Islands Off Australia
1999. The Journal of Arachnology 27:229±235 SALTICIDAE (ARACHNIDA, ARANEAE) OF ISLANDS OFF AUSTRALIA Barbara Patoleta and Marek ZÇ abka: Zaklad Zoologii WSRP, 08±110 Siedlce, Poland ABSTRACT. Thirty nine species of Salticidae from 33 Australian islands are analyzed with respect to their total distribution, dispersal possibilities and relations with the continental fauna. The possibility of the Torres Strait islands as a dispersal route for salticids is discussed. The studies of island faunas have been the ocean level ¯uctuations over the last 50,000 subject of zoogeographical and evolutionary years, at least some islands have been sub- research for over 150 years and have resulted merged or formed land bridges with the con- in hundreds of papers, with the syntheses by tinent (e.g., Torres Strait islands). All these Carlquist (1965, 1974) and MacArthur & Wil- circumstances and the human occupation son (1967) being the best known. make it rather unlikely for the majority of Modern zoogeographical analyses, based islands to have developed their own endemic on island spider faunas, began some 60 years salticid faunas. ago (Berland 1934) and have continued ever When one of us (MZ) began research on since by, e.g., Forster (1975), Lehtinen (1980, the Australian and New Guinean Salticidae 1996), Baert et al. (1989), ZÇ abka (1988, 1990, over ten years ago, close relationships be- 1991, 1993), Baert & Jocque (1993), Gillespie tween the faunas of these two regions were (1993), Gillespie et al. (1994), ProÂszynÂski expected. Consequently, it was hypothesized (1992, 1996) and Berry et al. (1996, 1997), that the Cape York Peninsula and Torres Strait but only a few papers were based on veri®ed islands were the natural passage for dispersal/ and suf®cient taxonomic data. -
Diversity of Simonid Spiders (Araneae: Salticidae: Salticinae) in India
IJBI 2 (2), (DECEMBER 2020) 247-276 International Journal of Biological Innovations Available online: http://ijbi.org.in | http://www.gesa.org.in/journals.php DOI: https://doi.org/10.46505/IJBI.2020.2223 Review Article E-ISSN: 2582-1032 DIVERSITY OF SIMONID SPIDERS (ARANEAE: SALTICIDAE: SALTICINAE) IN INDIA Rajendra Singh1*, Garima Singh2, Bindra Bihari Singh3 1Department of Zoology, Deendayal Upadhyay University of Gorakhpur (U.P.), India 2Department of Zoology, University of Rajasthan, Jaipur (Rajasthan), India 3Department of Agricultural Entomology, Janta Mahavidyalaya, Ajitmal, Auraiya (U.P.), India *Corresponding author: [email protected] Received: 01.09.2020 Accepted: 30.09.2020 Published: 09.10.2020 Abstract: Distribution of spiders belonging to 4 tribes of clade Simonida (Salticinae: Salticidae: Araneae) reported in India is dealt. The tribe Aelurillini (7 genera, 27 species) is represented in 16 states and in 2 union territories, Euophryini (10 genera, 16 species) in 14 states and in 4 union territories, Leptorchestini (2 genera, 3 species) only in 2 union territories, Plexippini (22 genera, 73 species) in all states except Mizoram and in 3 union territories, and Salticini (3 genera, 11 species) in 15 states and in 4 union terrioties. West Bengal harbours maximum number of species, followed by Tamil Nadu and Maharashtra. Out of 129 species of the spiders listed, 70 species (54.3%) are endemic to India. Keywords: Aelurillini, Euophryini, India, Leptorchestini, Plexippini, Salticidae, Simonida. INTRODUCTION Hisponinae, Lyssomaninae, Onomastinae, Spiders are chelicerate arthropods belonging to Salticinae and Spartaeinae. Out of all the order Araneae of class Arachnida. Till to date subfamilies, Salticinae comprises 93.7% of the 48,804 described species under 4,180 genera and species (5818 species, 576 genera, including few 128 families (WSC, 2020). -
The Short-Range Endemic Invertebrate Fauna of the Ravensthorpe Range
THE SHORT-RANGE ENDEMIC INVERTEBRATE FAUNA OF THE RAVENSTHORPE RANGE MARK S. HARVEY MEI CHEN LENG Department of Terrestrial Zoology Western Australian Museum June 2008 2 Executive Summary An intensive survey of short-range endemic invertebrates in the Ravensthorpe Range at 79 sites revealed a small but significant fauna of myriapods and arachnids. Four species of short-range endemic invertebrates were found: • The millipede Antichiropus sp. R • The millipede Atelomastix sp. C • The millipede Atelomastix sp. P • The pseudoscorpion Amblyolpium sp. “WA1” Atelomastix sp. C is the only species found to be endemic to the Ravensthorpe Range and was found at 14 sites. Antichiropus sp. R, Atelomastix sp. P and Amblyolpium sp. “WA1” are also found at nearby locations. Sites of high importance include: site 40 with 7 species; sites 7 and 48 each with 5 species; and sites 18 and 44 each with 4 species. WA Museum - Ravensthorpe Range Survey 3 Introduction Australia contains a multitude of terrestrial invertebrate fauna species, with many yet to be discovered and described. Arthropods alone were recently estimated to consist of approximately more than 250,000 species (Yeates et al. 2004). The majority of these belong to the arthropod classes Insecta and Arachnida, and although many have relatively wide distributions across the landscape, some are highly restricted in range with special ecological requirements. These taxa, termed short-range endemics (Harvey 2002b), are taxa categorised as having poor dispersal abilities and/or requiring very specific habitats, usually with naturally small distributional ranges of less than 10,000 km2 and the following ecological and life-history traits: • poor powers of dispersal; • confinement to discontinuous habitats; • usually highly seasonal, only active during cooler, wetter periods; and • low levels of fecundity. -
Arachnida: Araneae) from Oriental, Australian and Pacific Regions, XVI
© Copyright Australian Museum, 2002 Records of the Australian Museum (2002) Vol. 54: 269–274. ISSN 0067-1975 Salticidae (Arachnida: Araneae) from Oriental, Australian and Pacific Regions, XVI. New Species of Grayenulla and Afraflacilla MAREK Z˙ ABKA1* AND MICHAEL R. GRAY2 1 Katedra Zoologii AP, 08-110 Siedlce, Poland [email protected] 2 Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. Four new species, Grayenulla spinimana, G. wilganea, Afraflacilla gunbar and A. milledgei, are described from New South Wales and Western Australia. Remarks on relationships, biology and distribution of both genera are provided together with distributional maps. Z ˙ ABKA, MAREK, & MICHAEL R. GRAY, 2002. Salticidae (Arachnida: Araneae) from Oriental, Australian and Pacific regions, XVI. New species of Grayenulla and Afraflacilla. Records of the Australian Museum 54(3): 269–274. In comparison to coastal parts of the Australian continent, whole is very widespread, ranging from west Africa through Salticidae from inland Australia are still poorly studied. the Middle East, southern Asia, New Guinea and Australia Preliminary data indicate that the inland dry areas have their to western and middle Pacific islands. There are about 50 own, endemic fauns, genera Grayenulla and Afraflacilla species known worldwide, most of them are described in being good examples (Z˙abka, 1992, 1993, unpubl.). Pseudicius (e.g., Prószynski,´ 1992; Berry et al., 1998). At present, seven species of Grayenulla are known from Festucula, Marchena and Pseudicius are the closest relatives scattered localities in Western Australia. Even if found in of Afraflacilla and they form a monophyletic group. coastal areas, they are limited in occurrence to savannah and semidesert habitats, being either ground or vegetation dwellers. -
Visual Perception in Jumping Spiders (Araneae,Salticidae)
Visual Perception in Jumping Spiders (Araneae,Salticidae) A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biology at the University of Canterbury by Yinnon Dolev University of Canterbury 2016 Table of Contents Abstract.............................................................................................................................................................................. i Acknowledgments .......................................................................................................................................................... iii Preface ............................................................................................................................................................................. vi Chapter 1: Introduction ................................................................................................................................................... 1 Chapter 2: Innate pattern recognition and categorisation in a jumping Spider ........................................................... 9 Abstract ....................................................................................................................................................................... 10 Introduction ................................................................................................................................................................ 11 Methods ..................................................................................................................................................................... -
Dynamics of Salticid-Ant Mimicry Systems
ResearchOnline@JCU This file is part of the following reference: Ceccarelli, Fadia Sara (2006) Dynamics of salticid-ant mimicry systems. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1311/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1311/ TITLE PAGE Dynamics of Salticid-Ant Mimicry Systems Thesis submitted by Fadia Sara CECCARELLI BSc (Hons) in March 2006 for the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the School of Tropical Biology James Cook University I STATEMENT OF ACCESS I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: In consulting this thesis I agree not to copy or closely paraphrase it in whole of part without the written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it. Beyond this, I do not wish to place any restriction on access to this thesis. ------------------------------ -------------------- F. Sara Ceccarelli II ABSTRACT Mimicry in arthropods is seen as an example of evolution by natural selection through predation pressure. The aggressive nature of ants, and their possession of noxious chemicals, stings and strong mandibles make them unfavourable prey for many animals. The resemblance of a similar-sized arthropod to an ant can therefore also protect the mimic from predation. -
Predatory Behavior of Jumping Spiders
Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies. -
Geographic Variation in a Spider╎s Ability to Solve a Confinement
eScholarship International Journal of Comparative Psychology Title Geographic Variation in a Spider’s Ability to Solve a Confinement Problem by Trial and Error Permalink https://escholarship.org/uc/item/53c3x1w9 Journal International Journal of Comparative Psychology, 19(3) ISSN 0889-3675 Authors Jackson, Robert R. Cross, Fiona R. Carter, Chris M. Publication Date 2006-12-31 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California International Journal of Comparative Psychology, 2006, 19 , 282-296. Copyright 2006 by the International Society for Comparative Psychology Geographic Variation in a Spider’s Ability to Solve a Confinement Problem by Trial and Error Robert R. Jackson, Fiona R. Cross, and Chris M. Carter University of Canterbury, New Zealand Portia is a genus of web-invading araneophagic (spider eating) jumping spiders known from earlier studies to derive aggressive-mimicry signals by using a generate-and-test (trial and error) algorithm. We studied individuals of Portia labiata from two populations (Los Baños and Sagada) in the Philip- pines that have previously been shown to differ in the level to which they rely on trial-and-error deri- vation of signals for prey capture (Los Baños relied on trial and error more strongly than Sagada P . labiata ). Here we investigated P. labiata ’s use of trial and error in a novel situation (a confinement problem: how to escape from an island surrounded by water) that is unlikely to correspond closely to anything the spider would encounter in nature. During Experiment 1, spiders chose between two potential escape tactics (leap or swim), one of which was set at random to fail (brought spider no closer to edge of tray) and the other of which was set for partially succeeding (brought spider closer to edge of tray). -
A LIST of the JUMPING SPIDERS of MEXICO. David B. Richman and Bruce Cutler
PECKHAMIA 62.1, 11 October 2008 ISSN 1944-8120 This is a PDF version of PECKHAMIA 2(5): 63-88, December 1988. Pagination of the original document has been retained. 63 A LIST OF THE JUMPING SPIDERS OF MEXICO. David B. Richman and Bruce Cutler The salticids of Mexico are poorly known. Only a few works, such as F. O. Pickard-Cambridge (1901), have dealt with the fauna in any depth and these are considerably out of date. Hoffman (1976) included jumping spiders in her list of the spiders of Mexico, but the list does not contain many species known to occur in Mexico and has some synonyms listed. It is our hope to present a more complete list of Mexican salticids. Without a doubt such a work is preliminary and as more species are examined using modern methods a more complete picture of this varied fauna will emerge. The total of 200 species indicates more a lack of study than a sparse fauna. We would be surprised if the salticid fauna of Chiapas, for example, was not larger than for all of the United States. Unfortunately, much of the tropical forest may disappear before this fauna is fully known. The following list follows the general format of our earlier (1978) work on the salticid fauna of the United States and Canada. We have not prepared a key to genera, at least in part because of the obvious incompleteness of the list. We hope, however, that this list will stimulate further work on the Mexican salticid fauna. Acragas Simon 1900: 37. -
Hunting Prey with Different Escape Potentials— Alternative Predatory Tactics in a Dune Dwelling Salticid
2007 (2008). The Journal of Arachnology 35:499–508 HUNTING PREY WITH DIFFERENT ESCAPE POTENTIALS— ALTERNATIVE PREDATORY TACTICS IN A DUNE DWELLING SALTICID Maciej Bartos: University of Lodz, Department of Teacher Training and Studies of Biological Diversity, Banacha 1/3, 90-237 Lodz, Poland. E-mail: [email protected] ABSTRACT. Generalist predators hunt a wide range of prey that possess various characteristics affecting the predators’ hunting success (e.g., size, ability to detect the threat and defend against it, potential for escape). Therefore, it can be expected that the predator should flexibly react to different prey characteristics, hunting them in prey-specific ways. For a stalking predator a crucial prey feature is its ability to escape. In this study, the alternative prey-catching tactics of a dune-dwelling salticid Yllenus arenarius Menge 1868 were analyzed. Four naturally eaten prey taxa, two with a high ability to escape (Homoptera, Orthoptera) and two with a low ability to escape (Thysanoptera, larvae of Lepidoptera), were used. Numerous differences found between the tactics indicate that Y. arenarius can not only distinguish between different types of prey, but can also employ specific tactics to catch them. The tactics belong to a conditional strategy and are manifested in alternative: a) direction of approach, b) speed of approach, and c) other prey specific behaviors. Keywords: Predatory behavior, conditional strategy, spider, Araneae, Salticidae, Yllenus There are numerous examples of alternative 1992; Edwards & Jackson 1993, 1994; Bear & phenotypes expressed through animal morphol- Hasson 1997). ogy, life history, and behavior. They are most Conditional strategies are present in both commonly reported in the field of reproductive alternative mating tactics and predatory behav- biology (reviewed in Gross 1996) and studies of ior of jumping spiders (Jackson 1992; Edwards resource-based polymorphisms (reviewed in & Jackson 1993, 1994; Bear & Hasson 1997).