Maro Sublestus Falconer, 1915 (Araneae, Linyphiidae) - a Species New to the Fauna of Poland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aculeate Conservation Group/ Hymettus Report for 2006
Aculeate Conservation Group/ Hymettus Report for 2006 1. Background to 2006 Research. 1.1 During 2006 a new body, Hymettus Ltd., was constituted. Hymettus will take over and extend the role of the Aculeate Conservation Group. This report deals with research originally agreed at the 2005 ACG Annual Review and funded by English Nature (now also re-incarnated as Natural England), but executed under Hymettus Ltd.. During 2006 work was financially supported by English Nature, Earthwatch, Syngenta and the RSPB in accordance with the relevant Annex a documents, which see for details. 1.2 2005 Projects are reported in the following order of taxonomic group: ants, wasps, bees, other projects. 2. Ant Projects. 2.1 Formica exsecta 2.1.1 At the 2005 Review meeting Stephen Caroll was asked to enquire of the Devon Trust as to whether they would be prepared to consider looking at the possibility of proposing a landscape project for the Bovey Basin which would include the habitat requirements of Formica exsecta and , if so, whether a contribution from the ACG towards the costs of looking at this would be appropriate. 2.1.2 The Trust received this request enthusiastically and have submitted a copy of Andrew Taylor’s (their Officer) Report. Stephen Caroll will be able to bring us up to date with developments at the Review meting. The Report is presented here (appendices may be obtained from Mike Edwards): Landscape-scale habitat work in Devon’s Bovey Basin Report to Hymettus Limited, October 2006 1. Introduction The Bovey Basin is located in the Teignbridge district of South Devon. -
Spider Biodiversity Patterns and Their Conservation in the Azorean
Systematics and Biodiversity 6 (2): 249–282 Issued 6 June 2008 doi:10.1017/S1477200008002648 Printed in the United Kingdom C The Natural History Museum ∗ Paulo A.V. Borges1 & Joerg Wunderlich2 Spider biodiversity patterns and their 1Azorean Biodiversity Group, Departamento de Ciˆencias conservation in the Azorean archipelago, Agr´arias, CITA-A, Universidade dos Ac¸ores. Campus de Angra, with descriptions of new species Terra-Ch˜a; Angra do Hero´ısmo – 9700-851 – Terceira (Ac¸ores); Portugal. Email: [email protected] 2Oberer H¨auselbergweg 24, Abstract In this contribution, we report on patterns of spider species diversity of 69493 Hirschberg, Germany. the Azores, based on recently standardised sampling protocols in different hab- Email: joergwunderlich@ t-online.de itats of this geologically young and isolated volcanic archipelago. A total of 122 species is investigated, including eight new species, eight new records for the submitted December 2005 Azorean islands and 61 previously known species, with 131 new records for indi- accepted November 2006 vidual islands. Biodiversity patterns are investigated, namely patterns of range size distribution for endemics and non-endemics, habitat distribution patterns, island similarity in species composition and the estimation of species richness for the Azores. Newly described species are: Oonopidae – Orchestina furcillata Wunderlich; Linyphiidae: Linyphiinae – Porrhomma borgesi Wunderlich; Turinyphia cavernicola Wunderlich; Linyphiidae: Micronetinae – Agyneta depigmentata Wunderlich; Linyph- iidae: -
196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area. -
Arthropods in Linear Elements
Arthropods in linear elements Occurrence, behaviour and conservation management Thesis committee Thesis supervisor: Prof. dr. Karlè V. Sýkora Professor of Ecological Construction and Management of Infrastructure Nature Conservation and Plant Ecology Group Wageningen University Thesis co‐supervisor: Dr. ir. André P. Schaffers Scientific researcher Nature Conservation and Plant Ecology Group Wageningen University Other members: Prof. dr. Dries Bonte Ghent University, Belgium Prof. dr. Hans Van Dyck Université catholique de Louvain, Belgium Prof. dr. Paul F.M. Opdam Wageningen University Prof. dr. Menno Schilthuizen University of Groningen This research was conducted under the auspices of SENSE (School for the Socio‐Economic and Natural Sciences of the Environment) Arthropods in linear elements Occurrence, behaviour and conservation management Jinze Noordijk Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 3 November 2009 at 1.30 PM in the Aula Noordijk J (2009) Arthropods in linear elements – occurrence, behaviour and conservation management Thesis, Wageningen University, Wageningen NL with references, with summaries in English and Dutch ISBN 978‐90‐8585‐492‐0 C’est une prairie au petit jour, quelque part sur la Terre. Caché sous cette prairie s’étend un monde démesuré, grand comme une planète. Les herbes folles s’y transforment en jungles impénétrables, les cailloux deviennent montagnes et le plus modeste trou d’eau prend les dimensions d’un océan. Nuridsany C & Pérennou M 1996. -
Spiders in a Hostile World (Arachnoidea, Araneae)
Arachnologische Mitteilungen 40: 55-64 Nuremberg, January 2011 Spiders in a hostile world (Arachnoidea, Araneae) Peter J. van Helsdingen doi: 10.5431/aramit4007 Abstract: Spiders are powerful predators, but the threats confronting them are numerous. A survey is presented of the many different arthropods which waylay spiders in various ways. Some food-specialists among spiders feed exclusively on spiders. Kleptoparasites are found among spiders as well as among Mecoptera, Diptera, Lepidoptera, and Heteroptera. Predators are found within spiders’ own population (cannibalism), among other spider species (araneophagy), and among different species of Heteroptera, Odonata, and Hymenoptera. Parasitoids are found in the orders Hymenoptera and Diptera. The largest insect order, Coleoptera, comprises a few species among the Carabidae which feed on spiders, but beetles are not represented among the kleptoparasites or parasitoids. Key words: aggressive mimicry, araneophagy, cannibalism, kleptoparasitism, parasitoid Spiders are successful predators with important tools for prey capture, ������������������ ������������������������������ viz, venom, diverse types of silk for ������������ ������������������������������ snaring and wrapping, and speed. ����������� ���������������� But spiders are prey for other organ- isms as well. This paper presents a survey of all the threats spiders have to face from other arthropods ������ (excluding mites), based on data from the literature and my own observations. Spiders are often defenceless against the attacks -
Dynamics and Phenology of Ballooning Spiders in an Agricultural Landscape of Western Switzerland
Departement of Biology University of Fribourg (Switzerland) Dynamics and phenology of ballooning spiders in an agricultural landscape of Western Switzerland THESIS Presented to the Faculty of Science of the University of Fribourg (Switzerland) in consideration for the award of the academic grade of Doctor rerum naturalium by Gilles Blandenier from Villiers (NE, Switzerland) Dissertation No 1840 UniPrint 2014 Accepted by the Faculty of Science of the Universtiy of Fribourg (Switzerland) upon the recommendation of Prof. Dr. Christian Lexer (University of Fribourg) and Prof. Dr. Søren Toft (University of Aarhus, Denmark), and the President of the Jury Prof. Simon Sprecher (University of Fribourg). Fribourg, 20.05.2014 Thesis supervisor The Dean Prof. Louis-Félix Bersier Prof. Fritz Müller Contents Summary / Résumé ........................................................................................................................................................................................................................ 1 Chapter 1 General Introduction ..................................................................................................................................................................................... 5 Chapter 2 Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-years survey ............................................................................................................................................................................ 11 Chapter 3 Are phenological -
Aranei: Linyphiidae: Micronetinae)
Arthropoda Selecta 14 (3): 259268 © ARTHROPODA SELECTA, 2005 New or little-known Maro O.P.-Cambridge from Siberia and the Russian Far East (Aranei: Linyphiidae: Micronetinae) Íîâûå è ìàëîèçâåñòíûå âèäû ðîäà Maro O.P.-Cambridge èç Ñèáèðè è Äàëüíåãî Âîñòîêà (Aranei: Linyphiidae: Micronetinae) A.V. Tanasevitch À.Â. Òàíàñåâè÷ Center for Forest Ecology and Productivity, Russian Academy of Sciences, Profsoyuznaya str., 84/32, Moscow 117997 Russia. Öåíòð ïî ïðîáëåìàì ýêîëîãèè è ïðîäóêòèâíîñòè ëåñîâ ÐÀÍ, Ïðîôñîþçíàÿ óë., 84/32, Ìîñêâà 117997 Ðîññèÿ. KEY WORDS: Spiders, taxonomy, Linyphiidae, Micronetinae, Siberia, Russian Far East, Maro, new species. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Ïàóêè, ñèñòåìàòèêà, Linyphiidae, Micronetinae, Ñèáèðü, Äàëüíèé Âîñòîê, Maro, íîâûå âèäû. ABSTRACT. Four new species, i.e. Maro bureensis southwesternmost point of Lake Baikal (Kultuk, as sp.n., M. khabarum sp.n., M. pansibiricus sp.n. and M. Erigone f.), and, as it now appears, this species has ussuricus sp.n., are described from Siberia and/or the since never been properly identified. In other words, Russian Far East. All records of M. flavescens (O.P.- all previous records of M. flavescens in various parts of Cambridge, 1873) in Asia, except for the original de- Asia were erroneous, actually concerning a new wide- scription, are shown to actually concern a new species, spread species. Since the description of M. flavescens, M. pansibiricus sp.n., while M. flavescens is depicted two more new species have been added, both from the based on original and new material. A new synonym is middle flow region of Yenisey River (Middle Siberia) established: Maro flavescens (O.P.-Cambridge, 1873) = [Eskov, 1980], soon followed by one more [Eskov, Oreonetides confusus Wunderlich, 1995, syn.n. -
Maro Lepidus Casemir, 1961, a Newly Recorded Spider Species (Araneae, Linyphiidae) for Poland
Fr a g m e n t a Fa u n is t ic a 55 (2): 155-160,2012 PL ISSN 0015-9301 О MUSEUM AND INSTITUTE OF ZOOLOGY PAS Maro lepidus Casemir, 1961, a newly recorded spider species (Araneae, Linyphiidae) for Poland Konrad W iś n ie w s k i and Wanda W e s o ł o w s k a Department o f Biodiversity and Evolutionary Taxonomy, University o f Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland e-maiI: konrad. wisniewski@biol. uni. wroc.pl, Abstract: Maro lepidus Casemir, 1961, a new linyphiid species for Poland is recorded and described. Its distribution and characteristic habitats are discussed and a few remarks on the other two members of the genus M aro (M. minutus, M. sublestus) in Poland are also given. Keywords: Araneae, Linyphiidae, Maro lepidus, Poland Introduction Maro O.P.-Cambridge, 1906 (revised by Saaristo 1971) is a genus comprising 16 Holarctic species (2 Nearctic and 14 Palaearctic - Platnick 2012, Tanasevitch2012). Four of them have been reported in central Europe up to now, namely Maro lehtineni Saaristo, 1971, M. lepidus Casemir, 1961, M. minutus O.P.-Cambridge, 1906 and M. sublestus Falconer, 1915 (Fauna Europaea 2012). However, only the two latter species have been noted from Poland so far (Kupryjanowicz 2008). Maro lepidus was found during a study of spider assemblages inhabiting mountainous mires in south-western Poland, in Karkonosze (Giant Mountains, ger. Riesengebirge), Izera Mountains and Góry Stołowe (Table Mountains, ger. Heuscheuergebirge). It is the first record of this spider species for this country. -
Fauna of Cobalt-Rich Ferromanganese Crust Seamounts Technical Study: No
Fauna of Cobalt-Rich Ferromanganese Crust Seamounts Technical Study: No. 8 ISA TECHNICAL STUDY SERIES Technical Study No. 1 Global Non-Living Resources on the Extended Continental Shelf: Prospects at the year 2000 Technical Study No. 2 Polymetallic Massive Sulphides and Cobalt-Rich Ferromanganese Crusts: Status and Prospects Technical Study No. 3 Biodiversity, Species Ranges and Gene Flow in the Abyssal Pacific Nodule Province: Predicting and Managing the Impacts of Deep Seabed Mining Technical Study No. 4 Issues associated with the Implementation of Article 82 of the United Nations Convention on the Law of the Sea Technical Study No. 5 Non-Living Resources of the Continental Shelf Beyond 200 Nautical Miles: Speculations on the Implementation of Article 82 of the United Nations Convention on the Law of the Sea Technical Study No. 6 A Geological Model of Polymetallic Nodule Deposits in the Clarion-Clipperton Fracture Zone Technical Study No. 7 Marine Benthic Nematode Molecular Protocol Handbook (Nematode Barcoding) Fauna of Cobalt-Rich Ferromanganese Crust Seamounts ISA TECHNICAL STUDY: No. 8 International Seabed Authority Kingston, Jamaica The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the International Seabed Authority concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers or maritime boundaries. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. -
Chitin Metabolism in Insects
7 Chitin Metabolism in Insects Subbaratnam Muthukrishnan Kansas State University, Manhattan, KS, USA Hans Merzendorfer University of Osnabrueck, Osnabrueck, Germany Yasuyuki Arakane Chonnam National University, Gwangju, South Korea Karl J Kramer Kansas State University, and USDA-ARS, Manhattan, KS, USA © 2012 Elsevier B.V. All Rights Reserved 7.1. Introduction 193 7.2. Chitin Structure and Occurrence 193 7.3. Chitin Synthesis 194 7.3.1. Sites of Chitin Biosynthesis 195 7.3.2. Chitin Biosynthetic Pathway 197 7.3.3. Chitin Synthases: Organization of Genes and Biochemical Properties 199 7.3.4. Chitin Synthases: Regulation and Function 203 7.4. Chitin Degradation and Modification 205 7.4.1. Insect Chitinases 207 7.4.2. Insect N-Acetylglucosaminidases 211 7.4.3. Insect Chitin Deacetylases 214 7.5. Chitin-Binding Proteins 216 7.5.1. Chitin-Binding Proteins with the R&R Consensus 217 7.5.2. Peritrophic Matrix Proteins 217 7.5.3. Cuticular Proteins Analogous to Peritrophins (CPAPs) 218 7.5.4. Enzymes of Chitin Metabolism 219 7.5.5. Role of Secondary Structure of ChtBD2 Motif in Binding to Chitin 219 7.6. Chitin-Organizing Proteins 219 7.7. Hormonal Regulation of Chitin Metabolism 220 7.8. Chitin Metabolism and Insect Control 221 7.8.1. Inhibition of Chitin Synthesis 221 7.8.2. Exploiting Chitinases for Insect Control 223 7.9. Future Studies and Concluding Remarks 225 7.1. Introduction significantly. In this chapter we will highlight some of the “Chitin Metabolism in Insects” was the title of chapters more recent and important findings, with emphasis on in both the original edition of the Comprehensive Insect results obtained from studies conducted on the synthesis, Physiology, Biochemistry and Pharmacology series published structure, physical state, modification, organization, and in 1985 and the follow-up Comprehensive Molecular Insect degradation of chitin in insect tissues, as well as the inter- Science series in 2005 (Kramer et al., 1985; Kramer and play of chitin with chitin-binding proteins, the regulation Muthukrishnan, 2005). -
Spiders in a Hostile World (Arachnoidea, Araneae)
Arachnologische Mitteilungen 40: 55-64 Nuremberg, January 2011 Spiders in a hostile world (Arachnoidea, Araneae) Peter J. van Helsdingen doi: 10.5431/aramit4007 Abstract: Spiders are powerful predators, but the threats confronting them are numerous. A survey is presented of the many different arthropods which waylay spiders in various ways. Some food-specialists among spiders feed exclusively on spiders. Kleptoparasites are found among spiders as well as among Mecoptera, Diptera, Lepidoptera, and Heteroptera. Predators are found within spiders’ own population (cannibalism), among other spider species (araneophagy), and among different species of Heteroptera, Odonata, and Hymenoptera. Parasitoids are found in the orders Hymenoptera and Diptera. The largest insect order, Coleoptera, comprises a few species among the Carabidae which feed on spiders, but beetles are not represented among the kleptoparasites or parasitoids. Key words: aggressive mimicry, araneophagy, cannibalism, kleptoparasitism, parasitoid Spiders are successful predators with important tools for prey capture, ������������������ ������������������������������ viz, venom, diverse types of silk for ������������ ������������������������������ snaring and wrapping, and speed. ����������� ���������������� But spiders are prey for other organ- isms as well. This paper presents a survey of all the threats spiders have to face from other arthropods ������ (excluding mites), based on data from the literature and my own observations. Spiders are often defenceless against the attacks -
Standardised Arthropod (Arthropoda) Inventory Across Natural and Anthropogenic Impacted Habitats in the Azores Archipelago
Biodiversity Data Journal 9: e62157 doi: 10.3897/BDJ.9.e62157 Data Paper Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago José Marcelino‡, Paulo A. V. Borges§,|, Isabel Borges ‡, Enésima Pereira§‡, Vasco Santos , António Onofre Soares‡ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Madre de Deus, 9500, Ponta Delgada, Portugal § cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Portugal | IUCN SSC Mid-Atlantic Islands Specialist Group, Angra do Heroísmo, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 17 Dec 2020 | Accepted: 15 Feb 2021 | Published: 10 Mar 2021 Citation: Marcelino J, Borges PAV, Borges I, Pereira E, Santos V, Soares AO (2021) Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago. Biodiversity Data Journal 9: e62157. https://doi.org/10.3897/BDJ.9.e62157 Abstract Background In this paper, we present an extensive checklist of selected arthropods and their distribution in five Islands of the Azores (Santa Maria. São Miguel, Terceira, Flores and Pico). Habitat surveys included five herbaceous and four arboreal habitat types, scaling up from native to anthropogenic managed habitats. We aimed to contribute