Book of Abstracts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRAS Notice 658, Grapefruit Extract
GRAS Notice (GRN) No. 658 GR 11111111111111111111 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION ., Notice to the US Food and Drug Administration that the use of Vancitrix™, a glycerin Citrus Extract, is Generally Recognized as Safe GRN ODDb58 Submitted and Prepared by the Notifier: r----------, (Pa~(C~~~~[)) Chemie Research & Manufacturing, Co., Inc. JUL 1 2016 OFFICE OF 18 March 2015 (Original subm ission) FOOI3> ADDITIVE SAFETY 07 June 2016 (Revised submission) THOMAS WRIGHT Table of Contents GRAS Exemption Claim 2 Name and Address of Notifier 2 Common or Usual Name 2 Conditions of Use 2 Basis for GRAS Determination 3 Data I Information Availability Statement 3 Characterization 3 Chemical Composition 4 Organic Certification 4 Manufacturing and Production 5 Company Overview 5 Raw Materials 5 Manufacturing 5 Specifications and Batch Analysis 7 Specifications and Quality Control 7 Ascorbic acid, Citric acid, Naringin and other Flavonoids 8 Screening for Pesticides I Bactericides 9 Heavy Metal Analysis 9 Minimum Inhibitory Concentration (MIC) 10 Microbial Assay (USP-51) 11 History of Consumption 12 Production 12 Safety Assessment 13 Toxicological Studies 13 Drug Interactions 13 Current Regulatory Status 14 Regulatory Status of Citrus Fruit 14 Regulatory Status of Additional Vancitrix™ Components 14 Intended Use 14 Estimated Daily Intake (EDI) 15 General Recognition I Basis for GRAS Determination 16 References 17 1 .. GRAS Exemption Claim Chemie Research & Manufacturing, Co., Inc. (the notifier) has determined that Vancitrix™ grapefruit extract, hereafter referred to as Vancitrix™, is Generally Recognized as Safe (GRAS) for its intended use, consistent with section 201 (s) of the Federal Food, Drug and Cosmetic Act. -
Evaluation of Antimicrobial Potential of Different Commercial Grapefruit Seed Extracts
EVALUATION OF ANTIMICROBIAL POTENTIAL OF DIFFERENT COMMERCIAL GRAPEFRUIT SEED EXTRACTS Belmina Saric*1, Irma Mahmutović-Dizdarević2,3, Ana Gutalj2, Anesa Jerković-Mujkić2 Address(es): Belmina Saric, MSc, 1University of Sarajevo, Institute for Genetic Engineering and Biotechnology, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina, +38762600168. 2University of Sarajevo, Faculty of Science, Department of Biology, Laboratory for Microbiology, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina. 3 University of Sarajevo, Faculty of Science, Department of Biology, Laboratory for Research and Protection of Endemic Resources, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina. *Corresponding author: [email protected] https://doi.org/10.15414/jmbfs.4213 ARTICLE INFO ABSTRACT Received 13. 1. 2021 Extracts made from grapefruit (Citrus x paradisi Macfad.) seed are recognized for strong bactericidal and fungicidal properties. Revised 16. 2. 2021 Bacterial resistance to antibiotics is an emerging issue, and therefore isolation and characterization of novel antimicrobials of natural Accepted 16. 2. 2021 origin represent the real challenge for investigators worldwide. The aim of this study was to evaluate the antimicrobial activity of three Published 1. 8. 2021 commercial GSE (Grapefruit Seed Extract) products against six bacterial and one fungal strain, through the agar well diffusion method, determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC). Obtained results indicate strong antimicrobial effects of investigated extracts, with different microbial Regular article susceptibility, including the multidrug-resistant (MDR) bacteria. The highest inhibitory potential is conducted for Citrofit®, while CitroBiotic® has shown the weakest effect. These results are in concordance with the obtained MIC and MBC values. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Taxonomy, Identification and Biological Activities of a Novel Isolate of Streptomyces Albus
Kadiri Sunanda Kumari et al. / Journal of Pharmacy Research 2011,4(12),4678-4680 Research Article Available online through ISSN: 0974-6943 www.jpronline.info Taxonomy, Identification and Biological Activities of a Novel Isolate of Streptomyces albus Kadiri Sunanda Kumari* and Vidavalur Siddaiah Department of Organic Chemistry & FDW, Andhra University, Visakhapatnam 530 003, India Received on:20-08-2011; Revised on: 15-09-2011; Accepted on:10-11-2011 ABSTRACT Various isolates of streptomycetes species were isolated from different soil sediments of Visakhapatnam Coast. Preliminary screening by cross-streak method showed that 19 isolates exhibited good antimicrobial activity. Among these 19 isolates tested, isolate MB201 was the most active one and thus was selected for identification. Morphological, cultural, physiological, biochemical characteristics and biological properties as well as enzymatic activities and cell wall composition suggested that the isolate belonged to the genus streptomyces. The 16S ribosomal DNA amplification for phylogenetic study revealed that the isolate was highly related to Streptomyces albus (~99%), so it was designated as Streptomyces albus gangavarams. This new strain produced antimicrobial agents active against Gram +ve and Gram –ve bacteria and fungi. KEY WORDS: Streptomyces, S.albus INTRODUCTION: Numerous classifications were devised to accommodate the increasing number Morphological characterization: of streptomyces species, most of them based on a few subjectively chosen The spore chain morphology of the -
Genome Mining of Biosynthetic and Chemotherapeutic Gene Clusters in Streptomyces Bacteria Kaitlyn C
www.nature.com/scientificreports OPEN Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria Kaitlyn C. Belknap1,2, Cooper J. Park1,2, Brian M. Barth1 & Cheryl P. Andam 1* Streptomyces bacteria are known for their prolifc production of secondary metabolites, many of which have been widely used in human medicine, agriculture and animal health. To guide the efective prioritization of specifc biosynthetic gene clusters (BGCs) for drug development and targeting the most prolifc producer strains, knowledge about phylogenetic relationships of Streptomyces species, genome- wide diversity and distribution patterns of BGCs is critical. We used genomic and phylogenetic methods to elucidate the diversity of major classes of BGCs in 1,110 publicly available Streptomyces genomes. Genome mining of Streptomyces reveals high diversity of BGCs and variable distribution patterns in the Streptomyces phylogeny, even among very closely related strains. The most common BGCs are non-ribosomal peptide synthetases, type 1 polyketide synthases, terpenes, and lantipeptides. We also found that numerous Streptomyces species harbor BGCs known to encode antitumor compounds. We observed that strains that are considered the same species can vary tremendously in the BGCs they carry, suggesting that strain-level genome sequencing can uncover high levels of BGC diversity and potentially useful derivatives of any one compound. These fndings suggest that a strain-level strategy for exploring secondary metabolites for clinical use provides an alternative or complementary approach to discovering novel pharmaceutical compounds from microbes. Members of the bacterial genus Streptomyces (phylum Actinobacteria) are best known as major bacterial produc- ers of antibiotics and other useful compounds commonly used in human medicine, animal health and agricul- ture1,2. -
Isolation and Identification of Streptomyces from Different Sample of Soils
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology and Medical Sciences - JBMS An Open Access International Journal published by University of Babylon, Iraq Vol.1 2013 Isolation and Identification of Streptomyces from Different Sample of Soils Ali. Al-Saadi, NooraMajidHameed, Eman Mohammad Jaralla University of Babylon, College of Science [email protected] Abstract A total of 36 actinomycetes were isolated and purified from soil samples collected from agricultural soils in Hilla. The isolates were morphologically distinct on the basis of spore mass color, reverse slide color, aerial and substrate mycelia formation and production of diffusible pigment. Only two isolates which were S.A.2 and S.S.10 was selected for further investigation due to its strong antibacterial activity against six pathogenic bacteria which were (Staphylococcus aureus , Escherichia coli, Pseudomonas aeroginosa,Serratiamarcescens, Klebsiella pneumonia, Aeromonashydrophila). These two isolates was identified as Streptomycesorientalis and Streptomyces humidus respectively based on its morphological, cultural, physiological, microscopic features, utilization of carbon sources, biochemical characteristics and molecular analysis of the 16S rRNA gene primers. Keywords :actinomycetes, spore mass color, 16S rRNA gene primers. Introduction Actinomycetes are a group of prokaryotic organisms phylogenetically grouped as gram-positive bacteria with high guanine + cytosine in their DNA. Most of them are in subclass Actinobacteridae , order actinomycetales comprising of 14 suborders, 49 families, and over 140 genera (Adegboye and Babalola, 2012).They are filamentous bacteria which produce two kinds of branching mycelium, aerial mycelium and substrate mycelium. -
Nomenclature of Taxa of the Order Actinomycetales (Schizomycetes) Erwin Francis Lessel Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1961 Nomenclature of taxa of the order Actinomycetales (Schizomycetes) Erwin Francis Lessel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Microbiology Commons Recommended Citation Lessel, Erwin Francis, "Nomenclature of taxa of the order Actinomycetales (Schizomycetes) " (1961). Retrospective Theses and Dissertations. 2440. https://lib.dr.iastate.edu/rtd/2440 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been (J 1-3042 microfilmed exactly as received LESSEL, Jr., iJrxvin Francis, 1U3U- NOMENCLATURE OF TAXA OF THE ORUEIR AC TINO M YC E TA LE S (SCIIIZO M YC ETES). Iowa State University of Science and Technology Ph.D., 1001 Bacteriology University Microfilms, Inc., Ann Arbor, Mic hi g NOMENCLATURE OF TAXA OF THE ORDKR ACTINOMYCETALES (SCHIZOMYCETES) oy Erwin Francis Lessel, Jr. A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Ma-'or Subject: Bacteriology Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. -
Characterizing Drinking Water Microbiome Using Oxford Nanopore Miniontm Sequencer
MSc thesis in Civil Engineering Characterizing Drinking Water Microbiome Using Oxford Nanopore MinIONTM Sequencer Xinyue Xiong 2019 Characterizing Drinking Water Microbiome Using Oxford Nanopore MinIONTM Sequencer By Xinyue Xiong in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering at the Delft University of Technology, to be defended publicly on Thursday October 10, 2019 at 15:30 PM. Thesis committee: Prof. dr. GertJan Medema, TU Delft Dr. ir. Gang Liu, TU Delft Dr. Thom Bogaard, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface This thesis is the final report of my MSc program in Civil Engineering at Delft University of Technology. This ten-month MSc thesis project is jointly supported by TU Delft and drinking water company Oasen. I would like to express my sincere appreciation to these two institutions for providing me with such a precious opportunity to conduct this scientific research. Upon the completion of this thesis, I am grateful to everyone who has contributed to this study. Firstly, I would like to express my heartiest thankfulness to my daily supervisor, Lihua Chen, for her patient guidance and assistance in both experiments and academic writing. Moreover, profound gratitude should go to Prof. Gertjan Medema, for his professional instructions and supports in this whole research. I would like to express my gratitude to Dr. Gang Liu, for offering me this opportunity to conduct this project. I would like to express my thankfulness to Dr. Thom Bogaard, for his valuable comments and insightful suggestions on this thesis. -
Review Article
International Journal of Systematic and Evolutionary Microbiology (2001), 51, 797–814 Printed in Great Britain The taxonomy of Streptomyces and related REVIEW genera ARTICLE 1 Natural Products Drug Annaliesa S. Anderson1 and Elizabeth M. H. Wellington2 Discovery Microbiology, Merck Research Laboratories, PO Box 2000, RY80Y-300, Rahway, Author for correspondence: Annaliesa Anderson. Tel: j1 732 594 4238. Fax: j1 732 594 1300. NJ 07065, USA e-mail: liesaIanderson!merck.com 2 Department of Biological Sciences, University of The streptomycetes, producers of more than half of the 10000 documented Warwick, Coventry bioactive compounds, have offered over 50 years of interest to industry and CV4 7AL, UK academia. Despite this, their taxonomy remains somewhat confused and the definition of species is unresolved due to the variety of morphological, cultural, physiological and biochemical characteristics that are observed at both the inter- and the intraspecies level. This review addresses the current status of streptomycete taxonomy, highlighting the value of a polyphasic approach that utilizes genotypic and phenotypic traits for the delimitation of species within the genus. Keywords: streptomycete taxonomy, phylogeny, numerical taxonomy, fingerprinting, bacterial systematics Introduction trait of producing whorls were the only detectable differences between the two genera. Witt & Stacke- The genus Streptomyces was proposed by Waksman & brandt (1990) concluded from 16S and 23S rRNA Henrici (1943) and classified in the family Strepto- comparisons that the genus Streptoverticillium should mycetaceae on the basis of morphology and subse- be regarded as a synonym of Streptomyces. quently cell wall chemotype. The development of Kitasatosporia was also included in the genus Strepto- numerical taxonomic systems, which utilized pheno- myces, despite having differences in cell wall com- typic traits helped to resolve the intergeneric relation- position, on the basis of 16S rRNA similarities ships within the family Streptomycetaceae and resulted (Wellington et al., 1992). -
Product Catalog
Product Catalog Providing quality nutritional supplements and personal care products for you and your family Our Story At NutriBiotic®, we are committed to helping individuals achieve healthier, happier lives by providing innovative, high quality nutritional supplements and personal care products. Our founding principle that everyone deserves good health, along with the research and recommendations of two-time Nobel Laureate Linus Pauling, PhD, inspired us to produce vitamin C products in both pure and buffered forms. Keeping in mind vitamin C is fundamental to the body and realizing individuals have varying needs dependent on diet, health, and sensitivities, we developed an array of vitamin Cs to fulfill individuals’ nutritional requirements. We also discovered there was a need for premium, plant-based protein for food sensitive individuals, so we introduced a variety of naturally flavored, as well as unflavored, rice protein powders. Our Rice Protein is gluten free, GMO free, and produced without chemicals, pesticides, herbicides, and PCBs. We later pioneered the use of grapefruit seed extract (GSE), derived from the seed and pulp of grapefruit. GSE is vegan, gluten free, and made without GMOs. You will find GSE in many of our formulas, including dietary supplements and body care. We are pleased to continue developing an ever-expanding range of quality, cruelty free formulas, created with the intent of supporting your health. We use top-of-the-line raw materials and packaging to ensure freshness and stability. In addition, we are proud to offer a 100% guarantee on our products. NutriBiotic is a GMP (Good Manufacturing Practices) compliant manufacturer, and we follow a multitude of GMP and astringent quality assurance controls. -
Safety Assessment of Citrus Plant- and Seed-Derived Ingredients As Used in Cosmetics
Safety Assessment of Citrus Plant- and Seed-Derived Ingredients as Used in Cosmetics Status: Draft Revised Final Report for Panel Review Release Date: November 11, 2016 Panel Meeting Date: December 5-6, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Christina Burnett, Senior Scientific Analyst/Writer. Cosmetic Ingredient Review 1620 L Street NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Christina L. Burnett, Senior Scientific Writer/Analyst Date: November 11, 2016 Subject: Draft Revised Final Safety Assessment on Citrus Plant- and Seed-Derived Ingredients Enclosed is the Draft Revised Final Report of the Safety Assessment of Citrus Plant- and Seed-Derived Ingredients as Used in Cosmetics. (It is identified as cplant122016rep in the pdf document). At the September meeting, the Panel issued a revised tentative report with the conclusion that the following 13 ingredients are safe as used in the present practices of use and concentration when formulated to be non-irritating and non-sensitizing. -
Chemical Ecology of Streptomyces Albidoflavus Strain A10 Associated
microorganisms Article Chemical Ecology of Streptomyces albidoflavus Strain A10 Associated with Carpenter Ant Camponotus vagus Anna A. Baranova 1,2, Alexey A. Chistov 2,3, Anton P. Tyurin 1,2 , Igor A. Prokhorenko 1,2, Vladimir A. Korshun 1,2 , Mikhail V. Biryukov 1,4 , Vera A. Alferova 1,2,* and Yuliya V. Zakalyukina 5,* 1 Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia; [email protected] (A.A.B.); [email protected] (A.P.T.); [email protected] (I.A.P.); [email protected] (V.A.K.); [email protected] (M.V.B.) 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; [email protected] 3 Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia 4 Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia 5 Department of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected] (V.A.A.); [email protected] (Y.V.Z.); Tel.: +7-9266113649 (V.A.A.); +7-9175548004 (Y.V.Z.) Received: 15 November 2020; Accepted: 7 December 2020; Published: 9 December 2020 Abstract: Antibiotics produced by symbiotic microorganisms were previously shown to be of crucial importance for ecological communities, including ants. Previous works on ant–actinobacteria symbiosis are mainly focused on farming ants, which use antifungal microbial secondary metabolites to control pathogens in their fungal gardens. In this work, we studied microorganisms associated with carpenter ant Camponotus vagus. Pronounced antifungal activity of isolated actinobacteria strain A10 was found to be facilitated by biosynthesis of the antimycin A complex, consisting of small hydrophobic depsipeptides with high antimicrobial and cytotoxic activity.