Antimicrobial Activities of Streptomyces Species Isolated from Various Soil Samples in Federal University of Technology, Akure Environment

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Activities of Streptomyces Species Isolated from Various Soil Samples in Federal University of Technology, Akure Environment IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 10, Issue 4 Ver. III (Jul - Aug. 2015), PP 22-30 www.iosrjournals.org Antimicrobial Activities of Streptomyces Species Isolated From Various Soil Samples in Federal University of Technology, Akure Environment Ogundare, A. O., Ekundayo, F. O.and Banji- Onisile, F. Department of Microbiology, Federal University of Technology, PMB 704, Akure, Ondo State Nigeria Abstract: Five (5) different species of Streptomyces were isolated from different soil samples obtained from the Federal University of Technology, Akure, Nigeria and were tested for antagonistic activity against 5 pathogenic bacteria and fungi respectively. During the primary antimicrobial screening, 12% of the strain showed inhibitory potentials against the test microorganisms. The active metabolite was extracted using chloroform. Purification of the extract was performed using column chromatographic technique. Infra-Red spectroscopy carried out on the active fraction revealed four important functional groups which were hydroxyl, carbon- hydrogen, carbonyl and aromatic groups. The nucleotide sequence of the 16S RNA showed 83% identity with Streptomyces albus. From the taxonomic feature, the Streptomyces isolate DSM 40313 matched with S. albus in the morphological, physiological and biochemical characters. Thus, it was assigned the name Streptomyces albusDSM 40313. Keywords:Streptomyces, test microorganisms, soil samples, antagonistic activity. I. Introduction Streptomyces are gram positive, spore-forming bacteria found in soil. They are characterized by their tough, leathery, frequently pigmented colonies and their filamentous growth (Euzéby, 2008). They have genomes with high guanine and cytosine content (Madigan and Martinko 2005). Streptomyces is the largest genus of Actinobacteria and the type genus of the family Streptomycetaceae (Kämpfer, 2006). The production of a number of toxic natural products by Streptomyces isolates was long thought to be a competitive mechanism for the bacteria. Species of this genus are unusually prolific in the production of antibiotics and other types of compounds that are deleterious to competing microorganisms(Laskariset al., 2010).They also have unusually large genome sizes, presumably because of their production of these secondary compounds. Streptomyces griseushas been shown antibioticssuch as streptomycin (Laskariset al. 2010).The resistance of numerous pathogenic bacteria and fungi to commonly used antibiotics require an urgent focus of research and since Streptomyces is the most abundant actinomycete group in soil (Otoguroet al., 2001; Ramakrishnanet al., 2009), Extensive screening of this genus Streptomyces will therefore lead to the discovery of many novel strains that produce useful secondary metabolites necessary to combat these resistant pathogens. This study was therefore investigated to isolate Streptomyces from some soil samples from FUTA environment II. Materials and Methods Sample collection and isolation Soil samples were collected from household waste dumping site, ploughed soil, plantain cultivated soil, vegetative (weed) soil, loamy, sandy and clayey soils. The samples were transferred to the laboratory for further analysis.Plates containing starch casein medium were used for isolation of the Streptomyces. Different species of Streptomyces were isolated using the serial soil dilution technique as described by Olutiolaet al. (2000). Plates were incubated for 5 days at 28oC. Streptomyces colonies were picked from each plate and were streaked onto fresh plates until pure cultures were obtained. The isolates were identified using Gram-staining, catalase production, citrate utilization, starch hydrolysis, and fermentation of sugars according to the protocols of Olutiolaet al. (2000) and Cheesbrough (2006). Screening of Streptomyces for antimicrobial metabolite production Fresh culture of Streptomyces was inoculated in starch casein broth and incubated at 280C for 7 days in water bath with shaking. Growth of the organism in the flask was confirmed by turbidity in the broth. The broth culture was centrifuged at 5000 rpm for 20 minutes and the supernatant was filtered through No 1 Whatman filter paper. The culture filtrate of the Streptomyces species was used for the determination of antimicrobial activity against the test organisms (Singh and Agrawal 2003). Molten agar was aseptically dispensed into Petri dishes containing 1ml of each test organism and was allowed to gel. The seeded plates were allowed to set and wells at equidistant from each other were made in the agar plates with the aid of a cork borer (diameter 10 mm). DOI: 10.9790/3008-10432223 www.iosrjournals.org 22 | Page AntimicrobialActivities of StreptomycesSpecies Isolated From Various Soil Samples… Each well was then filled with 0.1ml of the culture filtrate. The plates were allowed to stand for one hour to allow diffusion of the metabolite in the filtrate, then incubated at 37°C for 24 h and observed for zones of inhibition. Three replicates of the experiment were performed and the diameters of the inhibition zones were measured and recorded. Extraction and bioassay of antimicrobial metabolite Extraction of crude metabolite Antimicrobial compound was recovered from the culture filtrate of S. albus (Streptomyces whose filtrate gave the highest zone of inhibition value) by solvent extraction with chloroform. Chloroform was added to the filtrate in the ratio 1:1 (v/v) and shaken vigorously; the organic phase containing the metabolite was separated from the aqueous phase. The extract obtained was evaporated to dryness using rotary evaporator and the crude extract was then used for bio assay (Owolabi and Olarinoye, 2008). Antimicrobial assay of the crude metabolite Antimicrobial activity of the crude metabolite was determined by agar well diffusion method as described by Olutiolaet al. (2000). The test organisms were standardized to 0.5 McFarland standards as described by Oyelekeet al. (2008). Sterile Petri dishes were seeded aseptically with 1ml each of the standardized broth cultures and 20ml of sterilized Mueller- Hinton agar was poured aseptically on the seeded plates. The plates were swirled carefully for even distribution and allowed to gel. With the aid of sterile cork borer, wells were created on the solidified agar medium. Exactly 0.5mL of 50mg/mL of the metabolite was then introduced into the wells and approximately labeled. The plates were incubated for 24 h at 37oC in case of bacterial species and 28oC for three days in case of fungal species. The plates were observed for zones of inhibition (Atta et al., 2009). Thin Layer Chromatography (TLC) The crude extract was subjected to TLC analysis on 2.6 × 8 cm silica gel plate. This was spotted onto a TLC plate 2 cm above the base. After thorough drying, the plate was placed in a solvent system (chloroform: methanol in the ratio 2:1) in a chromatography tank to develop. The plates were removed when the solvent front approached the top of the plates and air-dried. Spots on the plates were visualized in an iodine chamber. The distances travelled by the constituents were measured and used to determine their Rf values(Atta, 2009) Purification by Column chromatography The purification of the antimicrobial compound was carried out using silica gel column chromatography as described by Atta (2009) and Ushaet al. (2010). Chloroform and methanol in the ratio 2:1 v/v was used as eluting solvent. The column was packed with silica gel (60-120 mesh). The sample to be separated was then added on the top of the packed column and eluted with the solvent at the flow rate of a drop per 3 sec. A collecting conical flask was placed at the bottom of the column to collect the eluted fractions. The collected elute was distilled, leaving the purified fractions. The fractions obtained were spotted unto TLC plates. Fractions with the same retention factor (Rf) were pooled together. Antimicrobial Assay of column fractions of crude metabolite Antimicrobial activity of the column fraction was determined by paper disc diffusion method (Aida et al., 2001). Sterile Petri dishes were seeded aseptically with 0.1ml of the standardized test organisms while about 20ml of sterile Mueller Hinton agar was poured aseptically on the seeded plates. Sterile Whatman filter paper discs (6.00mm in diameter) were impregnated with 30mg/ml of the purified fraction reconstituted with 30% dimethyl sulphonamide (DMSO). The impregnated paper discs were allowed to dry and applied with the aid of sterile forceps on the seeded plates. Filter paper disc dipped into DMSO and allowed to dry served as control. The plates were incubated at 37oC for 24 h. Antimicrobial activities were determined by the measurement of zone of inhibition around each paper disc. Determination of Minimum Inhibitory Concentration (MIC) of the metabolite. The determination of Minimum Inhibitory Concentration (MIC) was carried out using agar well diffusion method as described by Magaldiet al. (2001). Varying concentrations of the metabolite (30mg/mL, 15mg/mL, 7.5mg/mL, 3.75mg/mL and 1.8mg/mL) were reconstituted in 30% DMSO. Sterile Petri dishes were seeded aseptically with 0.1mL of the standardized test organisms while about 20mL of sterile Mueller Hinton agar was poured aseptically on the seeded plates. The plates were swirled carefully for even distribution and allowed to gel. Five wells were created on the agar and the metabolite was introduced at different concentrations into the
Recommended publications
  • Evaluation of Antimicrobial and Antiproliferative Activities of Actinobacteria Isolated from the Saline Lagoons of Northwest
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 EVALUATION OF ANTIMICROBIAL AND ANTIPROLIFERATIVE ACTIVITIES 2 OF ACTINOBACTERIA ISOLATED FROM THE SALINE LAGOONS OF 3 NORTHWEST PERU. 4 5 Rene Flores Clavo1,2,8, Nataly Ruiz Quiñones1,2,7, Álvaro Tasca Hernandez3¶, Ana Lucia 6 Tasca Gois Ruiz4, Lucia Elaine de Oliveira Braga4, Zhandra Lizeth Arce Gil6¶, Luis 7 Miguel Serquen Lopez7,8¶, Jonas Henrique Costa5, Taícia Pacheco Fill5, Marcos José 8 Salvador3¶, Fabiana Fantinatti Garboggini2. 9 10 1 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of 11 Campinas (UNICAMP), Campinas, SP, Brazil. 12 2 Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), 13 University of Campinas (UNICAMP), Paulínia, SP, Brazil. 14 3 University of Campinas, Department of plant Biology Bioactive Products, Institute of 15 Biology Campinas, Sao Paulo, Brazil. 16 4 University of Campinas, Faculty Pharmaceutical Sciences, Campinas, Sao Paulo, Brazil. 17 5 University of Campinas, Institute of Chemistry, Campinas, Sao Paulo, Brazil. 18 6 Private University Santo Toribio of Mogrovejo, Facultity of Human Medicine, Chiclayo, 19 Lambayeque Perú. 20 7 Direction of Investigation Hospital Regional Lambayeque, Chiclayo, Lambayeque, Perú. 21 8 Research Center and Innovation and Sciences Actives Multidisciplinary (CIICAM), 22 Department of Biotechnology, Chiclayo, Lambayeque, Perú. 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020.
    [Show full text]
  • The Isolation of a Novel Streptomyces Sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil That Inhibits Multiresistant Pathogens and Yeasts
    applied sciences Article The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts Gerry A. Quinn 1,* , Alyaa M. Abdelhameed 2, Nada K. Alharbi 3, Diego Cobice 1 , Simms A. Adu 1 , Martin T. Swain 4, Helena Carla Castro 5, Paul D. Facey 6, Hamid A. Bakshi 7 , Murtaza M. Tambuwala 7 and Ibrahim M. Banat 1 1 School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (D.C.); [email protected] (S.A.A.); [email protected] (I.M.B.) 2 Department of Biotechnology, University of Diyala, Baqubah 32001, Iraq; [email protected] 3 Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11568, Saudi Arabia; [email protected] 4 Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Ab-erystwyth, Wales SY23 3EE, UK; [email protected] 5 Instituto de Biologia, Rua Outeiro de São João Batista, s/nº Campus do Valonguinho, Universidade Federal Fluminense, Niterói 24210-130, Brazil; [email protected] 6 Institute of Life Science, Medical School, Swansea University, Swansea, Wales SA2 8PP, UK; [email protected] 7 School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (H.A.B.); [email protected] (M.M.T.) * Correspondence: [email protected] Abstract: The World Health Organization recently stated that new sources of antibiotics are urgently Citation: Quinn, G.A.; Abdelhameed, required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative A.M.; Alharbi, N.K.; Cobice, D.; Adu, bacteria.
    [Show full text]
  • Successful Drug Discovery Informed by Actinobacterial Systematics
    Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs.
    [Show full text]
  • Genome-Based Classification of The
    Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-021-01564-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune Ali B. Kusuma . Imen Nouioui . Michael Goodfellow Received: 26 January 2021 / Accepted: 18 March 2021 Ó The Author(s) 2021 Abstract A polyphasic study was designed to fatty acids. Whole-genome sequences generated for determine the taxonomic provenance of a strain, the isolate and Streptomyces albiflaviniger DSM isolate PRKS01-29T, recovered from an Indonesian 41598T and Streptomyces javensis DSM 41764T were sand dune and provisionally assigned to the Strepto- compared with phylogenetically closely related myces violaceusniger clade. Genomic, genotypic and strains, the isolate formed a branch within the S. phenotypic data confirmed this classification. The violaceusniger clade in the resultant phylogenomic isolate formed an extensively branched substrate tree. Whole-genome sequences data showed that mycelium which carried aerial hyphae that differen- isolate PRKS01-29T was most closely related to the tiated into spiral chains of rugose ornamented spores, S. albiflaviniger strain but was distinguished from the contained LL-as the wall diaminopimelic acid, MK-9 latter and from other members of the clade using (H6,H8) as predominant isoprenologues, phos- combinations of phenotypic properties and average phatidylethanolamine as the diagnostic phospholipid nucleotide identity and digital DNA:DNA hybridiza- and major proportions of saturated, iso- and anteiso- tion scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T- = NCIMB 15210T) should be classified in the genus Supplementary Information The online version contains Streptomyces as Streptomyces sabulosicollis sp.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Streptomyces Sannurensis Sp. Nov., a New Alkaliphilic Member of the Genus Streptomyces Isolated from Wadi Sannur in Egypt
    African Journal of Microbiology Research Vol. 5(11), pp. 1329-1334, 4 June, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.200 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Streptomyces sannurensis sp. nov., a new alkaliphilic member of the genus Streptomyces isolated from Wadi Sannur in Egypt Wael N. Hozzein1,2*, Mohammed I. A. Ali3, Ola Hammouda2, Ahmed S. Mousa2 and Michael Goodfellow4 1Chair of Advanced Proteomics and Cytomics Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia. 2Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. 3Botany Department, Faculty of Science, Cairo University, Giza, Egypt. 4School of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK. Accepted 19 April, 2011 The taxonomic position of an actinomycete isolated from a soil sample collected from Wadi Sannur in Egypt was established using a polyphasic approach. The isolate, which was designated WS 51T, was shown to have chemical and morphological properties typical of streptomycetes. An almost complete 16S rDNAgene sequence of the strain was generated and compared with corresponding sequences of representative streptomycetes. The resultant data confirmed the classification of the strain in the genus Streptomyces but also showed that it formed a distinct phyletic line within the 16S rDNAStreptomyces gene tree. The organism was most closely associated to the type strains of Streptomyces hygroscopicus, Streptomyces malaysiensis and Streptomyces yatensis but was readily separated from them using a range of phenotypic properties. It is proposed that strain WS 51T (= CCTCC 001032T = DSM 41834T) be classified in the genus Streptomyces as Streptomyces sannurensis sp.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
    1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1
    [Show full text]
  • Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents
    Review Biomol Ther 27(2), 127-133 (2019) Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents Myung-A Cho, Songhee Han, Young-Ran Lim, Vitchan Kim, Harim Kim and Donghak Kim,* Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea Abstract The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights. Key Words: Streptomyces, P450, CYP, Biosynthesis, Macrolide, Secondary metabolite INTRODUCTION isms became important to human health with the discovery of penicillin in 1928 by Fleming, and the discovery of the anti- The phylum actinobacteria is one of the major lineages cur- tuberculosis agent streptomycin from Streptomyces griseus rently recognized within bacteria (Ventura et al., 2007). Acti- in 1944 by Waksman (Ikeda, 2017). More recently, the 2015 nobacteria are widely distributed in terrestrial, especially soil, Nobel prize in Physiology or Medicine was awarded to Omura and aquatic ecosystems (McCarthy and Williams, 1992; Stach and Campbell for their contributions to the discovery of the and Bull, 2005).
    [Show full text]
  • Anticancer Drug Discovery from Microbial Sources: the Unique Mangrove Streptomycetes
    molecules Review Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes Jodi Woan-Fei Law 1, Lydia Ngiik-Shiew Law 2, Vengadesh Letchumanan 1 , Loh Teng-Hern Tan 1, Sunny Hei Wong 3, Kok-Gan Chan 4,5,* , Nurul-Syakima Ab Mutalib 6,* and Learn-Han Lee 1,* 1 Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; [email protected] (J.W.-F.L.); [email protected] (V.L.); [email protected] (L.T.-H.T.) 2 Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia; [email protected] 3 Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China; [email protected] 4 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia 5 International Genome Centre, Jiangsu University, Zhenjiang 212013, China 6 UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia * Correspondence: [email protected] (K.-G.C.); [email protected] (N.-S.A.M.); [email protected] (L.-H.L.) Academic Editor: Owen M. McDougal Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals.
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Resistance‐Guided Isolation and Characterization of Antibiotic‐Producing Bacteria from River Sediments Nowreen Arefa1, Ashish Kumar Sarker2 and Md
    Arefa et al. BMC Microbiology (2021) 21:116 https://doi.org/10.1186/s12866-021-02175-5 RESEARCH ARTICLE Open Access Resistance‐guided isolation and characterization of antibiotic‐producing bacteria from river sediments Nowreen Arefa1, Ashish Kumar Sarker2 and Md. Ajijur Rahman1* Abstract Background: To tackle the problem of antibiotic resistance, an extensive search for novel antibiotics is one of the top research priorities. Around 60% of the antibiotics used today were obtained from the genus Streptomyces. The river sediments of Bangladesh are still an unexplored source for antibiotic-producing bacteria (APB). This study aimed to isolate novel APB from Padma and Kapotakkho river sediments having the potential to produce antibacterial compounds with known scaffolds by manipulating their self-protection mechanisms. Results: The antibiotic supplemented starch-casein-nitrate agar (SCNA) media were used to isolate antibiotic-resistant APB from the river sediments. The colonies having Streptomyces-like morphology were selectively purified and their antagonistic activity was screened against a range of test bacteria using the cross-streaking method. A notable decrease of the colony-forming units (CFUs) in the antibiotic supplemented SCNA plates compared to control plates (where added antibiotics were absent) was observed. A total of three azithromycin resistant (AZR) and nine meropenem resistant (MPR) isolates were purified and their antagonistic activity was investigated against a series of test bacteria including Shigella brodie, Escherichia coli, Pseudomonas sp., Proteus sp., Staphylococcus aureus,andBacillus cereus. All the AZR isolates and all but two MPR isolates exhibited moderate to high broad-spectrum activity. Among the isolates, 16S rDNA sequencing of NAr5 and NAr6 were performed to identify them up to species level.
    [Show full text]
  • Isolation and Characterization of Antagonistic Streptomyces Spp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository Indian Journal of Geo-Marine Sciences Vol. 44(1), November 2015, pp. ------ Isolation and characterization of antagonistic Streptomyces spp. from marine sediments along the southwest coast of India # Rekha Devi Chakraborty*† , Kajal Chakraborty# & Bini Thilakan *Crustacean Fisheries Division, # Marine Biotechnology Division, Central Marine Fisheries Research Institute, Kochi - 682018, India. [E.Mail:[email protected] ] Received ; revised Antagonistic Streptomyces spp. were isolated from marine and mangrove sediment samples collected off Cochin, along the southwest coast of India. Sediment samples were pre-treated and following the soil dilution technique, samples were surface plated on starch casein agar and actinomycetes isolation agar. In the primary screening, 7.4% of presumptive actinomycetes (135 isolates) showed antibacterial activity against one or more bacterial fish pathogens and 3.7% of these cultures showed broad spectrum activity against the tested pathogens. Morphologically white powdery colonies with chalky white /grey appearance were selected as presumptive Streptomyces cultures. Isolates subjected to biochemical, physiological and 16S rDNA characters revealed the presence of three species of Streptomyces dominated by Streptomyces tanashiensis followed by S. viridobrunneus and S. bacillaris. Isolates characterized by 16S rDNA indicated the presence of 650 bp band in Streptomyces spp. Primary screening for activity against selected fish pathogens was done by a cross streak method using modified nutrient agar medium. Prominent isolates showing high zone of activity against the fish pathogens ranged 17-35 mm by the paper disc method. Enriched broth of selected isolates showing high antagonistic activity was screened for pharmacologically active agents revealed ethyl acetate fractions to be active against selected microbial pathogens.
    [Show full text]