Spider Biodiversity Patterns and Their Conservation in the Azorean

Total Page:16

File Type:pdf, Size:1020Kb

Spider Biodiversity Patterns and Their Conservation in the Azorean Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae: Erigoninae – Acorigone gen. nov. with its type species Acorigone zebraneus Wunderlich; Clubionidae – Cheiracanthium floresense Wunderlich; Cheiracanthium jorgeense Wunderlich; Salticidae – Neon acoreensis Wunderlich. Other major taxo- nomic changes are: Diplocentria acoreensis Wunderlich, 1992 (Linyphiidae) is trans- ferred to Acorigone (comb. nov.), Leucognatha Wunderlich 1995 (Tetragnathidae) is not an endemic genus of the Azores but an African taxon and synonymous with San- cus Tullgren, 1910; Leucognatha acoreensis Wunderlich, 1992 is transferred to San- cus. Minicia picoensis Wunderlich, 1992 is a synonym of M. floresensis Wunderlich, 1992. For each species additional information is presented about its known distribu- tion in the islands, its colonisation status, habitat occurrence and biogeographical origin. Key words Araneae, Azores, biodiversity patterns, biogeography, cave species endemic, islands, new taxa, Macaronesian Islands, spiders Introduction Due to the ability of many families of spiders to disperse over long distances using wind currents (‘ballooning’) these Spiders (Araneae) are an important component of arthropod organisms easily colonise isolated island archipelagos like the faunas (Wise, 1995), with their predatory behaviour being, for Azores and should have disproportionally higher species di- instance, of great relevance for biological control in agroe- versity. However, spiders are not a particularly attractive arth- cosystems. Members of this order play an important role ropod group for humans, and their current world and Azorean in most terrestrial foodwebs, may be very abundant in sev- taxonomic knowledge are far from being satisfactory. For in- eral habitats and are among the most numerous arthropods stance, in the Azores the rate of new species records and new from many samples in all kinds of habitats in the Azores species description indicates that only recently are we achiev- (Borges & Brown, 2001, 2004) and elsewhere (Basset, 1991). ing a satisfactory picture of the Azorean spider diversity (see Moreover, despite the importance of spiders in terrestrial eco- more details below). systems, in both species richness and abundance, this arachnid The difficulty in spider biodiversity assessment in the group is rarely considered in evaluating networks of protec- Azores seems to be related to the absence of historical ted areas (but see Skerl, 1999; Cardoso, 2004; Borges et al., expeditions focusing only on this group of arthropods and 2005a). on the high richness and variability in microhabitats they occupy. Historical investigations include the works of Denis ∗Corresponding author. (1964), that reported 70 species for the archipelago, and 249 250 Paulo A.V. Borges & Joerg Wunderlich Figure 1 Map of the studied region, showing the nine islands of the Azores. Wunderlich (1992), who listed 103 species and a few inde- and biogeographical origin; (iii) to estimate spider species rich- termined taxa. Special sampling protocols and a standardised ness in the Azores; and (iv) to plan some suggestions for the sampling of different habitats are urgently needed for the conservation of Azorean spider diversity. adequate inventory of spiders and other arthropod groups in the Azores. This contribution is part of a larger study conducted since 1998 in the Azorean islands (Project BALA – Materials and methods Biodiversity of the Arthropods of the Laurisilva of the Azores) (see Borges et al., 2000a, 2005a) that aims to Area of study: The Azores survey the Azorean arthropod fauna using standardised The Azorean Islands are volcanic in origin being located in the sampling protocols at different spatial scales covering most North Atlantic, roughly between the coordinates 37◦ to 40◦ N protected areas and native forests in seven of the nine Azorean latitude and 25◦ to 31◦ W longitude (Fig. 1). This archipelago islands. For this current contribution we use as a starting comprises nine main islands and some small islets and is point the last list of Azorean spiders (Wunderlich, 1992), located at the triple junction between the African–Eurasian and include data from recent field studies in pasturelands and North-American plates, emerging from the Azores Plat- (Borges, 1999; Borges & Brown, 1999, 2001, 2004), cav- eau, a topographic and gravity high near the Mid Atlantic ernicolous fauna (Borges & Orom´ı, in press), native forest ridge (MAR). The archipelago is situated over two tectonic and grassland habitats (Borges et al., 2000b, 2005a), and plates: the westernmost islands of Flores and Corvo lie over fruit orchards (Santos et al., 2005). The recently published the American plate and are separated from the eastern islands updated list of Azorean fauna and flora (Borges et al., 2005b) by the Mid-Atlantic Ridge (MAR); the other seven main is- also includes a revised list of Azorean spiders (Borges & lands are located in a large triangular plateau with a com- Wunderlich, 2005) that is reproduced with some updates and plicated structure known as ‘Azores Plateau’ (Nunes, 1999; additional information (e.g. new records, habitat distribution, Franc¸a et al., 2003). The distance between the Azores and biogeographical origin) in Appendix 1 (which is available the European mainland is about 1584 km, calculated from as “Supplementary data” on Cambridge Journals Online: Cabo da Roca (the most westerly point of the European con- http://www.journals.cup.org/abstract_S1477200008002648) tinent). The nine islands are divided into three groups: the and will be the basis of our biodiversity pattern analysis. occidental group of Corvo and Flores; the central group of Studies on island biodiversity and island biogeographical Faial, Pico, Graciosa, Sao˜ Jorge and Terceira; and the oriental patterns for spiders are scarce globally (but see Baert & Jocque,´ group of Sao˜ Miguel and Santa Maria, plus the Formigas islets 1993; Real et al., 1999; Schoener et al., 2003). Therefore, (Fig. 1). The largest island is S. Miguel (757 km2), and the we are trying to make some headway by investigating some smallest is Corvo (17 km2). S. Maria is the southernmost island biodiversity patterns in the Azorean spider fauna. (37◦N, 25◦W), and Flores is the westernmost one (31◦W). The The purposes of this work are: (i) to update all the tax- most northerly one is Corvo (39, 7◦N). The distance between onomy data of the Azorean spider fauna, describing new taxa, Corvo and Santa Maria, the islands farthest apart, is about listing new records for individual islands and revising nomen- 615 km. Corvo lies approximately at the same distance from clature; (ii) to investigate some biodiversity patterns concern- the Iberian Peninsula and from Newfoundland. All the in- ing distribution between islands, habitats, colonisation status formation concerning the longitude (long.), latitude (lat.), area, Island spider diversity 251 maximum altitude, distances from the mainland and geological conservation management scheme, was launched covering age of each island are given in Table S1 in Supplementary Ma- about 13% of the area of Azores islands. Selected areas were terial. chosen both for the protection of selected species of birds (Spe- The acceptance of the Plate Tectonic Theory and the cial Protection Areas – SPAs; Portuguese ZPEs; n = 15) and confirmed volcanic origin of these islands, made the Azores a for the protection of habitats and (non-bird) species (Special totally oceanic archipelago. The eastern part of every Azorean Areas of Conservation – SACs; Portuguese SICs; n = 23). island is geologically the oldest. This is a consequence of the particular seismovolcanic mechanisms of this archipelago (Nunes, 1999; Franc¸a et al., 2003). Spider sampling and databases Located at a mean latitude of 38◦30 and surrounded by Since 1994 spiders were sampled in a standardised way in dif- the Atlantic Ocean, the Azores enjoy the benefits of a mild ferent habitats. Data from semi-natural pastures and intensive and agreeable climate. The warm Gulf Stream is
Recommended publications
  • Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
    Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate
    [Show full text]
  • SLAM Project
    Biodiversity Data Journal 9: e69924 doi: 10.3897/BDJ.9.e69924 Data Paper SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores: I - the spiders from native forests of Terceira and Pico Islands (2012-2019) Ricardo Costa‡, Paulo A. V. Borges‡,§ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Azores, Portugal § IUCN SSC Mid-Atlantic Islands Specialist Group,, Angra do Heroísmo, Azores, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 09 Jun 2021 | Accepted: 05 Jul 2021 | Published: 01 Sep 2021 Citation: Costa R, Borges PAV (2021) SLAM Project - Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores: I - the spiders from native forests of Terceira and Pico Islands (2012-2019). Biodiversity Data Journal 9: e69924. https://doi.org/10.3897/BDJ.9.e69924 Abstract Background Long-term monitoring of invertebrate communities is needed to understand the impact of key biodiversity erosion drivers (e.g. habitat fragmentation and degradation, invasive species, pollution, climatic changes) on the biodiversity of these high diverse organisms. The data we present are part of the long-term project SLAM (Long Term Ecological Study of the Impacts of Climate Change in the natural forest of Azores) that started in 2012, aiming to understand the impact of biodiversity erosion drivers on Azorean native forests (Azores, Macaronesia, Portugal). In this contribution, the design of the project, its objectives and the first available data for the spider fauna of two Islands (Pico and Terceira) are described.
    [Show full text]
  • New Or Little-Known Species of Agyneta and Nippononeta from Asia (Aranei: Linyphiidae)
    Arthropoda Selecta 13 (3): 165170 © ARTHROPODA SELECTA, 2004 New or little-known species of Agyneta and Nippononeta from Asia (Aranei: Linyphiidae) Íîâûå è ìàëîèçâåñòíûå âèäû Agyneta è Nippononeta èç Àçèè (Aranei: Linyphiidae) A.V. Tanasevitch À.Â. Òàíàñåâè÷ All-Russian Research Institute for Nature Protection, Ministry of the Protection of the Environment and Natural Resources of the Russian Federation. Âñåðîññèéñêèé èíñòèòóò îõðàíû ïðèðîäû ïðè Ìèíèñòåðñòâå ïðèðîäíûõ ðåñóðñîâ ÐÔ. KEY WORDS: Spiders, Linyphiidae, Agyneta, Nippononeta, new species, Altai, Russian Far East, Eastern Kazakhstan. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Ïàóêè, Linyphiidae, Agyneta, Nippononeta, íîâûå âèäû, Àëòàé, Äàëüíèé Âîñòîê Ðîññèè, Âîñòî÷íûé Êàçàõñòàí. ABSTRACT: Two new species, Agyneta tibialis In addition, several interesting records of Agyneta sp.n. and Nippononeta embolica sp.n., are described species in Asia are provided. from the Altai Mountains, South Siberia and the Rus- sian Far East, respectively. Agyneta mongolica (Loksa, Material and Methods 1965) and A. nigra (Oi, 1960) are depicted based on new records in the Far East of Russia, while the Europe- This paper is based on the collections of Miss G. an A. simplicitarsis (Simon, 1884) is recorded in Asia Azarkina (Novosibirsk) from the Altai Mountains, of (Eastern Kazakhstan) for the first time. Drs R. Seifulina (Moscow) and E. Mikhaljova (Vladi- vostok) from the Russian Far East, as well as on my own ÐÅÇÞÌÅ: Äâà âèäà, Agyneta tibialis sp.n. (Àëòàé) material from the Maritime Province, Russia. è Nippononeta embolica sp.n. (Äàëüíèé Âîñòîê Types are deposited in the Zoological Museum of Ðîññèè), îïèñàíû êàê íîâûå äëÿ íàóêè. Ïðèâåäåíû the Moscow State University (ZMMU), whereas the ðèñóíêè è íîâûå íàõîäêè íà Äàëüíåì Âîñòîêå Ðîññèè other material is housed in the authors personal collec- âèäîâ Agyneta mongolica (Loksa, 1965) è A.
    [Show full text]
  • Aculeate Conservation Group/ Hymettus Report for 2006
    Aculeate Conservation Group/ Hymettus Report for 2006 1. Background to 2006 Research. 1.1 During 2006 a new body, Hymettus Ltd., was constituted. Hymettus will take over and extend the role of the Aculeate Conservation Group. This report deals with research originally agreed at the 2005 ACG Annual Review and funded by English Nature (now also re-incarnated as Natural England), but executed under Hymettus Ltd.. During 2006 work was financially supported by English Nature, Earthwatch, Syngenta and the RSPB in accordance with the relevant Annex a documents, which see for details. 1.2 2005 Projects are reported in the following order of taxonomic group: ants, wasps, bees, other projects. 2. Ant Projects. 2.1 Formica exsecta 2.1.1 At the 2005 Review meeting Stephen Caroll was asked to enquire of the Devon Trust as to whether they would be prepared to consider looking at the possibility of proposing a landscape project for the Bovey Basin which would include the habitat requirements of Formica exsecta and , if so, whether a contribution from the ACG towards the costs of looking at this would be appropriate. 2.1.2 The Trust received this request enthusiastically and have submitted a copy of Andrew Taylor’s (their Officer) Report. Stephen Caroll will be able to bring us up to date with developments at the Review meting. The Report is presented here (appendices may be obtained from Mike Edwards): Landscape-scale habitat work in Devon’s Bovey Basin Report to Hymettus Limited, October 2006 1. Introduction The Bovey Basin is located in the Teignbridge district of South Devon.
    [Show full text]
  • Maro Sublestus Falconer, 1915 (Araneae, Linyphiidae) - a Species New to the Fauna of Poland
    F r a g m e n t a F a u n i s t i c a 47 (2): 139-142, 2004 PL ISSN 0015-9301 O MUSEUM AND INSTITUTE OF ZOOLOGY PAS Maro sublestus Falconer, 1915 (Araneae, Linyphiidae) - a species new to the fauna of Poland P a w e ł S z y m k o w ia k Department o f Animal Taxonomy, Institute of Environmental Biology, A. Mickiewicz University, Szamarzewskiego 91 A, 60-569 Poznań, Poland; e-mail: [email protected] Abstract: A rare spider species, Maro sublestus Falconer, 1915 (Linyphiidae) is reported from Poland for the first time. It was found in the Karkonosze National Park, in a wet habitat. Some taxonomic comments are included in the paper. Key words: Maro sublestus, new record, taxonomy, Poland Introduction The taxonomic position of the genus Maro has not been established for a long time. Saaristo (1971) in a review paper on the genus M aro concluded that this genus is closely related to the genera Agyneta, Microneta and Centromerus in conformity with the opinions expressed by Parker & Duffey (1963). Moreover, the genera Maro and Oreonetides are regarded as relicts of mixed Arcto-Tertiary forests (Eskov 1991). At present 12 species of the genus M aro are known. Their occurrence is limited to the northern hemisphere. The majority of species (10) occur in Europe and Asia, while M aro ampins Dondale et Buckle, 2001 and Maro nearcticus Dondale et Buckle, 2001 occur in the New World, in the USA and Canada. The species known from Europe include: Maro lehtineni Saaristo, 1971, Maro lepidus Casemir, 1961, Maro minutus O.P.- Cambridge, 1906 and M aro sublestus Falconer, 1915.
    [Show full text]
  • Distribution of Spiders in Coastal Grey Dunes
    kaft_def 7/8/04 11:22 AM Pagina 1 SPATIAL PATTERNS AND EVOLUTIONARY D ISTRIBUTION OF SPIDERS IN COASTAL GREY DUNES Distribution of spiders in coastal grey dunes SPATIAL PATTERNS AND EVOLUTIONARY- ECOLOGICAL IMPORTANCE OF DISPERSAL - ECOLOGICAL IMPORTANCE OF DISPERSAL Dries Bonte Dispersal is crucial in structuring species distribution, population structure and species ranges at large geographical scales or within local patchily distributed populations. The knowledge of dispersal evolution, motivation, its effect on metapopulation dynamics and species distribution at multiple scales is poorly understood and many questions remain unsolved or require empirical verification. In this thesis we contribute to the knowledge of dispersal, by studying both ecological and evolutionary aspects of spider dispersal in fragmented grey dunes. Studies were performed at the individual, population and assemblage level and indicate that behavioural traits narrowly linked to dispersal, con- siderably show [adaptive] variation in function of habitat quality and geometry. Dispersal also determines spider distribution patterns and metapopulation dynamics. Consequently, our results stress the need to integrate knowledge on behavioural ecology within the study of ecological landscapes. / Promotor: Prof. Dr. Eckhart Kuijken [Ghent University & Institute of Nature Dries Bonte Conservation] Co-promotor: Prf. Dr. Jean-Pierre Maelfait [Ghent University & Institute of Nature Conservation] and Prof. Dr. Luc lens [Ghent University] Date of public defence: 6 February 2004 [Ghent University] Universiteit Gent Faculteit Wetenschappen Academiejaar 2003-2004 Distribution of spiders in coastal grey dunes: spatial patterns and evolutionary-ecological importance of dispersal Verspreiding van spinnen in grijze kustduinen: ruimtelijke patronen en evolutionair-ecologisch belang van dispersie door Dries Bonte Thesis submitted in fulfilment of the requirements for the degree of Doctor [Ph.D.] in Sciences Proefschrift voorgedragen tot het bekomen van de graad van Doctor in de Wetenschappen Promotor: Prof.
    [Show full text]
  • Bibliographie Zur Spinnentierfauna Der Ostdeutschen Bundesländer (Arachnida: Araneae, Opiliones, Pseudoscorpiones) Schluß
    © Entomologische Nachrichten und Berichte;Entomologische download unter www.biologiezentrum.at Nachrichten und Berichte, 36,1992/3 175 P. BLISS, Halle, und P. SACHER, Wittenberg Bibliographie zur Spinnentierfauna der ostdeutschen Bundesländer (Arachnida: Araneae, Opiliones, Pseudoscorpiones) Schluß Summary The German arachnological literature is distributed among the whole range of scientific print-media. As a result of this it has become more and more difficult to consider all relevant information in preparation for further studies, especially faunistic projects. To improve the situation the East-Ger- man Spider Study Group (Arbeitskreis Arachnologie) has published bibliographies since 1982. Three parts have come out till now. They exclusively contain papers with faunistic dates to lay a foundation for a regional fauna. This bibliography will be the last one of the series. All four parts contain 637 references. The authors would be obliged for additional information about literature they have possibly overlooked. Résum é Jusqu’ici on a présenté 3 parts de la bibliographie sur la faune des araignées de l’Allemagne de l’Est. Cette bibliographie est tome 4 et termine la série. En tout, les 4 tomes contiennent 637 titres. 1. Einleitende Bemerkungen Das Vorankommen wurde auch dadurch er­ schwert, daß Publikationen anderer Fachrichtun­ Erklärtes Ziel des im Mai 1978 in der ehemaligen gen zwar mitunter nutzbare Daten enthalten, DDR gegründeten Arbeitskreises Arachnologie diese jedoch schwer zu entdecken sind, weil sich war die Erarbeitung einer Arachnofauna (excl. aus dem jeweiligen Titel kein arachnofaunisti- Acari) für dieses Territorium. Das Vorhaben ließ scher Bezug ableiten läßt. sich nicht in vollem Umfang verwirklichen, weil Voraussetzungen wie Finanzierung, Computer­ Die bemängelte breite Streuung der faunistisch- technik und Kartenmaterial fehlten und zudem ökologischen Informationen auf eine Vielzahl von ausschließlich nebenberuflich gearbeitet wurde.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • First Records of Spiders (Araneae) Baryphyma Gowerense (Locket, 1965) (Linyphiidae), Entelecara Flavipes (Blackwall, 1834) (Linyphiidae) and Rugathodes Instabilis (O
    44Memoranda Soc. Fauna Flora Fennica 91:Pajunen 44–50. &2015 Väisänen • Memoranda Soc. Fauna Flora Fennica 91, 2015 First records of spiders (Araneae) Baryphyma gowerense (Locket, 1965) (Linyphiidae), Entelecara flavipes (Blackwall, 1834) (Linyphiidae) and Rugathodes instabilis (O. P.- Cambridge, 1871) (Theridiidae) in Finland Timo Pajunen & Risto A. Väisänen Pajunen, T. & Väisänen, R. A., Finnish Museum of Natural History (Zoology), P.O. Box 17, FI-00014 University of Helsinki, Finland. E-mail: [email protected], risto.vaisanen@ helsinki.fi Baryphyma gowerense (Locket, 1965), Entelecara flavipes (Blackwall, 1834) and Rugathodes in- stabilis (O. P.-Cambridge, 1871) are reported for the first time in Finland. The first species was found by pitfall trapping on a wide aapa mire in Lapland and the two others by sweep netting on hemiboreal meadows on the Finnish south coast. The spider assemblages of the sites are described. Introduction center of Sodankylä and north of the main road running to Pelkosenniemi. A forestry road branch- The Finnish spider fauna is relatively well known es off the main road through the mire. The open (Marusik & Koponen 2002). The number of spe- area of the mire extends for about 2 × 0.4 km. Pit- cies listed in the national checklist increased by fall traps were set up in a 50 × 50 m area (Finnish less than 10% in the last four decades, from 598 uniform grid coordinates 7479220:3488900) be- to 645 between the years 1977 and 2013 (Ko- tween the road and the easternmost ponds of the ponen & Fritzén 2013). Detections of new spe- northern margin of Mantovaaranaapa.
    [Show full text]
  • Westring, 1871) (Schorsmuisspin) JANSSEN & CREVECOEUR (2008) Citeerden Deze Soort Voor Het Eerst in België
    Nieuwsbr. Belg. Arachnol. Ver. (2009),24(1-3): 1 Jean-Pierre Maelfait 1 juni 1951 – 6 februari 2009 Nieuwsbr. Belg. Arachnol. Ver. (2009),24(1-3): 2 In memoriam JEAN-PIERRE MAELFAIT Kortrijk 01/06/1951 Gent 06/02/2009 Jean-Pierre Maelfait is ons ontvallen op 6 februari van dit jaar. We brengen hulde aan een man die veel gegeven heeft voor de arachnologie in het algemeen en meer specifiek voor onze vereniging. Jean-Pierre is altijd een belangrijke pion geweest in het bestaan van ARABEL. Hij was medestichter van de “Werkgroep ARABEL” in 1976 en op zijn aanraden werd gestart met het publiceren van de “Nieuwsbrief” in 1986, het jaar waarin ook ARABEL een officiële vzw werd. Hij is eindredacteur van de “Nieuwsbrief” geweest van 1990 tot en met 2002. Sinds het ontstaan van onze vereniging is Jean-Pierre achtereenvolgens penningmeester geweest van 1986 tot en met 1989, ondervoorzitter van 1990 tot en met 1995 om uiteindelijk voorzitter te worden van 1996 tot en met 1999. Pas in 2003 gaf hij zijn fakkel als bestuurslid over aan de “jeugd”. Dit afscheid is des te erger omdat Jean- Pierre er na 6 jaar afwezigheid terug een lap ging op geven, door opnieuw bestuurslid te worden in 2009 en aldus verkozen werd als Secretaris. Alle artikels in dit nummer opgenomen worden naar hem opgedragen. Jean-Pierre Maelfait nous a quitté le 6 février de cette année. Nous rendons hommage à un homme qui a beaucoup donné dans sa vie pour l’arachnologie en général et plus particulièrement pour Arabel. Jean-Pierre a toujours été un pion important dans la vie de notre Société.
    [Show full text]
  • Spiders (Araneae) of the Abandoned Pasture Near the Village of Malé Kršteňany (Western Slovakia)
    Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 2: 39–56, 2017, ISSN 2543-8832 DOI: 10.24917/25438832.2.3 Valerián Franc*, Michal Fašanga Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, *[email protected] Spiders (Araneae) of the abandoned pasture near the village of Malé Kršteňany (Western Slovakia) Introduction Our research site is located on the SE slope of the hill of Drieňový vrch (cadaster of the village of Malé Kršteňany). It is the southernmost edge of the Strážovské vrchy Mountains (Mts) (48°55ʹ46ʹʹN; 18°26ʹ05ʹʹE), separated from the central massif by the river ow Nitrica. is area is considerably inuenced by human activity: In the past, it had massive deforestation and agricultural use (mainly as pasture), recently, it is dominated by mining activities (several quarries). e whole area is out of the territo- rial protection, with the exception of the little Nature reserve Veľký vrch, surrounded by two quarries, and the le one is more or less abandoned. In the past, this area was used mainly for grazing, but this is currently very limited. Our research site is an aban- doned pasture; therefore, ecological succession is carried out intensively here. Forgot- ten aer-utility areas (abandoned quarries, pastures, industrial sites) are usually con- sidered to be ‘sterile’ and unattractive for zoological research, but this may not always correspond to reality. Even in our research site, we have carried out several rare and surprising ndings. We would like to present the results of our research in this paper. It is sad, but a large amount of abandoned pastures is scattered throughout Slova- kia.
    [Show full text]
  • 196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
    196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area.
    [Show full text]