Successful Drug Discovery Informed by Actinobacterial Systematics

Total Page:16

File Type:pdf, Size:1020Kb

Successful Drug Discovery Informed by Actinobacterial Systematics Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs. • Taxonomic approaches to the selection of actinobacteria from extreme habitats. • Atacama desert soil as a source of creative actinobacteria. • Selection of novel actinobacteria for chemical screening. • Conclusions and some new directions of travel. Actinobacteria from Atacama Desert Need for a New Generation of Antibiotics 2008-2012 New antibacterial agents approved by the Food and Drug Administration (FDA) in the United States between 1983-2009. Adapted from Bassetti et al. (2011). 3 Twin Track Approach Novel New Drug Target Screens Sample extracts Biological Material Dereplication Filters H I T Compound Evaluation & Characterization L E A D Goodfellow & Fiedler (2010). Antonie van Leeuwenhoek 98:119-142. Actinobacteria What are they? • A phylogenetically defined, metabolically active group of slow-growing, gram-positive bacteria which have DNA rich in guanine plus cytosine (> 55% mol. GC), unique 16S and 23S rRNA signatures and conserved indels in some proteins. Why prioritize them for drug discovery? • Unravelled capacity to synthesize natural products with a wide spectrum of bioactivity. • Account for almost half of all microbial bioactive compounds; nearly 80% produced by Streptomyces strains. • Culture-independent studies show that <1% of actinobacterial taxa in natural habitats have been cultivated hence scope for the discovery of new chemical entities from cultivable novel taxa is enormous. • Diverse populations of novel actinobacteria present in extreme habitats are able to produce new specialised metabolites. Whole Genome Sequence of Streptomyces coelicolor Strain A3 (2) Contains 27 natural product biosynthetic gene clusters Hopwood et al., 2002. Nature 417:141-147. Specialised Metabolites produced by Streptomyces coelicolor A3(2) Actinorhodin Actinorhodin 1955 / Actinorhodin 1980 / Undecylprodigiosin ∆act ∆red Prodiginine (cultivated in R2 for 5 days) Prodiginine 1976 / Methylenomycin 1978 / Calcium Dependent Antibiotic (SCP1 encoded) We do a poor job in interpreting a cell’s potential from its genomic sequence. However, we are getting better. Prokaryotic Systematics is not a Luxury Prokaryotic systematics is a core discipline practiced by few. However, the implementation of taxonomic concepts and practices underpins taxonomic approaches to drug discovery: • Well delineated natural classification. • Provision of a stable, universally accepted nomenclature. • Establishing cultivable actinobacterial diversity in natural habitats. • Improved procedures for selective isolation of novel and neglected taxa. • Rational choice of strains for bioprospecting and biotechnology. • Inferring the course of prokaryotic evolution. • Legislation (e.g. Hazard groups, patents of living biological material, Convention on Biological Diversity). 8 Polyphasic Taxonomy 1960-2014 Integrated use of genotypic and phenotypic data: Chemotaxonomy Sound Classification Genomics Polyphasic Taxonomy = Stable Nomenclature Molecular Systematics Reliable Identification Numerical Taxonomy Outcomes: Sound infrastructure for pure and applied microbiology and for designing and implementing scientific policies. 9 Hierarchic Classification of Actinobacteria based on Phylogeny Phylum Actinobacteria 5 Classes 19 Orders Bergey’s Manual Trust is The next edition of a nonprofit organisation Bergey’s Manual will be that is supported by 50 Families an electronic one that will royalty income. be frequently updated. 220 Genera 3,000 Species Goodfellow et al. 2012. Bergey’s Manual of Systematic Bacteriology, 2nd Edition, Volume 5, Springer, New York. Our Strategy Extreme/Neglected habitats Selective isolation Selection of isolates Dereplication technologies Novel actinobacteria • Recent approaches to drug discovery (eg. combinatorial chemistry and fragment based drug design) have yet to make a significant Screening impact. Dereplication of active compounds • Need to screen novel actinobacteria to avoid costly rediscovery of known bioactive New natural products compounds. Current bottleneck Commercial success Culture-dependent bioprospecting strategy Why Focus on Actinobacterial Diversity from Extreme Habitats? • Isolation of actinobacteria from extreme biomes rests on the premise that harsh environmental conditions give rise to unique taxa (species, genera) with novel chemistry. • Evidence of a coupling between taxonomic and chemical diversity means that taxonomic diversity can be used as a surrogate for chemical diversity. • Screening common actinobacteria from well studied habitats leads to the costly rediscovery of known bioactive compounds Decrease in the number of new drugs coming onto the market http://smellslikescience.com/a-need-for-new-antibiotics/ Actinobacteria for Low Throughput Screens Objectives: Focus on rare and previously unknown taxa, including novel species of Streptomyces. Key taxonomic methods designed to meet these aims: • Choice of selective isolation procedures. • Selection of cultivation media. • Recognition of novel taxa by comparative sequencing of conserved genes / proteins, notably 16S rRNA genes. Screening strategies: • Cell based targets- plug assays using panel of pathogenic strains. • Reporter Bacillus subtilis strains to detect cellular targets. • Choice of production media. • Chemical analysis of extracts for novel specialised metabolites. Discovery dependent on dereplication at all stages of the procedure. Atacama Desert The Atacama Desert located in northern Chile is the oldest and driest desert on the planet. ALMA Lomas Byas Most Atacama Desert soils and regoliths are either hyper- arid (ratio of mean annual rainfall to mean annual evaporation is < 0.05) , or extreme hyper-arid (corresponding ratio < 0.002). Yungay Low concentrations of organic matter, high salinity, the presence of inorganic oxidants and high UV radiation Salar de conditions. Atacama The underlining premise is that these extreme conditions will have given rise to a unique actinobacterial diversity and consequential chemical diversity. Sampling Sites Salar de Atacama Yungay Hyper-arid area Extreme hyper-arid area ALMA Lomas Bayas High altitudes, Very high UV radiation Most extreme hyper arid area Selective Isolation of Actinobacteria Media Selective agents Target organism (s) References Glucose-yeast extract Rifampicin (20µg ml-1) Actinomadura spp. Athalye et al. (1981) agar Gause’s No.1 agar Nalidixic acid (10µg ml-1) Rare or uncommon Zakharova et al. (2003) actinomycetes Humic acid-vitamin agar Humic acid (1g/L) Streptosporangiaceae Hayakawa & Nonomura spp. (1984) Oligotrophic agar Low carbon and nitrogen Rare actinomycetes Busarakam (2013) sources Raffinose-histidine agar Common Streptomyces spp. do Rare or uncommon Vickers et al. (1984) not grow well in the presence streptomycetes of these nutrients Starch-casein agar High carbon to nitrogen ratio Streptomyces spp. Küster and Williams (1964) SM1and SM2* agars Neomycin (4 µg ml-1), D(+) Amycolatopsis spp. Tan et al. (2006) sorbitol (1%, w/v)* Cycloheximide and nystatin (each at 25 µg ml-1) used to control fungi. 16 Selective Isolation Range of selective isolation media Sprinkle plates Dilution plates Isolation of Streptomyces Strains Isolation of Amycolatopsis Strains Oligotrophic agar Humic-acid-vitamin-agar SM 1 agar Starch-casein vitamin agar Isolation of Modestobacter Strains Arginine-vitamin agar Humic-acid-vitamin agar R2A agar Oligotrophic agar Starch-casein-vitamin agar Actinobacteria (cfu/g dry weight soil) growing on Selective Media inoculated with Suspensions of Atacama Desert Soils and Incubated at 28oC for 3 Weeks Media Soil Gause’s No.1 Humic acid Oligotrophic Starch-casein SM1 agar agar agar agar Salar de 1.1x104 1.3x104 0.3x102 0.1x102 0.3x102 Atacama Yungay 3x102 5x103 3.3x102 2.3x102 4.7x102 Actinobacteria were not isolated on glucose-yeast extract or raffinose-histidine agars. Dereplication Term used for differentiating phenotypically similar isolates (and metabolites) to select representatives to facilitate efficient screening and to minimize costs and time in maintaining large culture collections. • Choice of methods: Chemical: fatty acid analyses, pyrolysis and MALDI-TOF mass spectrometry. Molecular: rep-PCR,
Recommended publications
  • Patterns, Processes and Models of Microbial Recovery in a Chronosequence Following Reforestation of Reclaimed Mine Soils
    PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Crop and Soil Environmental Sciences Brian Badgley, Chair Song Li Brian Strahm Michael Strickland Carl Zipper Virginia Polytechnic Institute and State University Blacksburg, Virginia July 2017 Keywords: soil microorganism, recovery, chronosequence, reclaimed mine soils, amplicon sequencing, shotgun metagenomics, bacterial co-occurrence groups, artificial neural network PATTERNS, PROCESSES AND MODELS OF MICROBIAL RECOVERY IN A CHRONOSEQUENCE FOLLOWING REFORESTATION OF RECLAIMED MINE SOILS Shan Sun Abstract Soil microbial communities mediate important ecological processes and play essential roles in biogeochemical cycling. Ecosystem disturbances such as surface mining significantly alter soil microbial communities, which could lead to changes or impairment of ecosystem functions. Reforestation procedures were designed to accelerate the reestablishment of plant community and the recovery of the forest ecosystem after reclamation. However, the microbial recovery during reforestation has not been well studied even though this information is essential for evaluating ecosystem restoration success. In addition, the similar starting conditions of mining sites of different ages facilitate a chronosequence approach for studying decades-long microbial community change, which could help generalize theories about ecosystem succession. In this study, the recovery of microbial communities in a chronosequence of reclaimed mine sites spanning 30 years post reforestation along with unmined reference sites was analyzed using next-generation sequencing to characterize soil-microbial abundance, richness, taxonomic composition, interaction patterns and functional genes.
    [Show full text]
  • Assemblage and Functioning of Bacterial Communities in Soil and Rhizosphere Issue Date: 2016-06-08
    Cover Page The handle http://hdl.handle.net/1887/40026 holds various files of this Leiden University dissertation. Author: Yan Y. Title: Assemblage and functioning of bacterial communities in soil and rhizosphere Issue Date: 2016-06-08 Assemblage and functioning of bacterial communities in soil and rhizosphere Yan Yan 闫 燕 503396-L-bw-Yan Assemblage and functioning of bacterial communities in soil and rhizosphere PhD thesis, Leiden University, The Netherlands. The research described in this thesis was performed at the Netherlands Institute of Ecology, NIOO-KNAW and at the Institute of Biology of Leiden University. 2016 闫燕 Yan Yan. No part of this thesis may be reoroduced or transmitted without prior written permission of the author. Cover (封面): Tree Roots (树根), Vincent van Gogh (梵⾼), 1890. Inspiration to rhizosphere. Lay-out by Yan Yan Printed by Ipskamp Printing ISBN: 978-94-028-0205-4 503396-L-bw-Yan Assemblage and functioning of bacterial communities in soil and rhizosphere Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr.C.J.J.M.Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 8 juni 2016 klokke 16.15 uur door Yan Yan geboren te Shijiazhuang, Hebei, China in 1986 503396-L-bw-Yan Promotiecommissie Promotor: Prof. dr. J. A. van Veen Promotor: Prof. dr. P. G. L. Klinkhamer Co-promotor: Dr. E. E. Kuramae, Nederlands Instituut voor Ecologie-KNAW Overige leden Prof. dr. H.P.Spaink Prof. dr. G.A.Kowalchuk, Universiteit Utrecht Prof. dr. Jos Raaijmakers Prof.
    [Show full text]
  • Validation of the Asaim Framework and Its Workflows on HMP Mock Community Samples
    Validation of the ASaiM framework and its workflows on HMP mock community samples The ASaiM framework and its workflows have been tested and validated on two mock metagenomic data of an artificial community (with 22 known microbial strains). The datasets are available on EBI metagenomics database (project accession number: SRP004311). First we checked that the targeted abundances (based on number of PCR product) from both mock datasets were similar to the effective abundance (by mapping reads on reference genomes). Second, taxonomic and functional results produced by the ASaiM framework have been extensively analyzed and compared to expectations and to results obtained with the EBI metagenomics pipeline (S. Hunter et al. 2014). For these datasets, the ASaiM framework produces accurate and precise taxonomic assignations, different functional results (gene families, pathways, GO slim terms) and results combining taxonomic and functional information. Despite almost 1.4 million of raw metagenomic sequences, these analyses were executed in less than 6h on a commodity computer. Hence, the ASaiM framework and its workflows are proven to be relevant for the analysis of microbiota datasets. 1Data On EBI metagenomics database, two mock community samples for Human Microbiome Project (HMP) are available. Both samples contain a genomic mixture of 22 known microbial strains. Relative abundance of each strain has been targeted using the number of PCR product of their respective 16S sequences (Table 1). In first sample (SRR072232), the targeted 16S copies of the strains vary by up to four orders of magnitude between the strains (Table 1), whereas in second sample (SRR072233) the same 16S copy number is targeted for each strain (Table 1).
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils
    microorganisms Article Inoculation with Mycorrhizal Fungi and Irrigation Management Shape the Bacterial and Fungal Communities and Networks in Vineyard Soils Nazareth Torres † , Runze Yu and S. Kaan Kurtural * Department of Viticulture and Enology, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA; [email protected] (N.T.); [email protected] (R.Y.) * Correspondence: [email protected] † Current address: Advanced Fruit and Grape Growing Group, Public University of Navarra, 31006 Pamplona, Spain. Abstract: Vineyard-living microbiota affect grapevine health and adaptation to changing environ- ments and determine the biological quality of soils that strongly influence wine quality. However, their abundance and interactions may be affected by vineyard management. The present study was conducted to assess whether the vineyard soil microbiome was altered by the use of biostimulants (arbuscular mycorrhizal fungi (AMF) inoculation vs. non-inoculated) and/or irrigation management (fully irrigated vs. half irrigated). Bacterial and fungal communities in vineyard soils were shaped by both time course and soil management (i.e., the use of biostimulants and irrigation). Regarding alpha diversity, fungal communities were more responsive to treatments, whereas changes in beta diversity were mainly recorded in the bacterial communities. Edaphic factors rarely influence bacte- rial and fungal communities. Microbial network analyses suggested that the bacterial associations Citation: Torres, N.; Yu, R.; Kurtural, were weaker than the fungal ones under half irrigation and that the inoculation with AMF led to S.K. Inoculation with Mycorrhizal the increase in positive associations between vineyard-soil-living microbes. Altogether, the results Fungi and Irrigation Management highlight the need for more studies on the effect of management practices, especially the addition Shape the Bacterial and Fungal of AMF on cropping systems, to fully understand the factors that drive their variability, strengthen Communities and Networks in Vineyard Soils.
    [Show full text]
  • Genome-Based Classification of The
    Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-021-01564-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune Ali B. Kusuma . Imen Nouioui . Michael Goodfellow Received: 26 January 2021 / Accepted: 18 March 2021 Ó The Author(s) 2021 Abstract A polyphasic study was designed to fatty acids. Whole-genome sequences generated for determine the taxonomic provenance of a strain, the isolate and Streptomyces albiflaviniger DSM isolate PRKS01-29T, recovered from an Indonesian 41598T and Streptomyces javensis DSM 41764T were sand dune and provisionally assigned to the Strepto- compared with phylogenetically closely related myces violaceusniger clade. Genomic, genotypic and strains, the isolate formed a branch within the S. phenotypic data confirmed this classification. The violaceusniger clade in the resultant phylogenomic isolate formed an extensively branched substrate tree. Whole-genome sequences data showed that mycelium which carried aerial hyphae that differen- isolate PRKS01-29T was most closely related to the tiated into spiral chains of rugose ornamented spores, S. albiflaviniger strain but was distinguished from the contained LL-as the wall diaminopimelic acid, MK-9 latter and from other members of the clade using (H6,H8) as predominant isoprenologues, phos- combinations of phenotypic properties and average phatidylethanolamine as the diagnostic phospholipid nucleotide identity and digital DNA:DNA hybridiza- and major proportions of saturated, iso- and anteiso- tion scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T- = NCIMB 15210T) should be classified in the genus Supplementary Information The online version contains Streptomyces as Streptomyces sabulosicollis sp.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
    1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1
    [Show full text]
  • Microbial Community Composition During Degradation of Organic Matter
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bodenökologie Microbial community composition during degradation of organic matter Stefanie Elisabeth Wallisch Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Göttlein Prüfer der Dissertation: 1. Hon.-Prof. Dr. M. Schloter 2. Univ.-Prof. Dr. S. Scherer Die Dissertation wurde am 14.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.08.2015 angenommen. Table of contents List of figures .................................................................................................................... iv List of tables ..................................................................................................................... vi Abbreviations .................................................................................................................. vii List of publications and contributions .............................................................................. viii Publications in peer-reviewed journals .................................................................................... viii My contributions to the publications ....................................................................................... viii Abstract
    [Show full text]
  • Coffee Microbiota and Its Potential Use in Sustainable Crop Management. a Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois
    Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois To cite this version: Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois. Coffee Mi- crobiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, Frontiers Media, 2020, 4, 10.3389/fsufs.2020.607935. hal-03045648 HAL Id: hal-03045648 https://hal.inrae.fr/hal-03045648 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 03 December 2020 doi: 10.3389/fsufs.2020.607935 Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Benoit Duong 1,2, Pierre Marraccini 2,3, Jean-Luc Maeght 4,5, Philippe Vaast 6, Michel Lebrun 1,2 and Robin Duponnois 1* 1 LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France, 2 LMI RICE-2, Univ. Montpellier, IRD, CIRAD, AGI, USTH, Hanoi, Vietnam, 3 IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France, 4 AMAP, Univ. Montpellier, IRD, CIRAD, INRAE, CNRS, Montpellier, France, 5 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Écologie et des Sciences de l’Environnement, IESS, Bondy, France, 6 Eco&Sols, Univ.
    [Show full text]
  • Pseudonocardia Parietis Sp. Nov., from the Indoor Environment
    This is an author manuscript that has been accepted for publication in International Journal of Systematic and Evolutionary Microbiology, copyright Society for General Microbiology, but has not been copy-edited, formatted or proofed. Cite this article as appearing in International Journal of Systematic and Evolutionary Microbiology. This version of the manuscript may not be duplicated or reproduced, other than for personal use or within the rule of ‘Fair Use of Copyrighted Materials’ (section 17, Title 17, US Code), without permission from the copyright owner, Society for General Microbiology. The Society for General Microbiology disclaims any responsibility or liability for errors or omissions in this version of the manuscript or in any version derived from it by any other parties. The final copy-edited, published article, which is the version of record, can be found at http://ijs.sgmjournals.org, and is freely available without a subscription 24 months after publication. First published in: Int J Syst Evol Microbiol, 2009. 59(10) 2449-52. doi:10.1099/ijs.0.009993-0 Pseudonocardia parietis sp. nov., from the indoor environment J. Scha¨fer,1 H.-J. Busse2 and P. Ka¨mpfer1 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, P. Ka¨mpfer Germany [email protected] 2Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, giessen.de Austria A Gram-positive, rod-shaped, non-endospore-forming, mycelium-forming actinobacterium (04- St-002T) was isolated from the wall of an indoor environment colonized with moulds. On the basis of 16S rRNA gene sequence similarity studies, strain 04-St-002T was shown to belong to the family Pseudonocardiaceae, and to be most closely related to Pseudonocardia antarctica (99.2 %) and Pseudonocardia alni (99.1 %).
    [Show full text]
  • Wedding Higher Taxonomic Ranks with Metabolic Signatures Coded in Prokaryotic Genomes
    Wedding higher taxonomic ranks with metabolic signatures coded in prokaryotic genomes Gregorio Iraola*, Hugo Naya* Corresponding authors: E-mail: [email protected], [email protected] This PDF file includes: Supplementary Table 1 Supplementary Figures 1 to 4 Supplementary Methods SUPPLEMENTARY TABLES Supplementary Tab. 1 Supplementary Tab. 1. Full prediction for the set of 108 external genomes used as test. genome domain phylum class order family genus prediction alphaproteobacterium_LFTY0 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Unknown candidatus_nasuia_deltocephalinicola_PUNC_CP013211 Bacteria Proteobacteria Gammaproteobacteria Unknown Unknown Unknown candidatus_sulcia_muelleri_PUNC_CP013212 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales NA Candidatus Sulcia deinococcus_grandis_ATCC43672_BCMS0 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus devosia_sp_H5989_CP011300 Bacteria Proteobacteria Unknown Unknown Unknown Unknown micromonospora_RV43_LEKG0 Bacteria Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae Micromonospora nitrosomonas_communis_Nm2_CP011451 Bacteria Proteobacteria Betaproteobacteria Nitrosomonadales Nitrosomonadaceae Unknown nocardia_seriolae_U1_BBYQ0 Bacteria Actinobacteria Actinobacteria Corynebacteriales Nocardiaceae Nocardia nocardiopsis_RV163_LEKI01 Bacteria Actinobacteria Actinobacteria Streptosporangiales Nocardiopsaceae Nocardiopsis oscillatoriales_cyanobacterium_MTP1_LNAA0 Bacteria Cyanobacteria NA Oscillatoriales
    [Show full text]