Identification of Anoectochilus Based on Rdna ITS Sequences Alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Anoectochilus Based on Rdna ITS Sequences Alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5 Int. J. Biol. Sci. 2009, 5 727 International Journal of Biological Sciences 2009; 5(7):727-735 © Ivyspring International Publisher. All rights reserved Research Paper Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5 1. Institute of Medicinal Plant Development, Beijing Union Medical College/Chinese Academy of Medicinal Sciences, Beijing 100193, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3. Institute of Beijing Pharmacochemistry, Beijing 102205, China; 4. Central Laboratory of 306 Hospital of PLA, Beijing 100083, China; 5. Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Corresponding authors: [email protected] (Guo SX); [email protected] (Shao HB). Posting address: Dr. Professor Shao Hongbo, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Received: 2009.08.28; Accepted: 2009.11.26; Published: 2009.12.02 Abstract The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine spe- cies, and there is proteomic difference among Anoectochilus interspecies. Moreover, pro- teomic finger printings of five Anoectochilus species have been established for identifying spe- cies, and genetic relationships of five species within Anoectochilus have been deduced ac- cording to proteomic differences among five species. Key words: Anoectochilus, ITS, proteomic finger printing, SELDI sterile condition. For a long time, the morphological 1. Introduction characteristics have been the main standards of phy- Anoectochilus is one of the 27 genera of subteib. logenetic studies. However, due to the narrow of the Goodyerinae of Trib. Neottieae (Orchidaceae). There are distribution of wild Anoectochilus and the scarce of about 40 species of this genus in tropical zone areas of natural reserves and the missing of flower period, Asia and Australia. 20 species among them and two traditional identification methods were usually inva- varieties have been found from southwest to south of lid. China [1]. Major medicinal plants named "King of With the development of plant molecular sys- medicine" or "Golden grass" of this genus are A. for- tematics, a growing number of nucleic acid analysis mosanus, A. koshunensis and A. roxburghii, which are techniques are widely used in plant phylogenetic generally used in treatment of hypertension, diabetes, studies [3], such as DNA hybridization, DNA restric- heart disease, pneumonia, acute and chronic hepati- tion enzyme spectrum analysis, DNA fingerprinting tis, nephritis and other diseases [1, 2]. techniques, RFLP, RAPD, AFLP and DNA sequence According to the identification standards [1], we analysis. At present, ITS sequence of ribosomal DNA collected wild species of Anoectochilus plants in (rDNA) has become an important molecular markers southwest areas of China and cultured axillary bud in http://www.biolsci.org Int. J. Biol. Sci. 2009, 5 728 in phylogenetic development of angiosperms, and The main instruments: Master Cycleer gradient been widely used in the intragenera, intergenera and AG 22331 PCR Instrument, Eppendorf companies; even interspecies phylogenetic studies [4-5]. A series protein flight mass spectrometer (PBS IIc), that is, of progress has been achieved [6-7]. surface-enhanced laser desorption ionization Meanwhile, proteomics researches based on time-of-flight mass spectrometry (SELDI-TOF), two-dimensional gel electrophoresis are also applied chemically modified weak-cation CM10 chip, Ci- in the genetic evolution and classification of species. phergen U.S. companies; Centrifuge 5810r desktop For instance, to identify the origin of cultivated spe- high-speed refrigerated centrifuge, Eppendorf com- cies through the analysis of protein differences of cul- pany; Milli-Q ultrapure water instrument, Millipore tivated and wild wheat [8], and to study the genetic products. diversity by protein differences of wheat varieties [9] 2.2 Methods or wheat groups planted in different areas [10]. In addition to wheat, other species used 2-D separated 2.2.1 Plant DNA extraction and amplification of ITS characteristic proteins to identify species (or subspe- sequences cies) , such as rice [11-12], sugarcane [13] and chilli Plant Genomic DNA Kit prospectus was a ref- [14], have been reported. erence to extract plant DNA. As a new way on proteome research, The primers of PCR amplification of ITS se- SELDI-TOF-MS (Surface Enhanced Laser Desorption quences [21, 22]: P1: CGT AAC AAG GTT TCC GTA Ionization-Time of Flight-Mass Spectrography) tech- GGT GAAC; P2: TTA TTG ATA TGC TTA AAC TCA nology shows a lot of advantages such as simple, fast, GCG GG, conventional PCR amplification conditions. acute and high-flux. It can detect trace protein as 2.2.2 Alignment of ITS sequences by Blast fmol(10-15mol) [15-16] and is regarded as supplement of two-dimensional electrophoresis. Today, SELDI Blast engine is in NCBI web site has been mostly used in clinical diagnosis through http://blast.ncbi.nlm.nih.gov/Blast.cgi. identifying several special proteins peaks of special 2.2.3 Sample preparation for proteomics disease [17] and also was used in the studies on plant When the sterile cultured plant seedlings grow proteome recently [18-20]. to 8-10cm high, they are collected from the tender In this experiment, based on the NCBI Blast shoots of plants and sample preparation is based on comparison of ITS sequences, several named (TW, FJ) the procedure described by Damerval [23], and modi- and unnamed (WS, YN1, YN2, XZ) orchid plants fied as follow: samples approximately 500 mg and 50 were only classified to genera. So the protein differ- mg polyvinylpyrrolidone(PVP) are ground in liquid ence of these plants using the SELDI-TOF-MS was nitrogen. The powder is suspended in 8-10 folds investigated to identify species at the first time, and sample volume (weight/vol) of acetone (–20 ºC) + the proteome fingerprint of these plants were estab- 10% vol/vol trichloroacetic acid (TCA) + 5% vol/vol lished respectively, and the genetic relationship of dithiothreitol (DTT) and incubated overnight at five species within Anoectochilus was preliminarily –20ºC. After centrifugation, (14, 000 × g, 4 ºC, 60 min), explored. the supernatant is removed, 5 mL of ice-cold acetone +1% vol/vol DTT+1 mM phenylmethyl sulfon- 2 Materials and methods ylfluoride (PMSF) is added, and the samples are stored for 1 h at –20 ºC. Then centrifuge at 4 ºC, 14, 2.1 Materials 000×g for 30 min, repeat this step one time. Volatilize Experimental material: six tissue culture seed- remains acetone of precipitation at -20 ºC. 20 mg pro- lings comprised TW (Taiwan province), FJ (Fujian tein powder is dissolved in 500 mL protein lysate (9.5 province), WS (Yunnan province), YN1(Yunnan mol/L urea, 2% 3-[(3-cholamidopropyl) dimethyl- province), YN2 (Yunnan province) and XZ (Tibet ammonio] -1-propanesulfonate (CHAPS), 1% DTT), province). insoluble particles are removed by centrifugation (14, The main reagents: polyvinylpyrrolidone (PVP), 000 ×g, 4 ºC, 30 min) and protein level is determined trichloroacetic acid (TCA), dithiothreitol (DTT), urea, using 2-D Quant Kit(Amersham) with accurate con- 3-[(3-cholamidopropyl)dimethylamonio]-1-propane centration using bovine serum albumin (BSA) as sulfonate (CHAPS) reagents for Gibco products; 2-D standard. Quant Kit protein quantitative kit products for the 2.2.4 SELDI-MS-TOF detection Amersham; Plant Genomic DNA Kit, TIANGEN company's products. Put the protein chip (Chemical modify chip CM10, Ciphergen company of USA) in processor. http://www.biolsci.org Int. J. Biol. Sci. 2009, 5 729 Add 200 µL binding buffer (50 mmol/L NaAc, pH 3 Result and Discussion 4.0) in each pore. Vibrate 2 times to wash the proces- 3.1 Results of alignment of ITS sequence by Blast sor at room temperature; 5 min every time, then shake away the buffer. Add 100 µL sample mixed The ITS sequences of samples were aligned by liquor in each pore (about 5μg protein per pore). Af- Blast. The four highest score DNA accession number ter Vibrating 1 h, shake away sample. Vibrate 2 times and their coverage and identity were listed in table 1. to wash processor with 200 μL elution buffer (50 TW, FJ, YN1, YN2, WS are classified in Anoectochilus, mmol/L NaAc, pH 4.0) at room temperature, 5 min TW could be judged as A. formosanus. Referring to its every time, then shake away the buffer. Wash again flower character, FJ can be identified as A. roxburghii. with deionized water, shake away immediately. Un- Although owning the same ITS sequences, YN1 and pack processor and take out chip, dry it in air, then YN2 may be two variants or subspecies because of its put 0.5 μL SPA [Sinapinic acid, 5 mg SPA in 80 μL differences in appearance. XZ belongs to Goodyera TFA and CAN solution (trifluoroacetic acid : acetoni- rather than Anoectochilus, can be identified as G. mac- trile=1:1) ] in each pore, after dry, repeat this step rantha. again then put chip in SELDI-TOF-MS instrument In table 1, Taxonomic status of the various gen- and detect (PBS IIc, Ciphergen company of USA). era and species are Eukaryota, Viridiplantae, Strep- tophyta, Embryophyta, Tracheophyta, Spermato- 2.2.5 Data processing and Proteins identification phyta, Magnoliophyta, Liliopsida, Asparagales, Or- Parameter set as: the detected highest molecular chidaceae, Orchidoideae, Cranichideae, Goodyerinae, weight is 50 kD, the optimizing range are 2-20 kilo under Goodyerinae are Anoectochilus, Ludisia, Dos- daltons (KD), the intensity of laser is 205, the detec- sinia, and Goodyera respectively. tion sensitivity is 8. The peaks under 2 kD are deleted The results also reveal that the classification re- to remove interference of base peak.
Recommended publications
  • The Structure of the Perennial Growth of Disa Un/Flora Berg
    THE STRUCTURE OF THE PERENNIAL GROWTH OF DISA UN/FLORA BERG. ( ORCHIDACEAE) HONOURS SYSTEMATICS PROJECT JANET THOMAS OCTOBER 1990 SUPERVISOR: DR . .H.P. LINDER University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town BOLUS LIBRARY 1 ABSTRACT The perennation of orchids is poorly understood, in particular that of the Orchidoidae. The understanding of perennation in the Orchidoidae is important because the root-stem tuberoid .is used as the one character defining the Orchidoidae as a monophyletic group. The root-stem tuberoid has never been examined for variation before. This project focuses on perennial growth in the Diseae in order to study the structbre and function of the root stem tuberoid in relation tp other organs and to contribute to the understanding of Orchidoid phylogeny. , INTRODUCTION Host te1perate monocotyledons have evolved underground resting or perennating organs for the climatically unfavourable season (Holttum 1955). A period of underground existence may allow a plant to escape unfavourable conditions, to counter environmental uncertainty, and to build reserves for flowering episodes (Calvo 1990). This is especially evident in the temperate members of the Orchidaceae and is made possible through sympodial growth· (Withnerj1974). Not .all temperate orchids have a resting period although they do have sympodial growth and do perennate.
    [Show full text]
  • Phylogenetic Relationships of Discyphus Scopulariae
    Phytotaxa 173 (2): 127–139 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.173.2.3 Phylogenetic relationships of Discyphus scopulariae (Orchidaceae, Cranichideae) inferred from plastid and nuclear DNA sequences: evidence supporting recognition of a new subtribe, Discyphinae GERARDO A. SALAZAR1, CÁSSIO VAN DEN BERG2 & ALEX POPOVKIN3 1Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510 México, Distrito Federal, México; E-mail: [email protected] 2Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Av. Transnordestina s.n., 44036-900, Feira de Santana, Bahia, Brazil 3Fazenda Rio do Negro, Entre Rios, Bahia, Brazil Abstract The monospecific genus Discyphus, previously considered a member of Spiranthinae (Orchidoideae: Cranichideae), displays both vegetative and floral morphological peculiarities that are out of place in that subtribe. These include a single, sessile, cordate leaf that clasps the base of the inflorescence and lies flat on the substrate, petals that are long-decurrent on the column, labellum margins free from sides of the column and a column provided with two separate, cup-shaped stigmatic areas. Because of its morphological uniqueness, the phylogenetic relationships of Discyphus have been considered obscure. In this study, we analyse nucleotide sequences of plastid and nuclear DNA under maximum parsimony
    [Show full text]
  • May 2014. Orchid Specialist Group Newsletter
    ORCHID CONSERVATION NEWS The Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission Issue 1 May 2014 The Value of Long Term Studies Editorial Endangered Hawaiian endemic, Peristylus holochila, initiates anthesis in vitro and ex vitro Long term agricultural field experiments at Lawrence W. Zettler Rothamstead, England, are notable because when they Shanna E. David began in 1843, the founders could not possibly have predicted what might be discovered over the following Orchid Recovery Program, Department of Biology 160 years. The conservation value of long term studies Illinois College, 1101 West College Avenue of orchids was discussed in 1990 by the late Carl Olof Jacksonville, IL 62650 USA Tamm, Uppsala, Sweden, when he presented his observations of individual plant behaviour at the ([email protected]) International Orchid Symposium. His conclusion after some 40 years of observation was simple: long term Only three orchid species are native to the Hawaiian observations are essential to conservation and that archipelago: Anoectochilus sandvicensis (Hawaiian individual plant tracking of selected orchid taxa was Jeweled Orchid, ke kino o kanaloa), Liparis hawaiensis recommended. (Hawaii Widelip Orchid, awapuhiakanaloa) and Peristylus (Platanthera) holochila (Hawaiian Bog Two papers have recently been published that Orchid, puahala a kane). Of these three, by far the rarest demonstrate the conservation potential of decades-long is P. holochila (Fig. 1) consisting of 33 known plants studies. Joyce and Allan Reddoch summarized what scattered amongst three islands as of 2011 (Kauai, has been learned from some four decades of monitoring Maui, Molokai). 22 species in Gatineau Park, QC, Canada (Reddoch & Reddoch, 2014).
    [Show full text]
  • Diversity of Limestone Orchids in Selected Areas
    UNIVERSITI PUTRA MALAYSIA DIVERSITY OF LIMESTONE ORCHIDS IN CENTRAL AND NORTHERN PADAWAN, KUCHING, SARAWAK MICHAEL LIM YEE LIANG FS 2008 14 DIVERSITY OF LIMESTONE ORCHIDS IN CENTRAL AND NORTHERN PADAWAN, KUCHING, SARAWAK MICHAEL LIM YEE LIANG MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA 2008 DIVERSITY OF LIMESTONE ORCHIDS IN CENTRAL AND NORTHERN PADAWAN, KUCHING, SARAWAK By MICHAEL LIM YEE LIANG Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science Jan 2008 I certify that an Examination Committee has met on 11 January 2008 to conduct the final examination of Michael Lim Yee Liang on his Master of Science thesis entitled “Diversity of Limestone Orchids in Central and Northern Padawan, Kuching, Sarawak” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Master of Science. Members of the Examination Committee were as follows: Hishamuddin Omar, PhD Lecturer Faculty of Science Universiti Putra Malaysia (Chairman) Janna Ong Abdullah, PhD Lecturer Faculty of Biotechnology and Biomolecular Science Universiti Putra Malaysia (Internal Examiner) Umi Kalsom Yusuf, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner) Mohamed Abdul Majid, PhD Professor Faculty of Science University of Malaya (External Examiner) HASANAH MOHD. GHAZALI, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia Date: 1 April 2008 vii This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science.
    [Show full text]
  • Reassessing the Temporal Evolution of Orchids with New Fossils and A
    Gustafsson, A L S; Verola, C F; Antonelli, A (2010). Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evolutionary Biology, 10:177. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Gustafsson, A L S; Verola, C F; Antonelli, A (2010). Reassessing the temporal evolution of orchids with new Winterthurerstr. 190 fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus CH-8057 Zurich Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evolutionary Biology, 10:177. http://www.zora.uzh.ch Year: 2010 Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae) Gustafsson, A L S; Verola, C F; Antonelli, A Gustafsson, A L S; Verola, C F; Antonelli, A (2010). Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae). BMC Evolutionary Biology, 10:177. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Gustafsson, A L S; Verola, C F; Antonelli, A (2010). Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae).
    [Show full text]
  • PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
    Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished
    [Show full text]
  • In Vitro Culture of Jewel Orchids (Anoectochilus Setaceus Blume)
    In Vitro Culture of Jewel orchids (Anoectochilus setaceus Blume) PHI THI CAM MIEN1,2, PHAM LUONG HANG1, NGUYEN VAN KET3, TRUONG THI LAN ANH3, PHUNG VAN PHE4, NGUYEN TRUNG THANH1* 1Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam 2Faculty of Biotechnology, Hanoi University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam 3Faculty of Agriculture Forestry, Dalat University, 01 Phu Dong Thien Vuong, Da Lat, Vietnam 4Faculty of Silviculture, Vietnam Forestry University, Xuan Mai, Chuong My, Hanoi, Vietnam *Corresponding author: [email protected] The effect of basal media, BAP, Kn and sugars to the growth and development of Anoectochilus setaceus multiple shoot were reported in this study. The basal ½ MS, MS and Knud medium were tested and shown to be equally suitable of them for shoot culture after 8 weeks. The maintaining of culture until 12 weeks, growth of protocorms was superior in MS to that in ½ MS and Knud medium. Other cultures were initiated from shoots inoculated onto MS medium supplemented individually with six different concentrations of 6-Benzylaminopurine (BAP) and Kinetin (Kn). The highest number of shoots was obtained on medium supplemented with 0.6 mg l-1 BAP (4.4 ± 0.5 shoot/explant). Out of all the investigated concentrations of Kn, the best result was obtained on medium supplemented with 1.0 mg l-1 Kn (3.3 ± 0.3 shoot/explant). In sugar study, results show that the shoot, root and leaf formation was significantly enhanced as the sugar concentration was decreased. Medium supplemented with 2% (w/v) sucrose was the best compared to the other treatments and sugar at a concentration of 5% (w/v) induced the formation of large size seedlings.
    [Show full text]
  • Thesis for Library
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 Macro-evolutionary studies in the orchid genus Satyrium Sw. and other genera from the Cape Floristic Region (South Africa) van der Niet, Timotheüs Abstract: Satyrium ist eine Orchideen-Gattung mit 90 Arten, die in Süd-, Ost-, und Westafrika sowie auf Madagaskar und in Südostasien vorkommt. Die Gattung ist morphologisch sehr vielfältig und tax- onomisch komplex. In der vorliegenden Arbeit wurden DNA-Sequenzen benutzt, um einen evolutionären Stammbaum von Satyrium zu erstellen. Dieser Stammbaum zeigt, dass die traditionelle Taxonomie nicht mit den Verwandtschaftsverhältnissen übereinstimmt. Ferner wird gezeigt, dass einige Arten durch Hy- bridisierung entstanden sein könnten. Durch Beobachten der Bestäubung von Satyrium wurde eine enge Verbindung zwischen Blütenmerkmalen und den jeweiligen Bestäubern gefunden. Es konnte gezeigt wer- den, dass die Pflanzen ihre Bestäuber im Verlaufe der Evolution häufig wechselten. Abschliessend wurde untersucht, wie dieser Bestäuberwechsel mit der Artbildung zusammenhängt. Satyrium is an orchid genus with 90 species that is distributed throughout southern, eastern, and western Africa, Madagascar, and south-east Asia. It harbours a great deal of morphological diversity which has complicated traditional taxonomy. Here we use DNA sequences to reconstruct a species-level phylogeny. This phylogeny reveals that previous taxonomy was incongruent with evolutionary relationships. Furthermore I demonstrate that some taxa may have originated through hybridization. Using pollinator observations for about one third of the species, I show the link between morphology and being pollinated by a certain pollinator, as well as that there have been frequent shifts between pollinators throughout evolutionary history.
    [Show full text]
  • Conservation of Anoectochilus Formosanus Hayata by Artificial Cross-Pollination and in Vitro Culture of Seeds
    ShiauBot. Bull. et al. Acad. — Propagation Sin. (2002) 43:of Anoectochilus123-130 formosanus 123 Conservation of Anoectochilus formosanus Hayata by artificial cross-pollination and in vitro culture of seeds Yih-Juh Shiau, Abhay P. Sagare, Uei-Chin Chen, Shu-Ru Yang, and Hsin-Sheng Tsay* Department of Agronomy, Taiwan Agricultural Research Institute, Wufeng, Taichung 41301, Taiwan (Received June 14, 2001; Accepted October 25, 2001) Abstract. Anoectochilus formosanus is an important ethnomedicinal plant of Taiwan. We have optimized a method for mass propagation of A. formosanus by artificial cross-pollination and asymbiotic germination of seeds. The success of pollination and fruit set was found to be dependent on the developmental stage of male and female gametophytes. Fruit set of hand-pollinated flowers was 86.7%. The seeds from 7-week-old capsules were germi- nated by culturing on half-strength Murashige and Skoog’s (MS) medium supplemented with 0.2% activated char- coal and 8% banana homogenate for four months. Germinated seedlings were cultured in half-strength liquid MS medium containing 2 mg/l N6-benzyladenine (BA) in 125-ml Erlenmeyer flasks for two months. Before ex vitro establishment of seedlings, seedlings with well-developed rhizomes and shoots were cultured on half-strength MS medium with 0.2% activated charcoal, 8% banana homogenate, 2 mg/l BA and 0.5 mg/l a-naphthaleneacetic acid (NAA) for further growth. Around 90% seed-derived plants survived two months after transfer to peat moss:ver- miculite potting mixture and incubation in the growth chamber. Keywords: Anoectochilus formosanus; Conservation; Endangered plant; In vitro propagation; Jewel orchid; Medici- nal herb; Orchidaceae; Pollination; Pollinia; Seed germination.
    [Show full text]
  • Dating the Origin of the Orchidaceae from a Fossil Orchid with Its Pollinator
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/6111228 Dating the origin of the Orchidaceae from a fossil orchid with its pollinator Article in Nature · September 2007 DOI: 10.1038/nature06039 · Source: PubMed CITATIONS READS 211 770 5 authors, including: Santiago R Ramírez Barbara Gravendeel University of California, Davis Leiden University, Naturalis Biodiversity Center & University of Applied Sciences L… 50 PUBLICATIONS 999 CITATIONS 208 PUBLICATIONS 2,081 CITATIONS SEE PROFILE SEE PROFILE Rodrigo B. Singer Naomi E Pierce Universidade Federal do Rio Grande do Sul Harvard University 109 PUBLICATIONS 1,381 CITATIONS 555 PUBLICATIONS 6,496 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Insect endosymbiont diversity View project Support threatened research Institutions from Southern Brazil (Rio Grande do Sul) View project All content following this page was uploaded by Barbara Gravendeel on 31 May 2014. The user has requested enhancement of the downloaded file. Vol 448 | 30 August 2007 | doi:10.1038/nature06039 LETTERS Dating the origin of the Orchidaceae from a fossil orchid with its pollinator Santiago R. Ramı´rez1, Barbara Gravendeel2, Rodrigo B. Singer3, Charles R. Marshall1,4 & Naomi E. Pierce1 Since the time of Darwin1, evolutionary biologists have been fas- subfamily showed that the size, shape and ornamentation of the cinated by the spectacular adaptations to insect pollination exhib- fossil closely resemble those of modern members of the subtribe ited by orchids. However, despite being the most diverse plant Goodyerinae, particularly the genera Kreodanthus and Microchilus family on Earth2, the Orchidaceae lack a definitive fossil record (Supplementary Table 1).
    [Show full text]
  • Effects of Different Factors on Adventitious Bud Induction from Stem Explants of Ludisia Discolor
    E3S Web of Conferences 245, 03024 (2021) https://doi.org/10.1051/e3sconf/202124503024 AEECS 2021 Effects of different factors on adventitious bud induction from stem explants of Ludisia discolor Ying Liu1, Xiaohao Li1, Jingye Chen1, Yingbin Xue2* and Yinling Zhu2* 1College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, P.R. China 2College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, P.R. China Abstract. In this study, the stem explants of Ludisia discolor were used as experimental materials to investigate the effects of 6-BA, NAA, Cu2+ and Ag+ on the induction of adventitious bud regeneration, and to analyze the most suitable culture conditions for stem explants regeneration. The results showed that when the medium was supplemented with 1.0 mg/L 6-BA, 0.75 mg/L NAA, 0.25 mg/L CuSO4, or 6.4 mg/L AgCl, the best regeneration effects would be gained, respectively. And the adventitious bud regeneration rate reached the maximum, which were 61.67%, 83.67%, 80.95% and 87.63%, respectively. The results of this study provided a theoretical basis for tissue culture and rapid propagation of L. discolor. 1 Introduction Ludisia discolor ((Ker-Gawl.) A. Rich.) is a medicinal 2 Materials and Methods plant belonging to Orchidaceae and the genus of Ludisia. It is often called "Goldenline Orchidaceae" [1]. Ludisia 2.1 Experimental materials discolor is mainly distributed in China, Vietnam, Malaysia, Thailand and other places [2]. It can be found The aseptic seedlings of L. discolor used in this study in northern and central Guangdong of China, Hong Kong, was provided by Professor Yang Yuesheng, College of Hainan, Guangxi, and southeast of Yunnan, and mainly Life Sciences, South China Agricultural University.
    [Show full text]
  • Orchidoideae: Orchidaceae) Author(S): H
    The Phylogeny and Classification of the Diseae (Orchidoideae: Orchidaceae) Author(s): H. P. Linder and H. Kurzweil Source: Annals of the Missouri Botanical Garden, Vol. 81, No. 4 (1994), pp. 687-713 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/2399916 Accessed: 27-07-2016 11:10 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden This content downloaded from 137.158.114.36 on Wed, 27 Jul 2016 11:10:19 UTC All use subject to http://about.jstor.org/terms THE PHYLOGENY AND H. P. Linder2 and H. Kurzweil2'3 CLASSIFICATION OF THE DISEAE (ORCHIDOIDEAE: ORCHIDACEAE)l ABSTRACT The subtribal classification of the Diseae (Orchidoideae) is reviewed in light of the available morphological, leaf anatomical, and palynological data. These data are critically assessed, and the more prominent features are illustrated. The data are analyzed cladistically, and the robustness of the various components of the most parsimonious tree is assessed by a bootstrap analysis. Based on the cladistic analysis and the bootstrap analysis, a new classification is proposed for the Diseae.
    [Show full text]