Orchid Research Newsletter 74
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
An Introduction to the Epiphytic Orchids of East Africa
Sphyrarchynchus sp. Cyrtorchis crassifoHa Schltr. AN INTRODUCTION TO THE EPIPHYTIC ORCHIDS OF EAST AFRICA. By W. M. MOREAU AND R. E. MOREAU. C()IYl,tents. 1. Introduction. 2. Nomenclature and classification. 3. General ecology. 4. The orchid flower. 5. Published and unpublished sources of East African records. 6. Tentative field key to the genera. 7. Annotated check-list of species. 1. INTRODUCTION. Over fifteen thousand species of orchids have been described, the vast majority of them tropical, and the greater part of them epiphytic, that is, normally growing on trees without deriving sustenance from them. But little more than ten per cent of the majestic total belong to Tropical Africa and moreover, so far as is known at present, within that area ground orchids predominate over epiphytic in the proportion of more than three to one. There is reason to believe that these figures are a reflection rather of our ignorance than of the truth. Because the Tropical African epiphytic orchids are not characterised by the magni• ficence and opulence of those of other regions, they have not attracted the commercial collector and certainly are most imperfectly known. Yet the local orchids display a delightful diversity of adaptation and of form. None are flamboyant, but many are beautiful, some are exquisitely dainty and a few are bizarre. They appeal to the same feelings and are capable of arousing the same enthusiasms as succulents or alpine plants. Moreover, anyone who takes the comparatively little trouble required to collect and grow them has the additional satisfaction of knowing that he is contributing to scientific knowledge. -
Taxonomic Notes on Anacamptis Pyramidalis Var. Urvilleana (Orchidaceae), a Good Endemic Orchid from Malta
J. Eur. Orch. 48 (1): 19 – 28. 2016. Stephen Mifsud Taxonomic notes on Anacamptis pyramidalis var. urvilleana (Orchidaceae), a good endemic orchid from Malta Keywords Orchidaceae; Anacamptis urvilleana; Anacamptis pyramidalis; Anacamptis pyramidalis var. urvilleana; Maltese endemics; Flora of Malta; Central Mediterranean region. Summary Mifsud S. (2016): Taxonomic notes on Anacamptis pyramidalis var. urvilleana (Orchidaceae), a good endemic orchid from Malta.- J. Eur. Orch. 48 (1): 19-28. In several global plant species databases the Maltese-endemic Anacamptis urvilleana is considered as a synonym of A. pyramidalis, hence reflecting the belief of some European authors. A number of morphological differences and phenology differentiate the Maltese pyramidical orchid from A. pyramidalis. As a result, it is suggested to maintain the identity of this orchid as A. pyramidalis var. urvilleana which merits conservation treatments different from the widely distributed A. pyramidalis s. str. Zusammenfassung Mifsud S. (2016): Taxonomische Anmerkungen zu Anacamptis pyramidalis var. urvilleana (Orchidaceae), eine gute endemische Orchidee von Malta.- J. Eur. Orch. 48 (1): 19-28. In verschiedenen weltweiten Datenbanken botanischer Namen, die auch die Meinung einiger europäischer Autoren wiedergeben, wird der maltesische Endemit Anacamptis urvilleana als Synonym von A. pyramidalis geführt. Die maltesische Pyramiden-Hundswurz unterscheidet sich jedoch sowohl in einer Reihe von morphologischen Merkmalen als auch phenologisch von A. pyramidalis. Auf dieser Grundlage wird vorgeschlagen, diese Orchidee als A. pyramidalis var. urvilleana zu führen. Zu ihrem Schutz sind andere Erhaltungsmaßnahmen erforderlich als für die weitverbreitete A. pyramidalis s. str. Journal Europäischer Orchideen 48 (1): 2016. 19 1. Introduction Anacamptis urvilleana Sommier & Caruana Gatto was described in 1915 (refer Fig.1) as an endemic orchid from the Maltese islands. -
Evolution of Anatomical Characters in Acianthera Section Pleurobotryae (Orchidaceae: Pleurothallidinae)
RESEARCH ARTICLE Evolution of anatomical characters in Acianthera section Pleurobotryae (Orchidaceae: Pleurothallidinae) Audia Brito Rodrigues de AlmeidaID*, Eric de Camargo SmidtID, Erika Amano Programa de PoÂs-GraduacËão em BotaÃnica, Setor de Ciências BioloÂgicas, Universidade Federal do ParanaÂ, Curitiba, PR, Brazil * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Acianthera section Pleurobotryae is one of ten sections of the genus Acianthera and include four species endemic to the Atlantic Forest. The objective of this study was to describe com- paratively the anatomy of vegetative organs and floral micromorphology of all species of Acianthera section Pleurobotryae in order to identify diagnostic characters between them OPEN ACCESS and synapomorphies for the section in relation of other sections of the genus. We analyzed Citation: Almeida ABRd, Smidt EdC, Amano E roots, ramicauls, leaves and flowers of 15 species, covering eight of the nine sections of (2019) Evolution of anatomical characters in Acianthera section Pleurobotryae (Orchidaceae: Acianthera, using light microscopy and scanning electron microscopy. Acianthera section Pleurothallidinae). PLoS ONE 14(3): e0212677. Pleurobotryae is a monophyletic group and the cladistic analyses of anatomical and flower https://doi.org/10.1371/journal.pone.0212677 micromorphology data, combined with molecular data, support internal relationship hypoth- Editor: Suzannah Rutherford, Fred Hutchinson eses among the representatives of this section. The synapomorphies identified for A. sect. Cancer Research Center, UNITED STATES Pleurobotryae are based on leaf anatomy: unifacial leaves, round or elliptical in cross-sec- Received: August 24, 2018 tion, round leaves with vascular bundles organized in concentric circles, and mesophyll with Accepted: February 7, 2019 28 to 30 cell layers. -
Flavonoids Derivatives from Arundina Graminifolia and Their Cytotoxicity
Asian Journal of Chemistry; Vol. 25, No. 15 (2013), 8358-8360 http://dx.doi.org/10.14233/ajchem.2013.14743A Flavonoids Derivatives from Arundina graminifolia and Their Cytotoxicity 1 1,2 1 1,* 1 LIDAN SHU , YANQIONG SHEN , LIYING YANG , XUEMEI GAO and QIU-FEN HU 1Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650031, P.R. China 2Key Laboratory of Tobacco Chemistry of Yunnan Province, Yunnan Academy of Tobacco Science, Kunming 650106, P.R. China *Corresponding author: Fax: +86 871 5910017; Tel: +86 871 5910013; E-mail: [email protected] (Received: 25 October 2012; Accepted: 21 August 2013) AJC-13950 A new flavonoid, 3(S),4(S)-3',4'-dihydroxyl-7,8,-methylenedioxylpterocarpan (1), together with ten known flavonoids derivatives (2-11), were isolated from the whole plant of Arundina gramnifolia. The structure of compounds 1-11 were elucidated by spectroscopic methods including extensive 1D and 2D NMR techniques. Compound 1 was also evaluated for its cytotoxicity against five human tumor cell lines. The results revealed that compound 1 showed high cytotoxicity against HSY5Y cell with IC50 values of 2.2 µM and moderate cytotoxicities with IC50 valves 5-10 µM for other four tested cell lines. Key Words: Arundina gramnifolia, Flavonoids, Cytotoxicity. INTRODUCTION JASCO J-810 spectropolarimeter. A Tenor 27 spectrophotometer was used for scanning IR spectroscopy with KBr pellets. 1D Arundina gramnifolia (bamboo orchid) is a terrestrial plant and 2D NMR spectra were recorded on DRX-500 spectrometers belongs to species of orchid and the sole of the genus Arundina. -
Identification of Anoectochilus Based on Rdna ITS Sequences Alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5
Int. J. Biol. Sci. 2009, 5 727 International Journal of Biological Sciences 2009; 5(7):727-735 © Ivyspring International Publisher. All rights reserved Research Paper Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5 1. Institute of Medicinal Plant Development, Beijing Union Medical College/Chinese Academy of Medicinal Sciences, Beijing 100193, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3. Institute of Beijing Pharmacochemistry, Beijing 102205, China; 4. Central Laboratory of 306 Hospital of PLA, Beijing 100083, China; 5. Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Corresponding authors: [email protected] (Guo SX); [email protected] (Shao HB). Posting address: Dr. Professor Shao Hongbo, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Received: 2009.08.28; Accepted: 2009.11.26; Published: 2009.12.02 Abstract The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine spe- cies, and there is proteomic difference among Anoectochilus interspecies. Moreover, pro- teomic finger printings of five Anoectochilus species have been established for identifying spe- cies, and genetic relationships of five species within Anoectochilus have been deduced ac- cording to proteomic differences among five species. Key words: Anoectochilus, ITS, proteomic finger printing, SELDI sterile condition. -
Orchids: 2017 Global Ex Situ Collections Assessment
Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions. -
May 2014. Orchid Specialist Group Newsletter
ORCHID CONSERVATION NEWS The Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission Issue 1 May 2014 The Value of Long Term Studies Editorial Endangered Hawaiian endemic, Peristylus holochila, initiates anthesis in vitro and ex vitro Long term agricultural field experiments at Lawrence W. Zettler Rothamstead, England, are notable because when they Shanna E. David began in 1843, the founders could not possibly have predicted what might be discovered over the following Orchid Recovery Program, Department of Biology 160 years. The conservation value of long term studies Illinois College, 1101 West College Avenue of orchids was discussed in 1990 by the late Carl Olof Jacksonville, IL 62650 USA Tamm, Uppsala, Sweden, when he presented his observations of individual plant behaviour at the ([email protected]) International Orchid Symposium. His conclusion after some 40 years of observation was simple: long term Only three orchid species are native to the Hawaiian observations are essential to conservation and that archipelago: Anoectochilus sandvicensis (Hawaiian individual plant tracking of selected orchid taxa was Jeweled Orchid, ke kino o kanaloa), Liparis hawaiensis recommended. (Hawaii Widelip Orchid, awapuhiakanaloa) and Peristylus (Platanthera) holochila (Hawaiian Bog Two papers have recently been published that Orchid, puahala a kane). Of these three, by far the rarest demonstrate the conservation potential of decades-long is P. holochila (Fig. 1) consisting of 33 known plants studies. Joyce and Allan Reddoch summarized what scattered amongst three islands as of 2011 (Kauai, has been learned from some four decades of monitoring Maui, Molokai). 22 species in Gatineau Park, QC, Canada (Reddoch & Reddoch, 2014). -
Systematics and Evolution of the Genus Pleurothallis R. Br
Systematics and evolution of the genus Pleurothallis R. Br. (Orchidaceae) in the Greater Antilles DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Hagen Stenzel geb. 05.10.1967 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. J. Mlynek Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. M. Linscheid Gutachter/in: 1. Prof. Dr. E. Köhler 2. HD Dr. H. Dietrich 3. Prof. Dr. J. Ackerman Tag der mündlichen Prüfung: 06.02.2004 Pleurothallis obliquipetala Acuña & Schweinf. Für Jakob und Julius, die nichts unversucht ließen, um das Zustandekommen dieser Arbeit zu verhindern. Zusammenfassung Die antillanische Flora ist eine der artenreichsten der Erde. Trotz jahrhundertelanger floristischer Forschung zeigen jüngere Studien, daß der Archipel noch immer weiße Flecken beherbergt. Das trifft besonders auf die Familie der Orchideen zu, deren letzte Bearbeitung für Cuba z.B. mehr als ein halbes Jahrhundert zurückliegt. Die vorliegende Arbeit basiert auf der lang ausstehenden Revision der Orchideengattung Pleurothallis R. Br. für die Flora de Cuba. Mittels weiterer morphologischer, palynologischer, molekulargenetischer, phytogeographischer und ökologischer Untersuchungen auch eines Florenteils der anderen Großen Antillen wird die Genese der antillanischen Pleurothallis-Flora rekonstruiert. Der Archipel umfaßt mehr als 70 Arten dieser Gattung, wobei die Zahlen auf den einzelnen Inseln sehr verschieden sind: Cuba besitzt 39, Jamaica 23, Hispaniola 40 und Puerto Rico 11 Spezies. Das Zentrum der Diversität liegt im montanen Dreieck Ost-Cuba – Jamaica – Hispaniola, einer Region, die 95 % der antillanischen Arten beherbergt, wovon 75% endemisch auf einer der Inseln sind. -
Habenaria Transvaalensis Schltr. and Habenaria Bonateoides M.Ponsie (Orchidaceae), Revised Descriptions and Distributional Records ⁎ M.E
South African Journal of Botany 73 (2007) 355–359 www.elsevier.com/locate/sajb Habenaria transvaalensis Schltr. and Habenaria bonateoides M.Ponsie (Orchidaceae), revised descriptions and distributional records ⁎ M.E. Ponsie , T.J. Edwards, S.D. Johnson School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa Received 15 December 2006; received in revised form 26 January 2007; accepted 29 January 2007 Abstract Bonatea bracteata G.McDonald and McMurtry and Bonatea tentaculifera Summerh. were recently transferred to the genus Habenaria,as Habenaria transvaalensis Schltr. and Habenaria bonateoides M.Ponsie respectively. Until now H. bonateoides was known only from the holotype collected at Nairobi National Park in Kenya but new collections of the species from Tanzania expand its known range and suggest that sporadic populations may occur across a wider distribution. A full description, photographs and distributional data are provided. An amended description and distribution range of Habenaria transvaalensis is also provided to accommodate the inclusion of Bonatea bracteata within this species. © 2007 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Bonatea; Habenaria; Orchidaceae; Orchidoideae; Kenya; South Africa; Tanzania 1. Introduction In their revision of Bonatea, Ponsie et al. (2007b) transferred the two species B. bracteata G.McDonald and McMurtry and The status of Bonatea will remain controversial until a B. tentaculifera Summerh. to Habenaria. Here we provide broad-based revision of Habenaria is undertaken throughout additional critical distributional data that expand the ranges of its distribution. Molecular investigations focusing on Bonatea the respective species. Morphological data of specimens from (Ponsie et al., 2007a) have defined the genus as monophyletic this broadened distribution range necessitated amending exist- but were unable to address its taxonomic status in relation to ing descriptions. -
CITES Orchid Checklist Volumes 1, 2 & 3 Combined
CITES Orchid Checklist Online Version Volumes 1, 2 & 3 Combined (three volumes merged together as pdf files) Available at http://www.rbgkew.org.uk/data/cites.html Important: Please read the Introduction before reading this Part Introduction - OrchidIntro.pdf Part I : All names in current use - OrchidPartI.pdf (this file) Part II: Accepted names in current use - OrchidPartII.pdf Part III: Country Checklist - OrchidPartIII.pdf For the genera: Aerangis, Angraecum, Ascocentrum, Bletilla, Brassavola, Calanthe, Catasetum, Cattleya, Constantia, Cymbidium, Cypripedium, Dendrobium (selected sections only), Disa, Dracula, Encyclia, Laelia, Miltonia, Miltonioides, Miltoniopsis, Paphiopedilum, Paraphalaenopsis, Phalaenopsis, Phragmipedium, Pleione, Renanthera, Renantherella, Rhynchostylis, Rossioglossum, Sophronitella, Sophronitis Vanda and Vandopsis Compiled by: Jacqueline A Roberts, Lee R Allman, Sharon Anuku, Clive R Beale, Johanna C Benseler, Joanne Burdon, Richard W Butter, Kevin R Crook, Paul Mathew, H Noel McGough, Andrew Newman & Daniela C Zappi Assisted by a selected international panel of orchid experts Royal Botanic Gardens, Kew Copyright 2002 The Trustees of The Royal Botanic Gardens Kew CITES Secretariat Printed volumes: Volume 1 first published in 1995 - Volume 1: ISBN 0 947643 87 7 Volume 2 first published in 1997 - Volume 2: ISBN 1 900347 34 2 Volume 3 first published in 2001 - Volume 3: ISBN 1 84246 033 1 General editor of series: Jacqueline A Roberts 2 Part I: ORCHIDACEAE BINOMIALS IN CURRENT USAGE Ordered alphabetically on All -
Phylogenetic Placement and Taxonomy of the Genus Hederorkis (Orchidaceae)
RESEARCH ARTICLE Phylogenetic Placement and Taxonomy of the Genus Hederorkis (Orchidaceae) Joanna Mytnik-Ejsmont1*, Dariusz L. Szlachetko1, Przemysław Baranow1, Kevin Jolliffe2, Marcin Górniak3 1 Department of Plant Taxonomy and Nature Conservation, The University of Gdansk, Wita Stwosza 59, PL- 80-308, Gdańsk, Poland, 2 Cousine Island, Conservation Department, Seychelles, 3 Department of Molecular Evolution, The University of Gdansk, Wita Stwosza 59, PL-80-308, Gdańsk, Poland * [email protected] a11111 Abstract Three plastid regions, matK, rpl32-trnL and rpl16 intron and the ITS1-5.8S-ITS2 nuclear ri- bosomal DNA were used to demonstrate a phylogenetic placement of the genus Hederorkis OPEN ACCESS (Orchidaceae) for the first time. The taxonomic position of this genus has been unclear thus far. The phylogenetic and morphological relations of Hederorkis to the most closely related Citation: Mytnik-Ejsmont J, Szlachetko DL, Baranow genera Sirhookera, Adrorhizon, Bromheadia and Polystachya are also discussed. A hypoth- P, Jolliffe K, Górniak M (2015) Phylogenetic Placement and Taxonomy of the Genus Hederorkis esis concerning an origin and evolution of Hederorkis is proposed. Hederorkis is an epiphyt- (Orchidaceae). PLoS ONE 10(4): e0122306. ic two-leaved orchid genus with lateral inflorescence, non-resupinate flowers, elongate doi:10.1371/journal.pone.0122306 gynostemium and rudimentary column foot. It is native to the Indian Ocean Islands. Two Academic Editor: Christos A. Ouzounis, Hellas, species of Hederorkis are recognized worldwide, H. scandens endemic to Mauritius and Ré- GREECE union and H. seychellensis endemic to Seychelles. For each of the species treated a full Received: May 19, 2014 synonymy, detailed description and illustration are included.