Optimization of Medium for the Production of Streptomycin by Streptomyces Griseus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Successful Drug Discovery Informed by Actinobacterial Systematics
Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs. -
Genome-Based Classification of The
Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-021-01564-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune Ali B. Kusuma . Imen Nouioui . Michael Goodfellow Received: 26 January 2021 / Accepted: 18 March 2021 Ó The Author(s) 2021 Abstract A polyphasic study was designed to fatty acids. Whole-genome sequences generated for determine the taxonomic provenance of a strain, the isolate and Streptomyces albiflaviniger DSM isolate PRKS01-29T, recovered from an Indonesian 41598T and Streptomyces javensis DSM 41764T were sand dune and provisionally assigned to the Strepto- compared with phylogenetically closely related myces violaceusniger clade. Genomic, genotypic and strains, the isolate formed a branch within the S. phenotypic data confirmed this classification. The violaceusniger clade in the resultant phylogenomic isolate formed an extensively branched substrate tree. Whole-genome sequences data showed that mycelium which carried aerial hyphae that differen- isolate PRKS01-29T was most closely related to the tiated into spiral chains of rugose ornamented spores, S. albiflaviniger strain but was distinguished from the contained LL-as the wall diaminopimelic acid, MK-9 latter and from other members of the clade using (H6,H8) as predominant isoprenologues, phos- combinations of phenotypic properties and average phatidylethanolamine as the diagnostic phospholipid nucleotide identity and digital DNA:DNA hybridiza- and major proportions of saturated, iso- and anteiso- tion scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T- = NCIMB 15210T) should be classified in the genus Supplementary Information The online version contains Streptomyces as Streptomyces sabulosicollis sp. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1 -
Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents
Review Biomol Ther 27(2), 127-133 (2019) Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents Myung-A Cho, Songhee Han, Young-Ran Lim, Vitchan Kim, Harim Kim and Donghak Kim,* Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea Abstract The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights. Key Words: Streptomyces, P450, CYP, Biosynthesis, Macrolide, Secondary metabolite INTRODUCTION isms became important to human health with the discovery of penicillin in 1928 by Fleming, and the discovery of the anti- The phylum actinobacteria is one of the major lineages cur- tuberculosis agent streptomycin from Streptomyces griseus rently recognized within bacteria (Ventura et al., 2007). Acti- in 1944 by Waksman (Ikeda, 2017). More recently, the 2015 nobacteria are widely distributed in terrestrial, especially soil, Nobel prize in Physiology or Medicine was awarded to Omura and aquatic ecosystems (McCarthy and Williams, 1992; Stach and Campbell for their contributions to the discovery of the and Bull, 2005). -
CHAPTER 104 an ACT Designating Streptomyces Griseus As the New
CHAPTER 104 AN ACT designating Streptomyces griseus as the New Jersey State Microbe and supplementing chapter 9A of Title 52 of the Revised Statutes. WHEREAS, Streptomyces griseus is a soil-based microorganism that was first discovered in New Jersey in 1916 by Dr. Selman Waksman and Dr. Roland Curtis; and WHEREAS, Soon after its discovery, the microbe drew international acclaim for its groundbreaking use as an antibiotic; and WHEREAS, In 1943, a research team from Rutgers University, led by Dr. Waksman with Albert Schatz and Elizabeth Bugie, used Streptomyces griseus to create streptomycin, the world’s first antibiotic for tuberculosis; and WHEREAS, The original discovery paper for streptomycin, entitled “Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria,” was co- authored by Dr. Waksman, Dr. Schatz, and Elizabeth Bugie, and published in the Proceedings of the Society for Experimental Biology and Medicine; and WHEREAS, After clinical trials showed that streptomycin cured ailing tuberculosis patients, Merck & Company, a New Jersey-based pharmaceutical company, quickly made the drug available to the public; and WHEREAS, Prior to this discovery, tuberculosis was one of the deadliest diseases in human history and the second leading cause of death in the United States; and WHEREAS, Within 10 years of streptomycin’s release, tuberculosis mortality rates in the U.S. fell to a historic low, with only 9.1 tuberculosis-related deaths per 100,000 people in 1955 compared to the rate of 194 deaths per 100,000 people in 1900; and WHEREAS, According to a June 1947 New York Times article, streptomycin had “become one of the two wonder drugs of medicine” and offered the “promise to save more lives than were lost in both World Wars”; and WHEREAS, Dr. -
STREPTOMYCES GRISEUS (KRAINSKY) WAKSMAN and Henricil SELMAN A
STREPTOMYCES GRISEUS (KRAINSKY) WAKSMAN AND HENRICIl SELMAN A. WAKSMAN, H. CHRISTINE REILLY, AND DALE A. HARRIS New Jersey Agricultural Experiment Station, New Brunswick, New Jersey Received for publication May 10, 1948 Since the announcement of the isolation of streptomycin, an antibiotic sub- stance produced by certain strains of Streptomyces griseus (Schatz, Bugie, and Waksman, 1944), an extensive literature has accumulated dealing with this anti- biotic and with the organism producing it. Although most of the investigations are concerned with the production, isolation, and chemical purification of strepto- mycin, its antimicrobial properties, and especially its utilization as a chemo- therapeutic agent, various reports are also devoted to the isolation of new strepto- mycin-producing strains of S. griseus and of other actinomycetes and to the development of more potent strains. Only a very few of the cultures of S. griseus that have been isolated from natural substrates, following the islation of the two original cultures in 1943, were found capable of producing streptomycin. One such culture was reported from this laboratory (Waksman, Reilly, and Johnstone, 1946), and one or two from other laboratories (Carvajal, 1946a,b). It has been shown more recently (Waksman, Reilly, and Harris, 1947) that by the use of selective methods other streptomycin-producing strains can easily be isolated and identified. In addition to S. griseus, certain other actinomycetes are able to form strep- tomycin or streptomycinlike substances. One such culture was described by Johnstone and Waksman (1947) as Streptomyces bikiniensis, another culture was isolatedbyTrussell, Fulton, andGrant (1947) and was found capable of producing a mixture of two antibiotics, one of which appeared to be streptomycin and the other streptothricin. -
Niche Differentiation Is Spatially and Temporally Regulated in the Rhizosphere
bioRxiv preprint first posted online Apr. 18, 2019; doi: http://dx.doi.org/10.1101/611863. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Niche differentiation is spatially and temporally regulated in the rhizosphere 2 3 Erin E. Nuccio1, Evan Starr2, Ulas Karaoz3, Eoin L. Brodie3, Jizhong Zhou3,4,5, Susannah Tringe6, Rex R. 4 Malmstrom6, Tanja WoyKe6, Jillian F. Banfield3,7, Mary K. Firestone3,7, and Jennifer Pett-Ridge1 5 6 1Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, 94551 7 USA; 2Department of Plant and Microbial Biology, University of California, BerKeley, CA 94720 USA; 8 3Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 9 USA; 4Institute for Environmental Genomics, Department of Botany and Microbiology, University of 10 Oklahoma, Norman, OK 73019 USA; 5State Key Joint Laboratory of Environment Simulation and 11 Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; 6DOE Joint 12 Genome Institute, Walnut CreeK, CA 94598, USA; 7Department of Environmental Science, Policy and 13 Management, University of California, BerKeley, CA, 94720 USA 14 15 Running title: Decomposition gene expression in the rhizosphere 16 17 Corresponding authors: Erin Nuccio [email protected] 925-423-9983, Jennifer Pett-Ridge 18 [email protected] 925-424-2882, Lawrence Livermore National Laboratory, Livermore CA, 94551 19 USA 1 bioRxiv preprint first posted online Apr. 18, 2019; doi: http://dx.doi.org/10.1101/611863. -
Molecular Identification of Str a Gene Responsible for Streptomycin Production from Streptomyces Isolates
The Pharma Innovation Journal 2020; 9(1): 18-24 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Molecular Identification of Str A gene responsible for TPI 2020; 9(1): 18-24 © 2020 TPI streptomycin production from Streptomyces isolates www.thepharmajournal.com Received: 11-11-2019 Accepted: 15-12-2019 Bayader Abdel Mohsen, Mohsen Hashim Risan and Asma G Oraibi Bayader Abdel Mohsen College of Biotechnology, Al- Abstract Nahrain University, Iraq The present study was aimed for molecular identification of Str A gene from Streptomyces isolates. Twenty-four isolates were identified as Streptomyces sp. based on their morphological and biochemical Mohsen Hashim Risan characteristics. Twelve isolates were positive in the PCR technique. Performing PCR reactions using College of Biotechnology, Al- primer pair on DNA. The results of Str A gene detection clarify that Two isolate of Streptomyces isolates Nahrain University, Iraq gave a positive result and carrying Str gene, while 10 of Streptomyces isolates were lacking the gene. Be1 and B3-4 isolates gave DNA bands 700 bp in length. The results indicated that the Be1 and B3-4 isolates Asma G Oraibi are very close to the species Streptomyces griseus responsible for producing antibiotic streptomycin. College of Biotechnology, Al- Nahrain University, Iraq Keywords: Bacteria, Streptomyces, Str A, streptomycin, Iraq Introduction The largest genus of Actinomycetes and the type genus of the family is Streptomycetaceae (Kampfer, 2006, Al-Rubaye et al., 2018a, Risan et al., 2019) [13, 2, 28]. Over 600 species of [11] Streptomyces bacteria have been described (Euzeby, 2008) . As with the other Actinomyces, Streptomyces are Gram-positive, and have genomes with high guanine and cytosine content. -
Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Terpene Synthases Are Widely Distributed in Bacteria
Terpene synthases are widely distributed in bacteria Yuuki Yamadaa, Tomohisa Kuzuyamab, Mamoru Komatsua, Kazuo Shin-yac, Satoshi Omurad,1, David E. Canee, and Haruo Ikedaa,1 aLaboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Kanagawa 252-0373, Japan; bBiotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan; cNational Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; dLaboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8461, Japan; and eDepartment of Chemistry, Brown University, Providence, RI 02912-9108 Contributed by Satoshi Omura, November 24, 2014 (sent for review October 14, 2014) Odoriferous terpene metabolites of bacterial origin have been streptomycetes (8–16). The three most commonly detected known for many years. In genome-sequenced Streptomycetaceae streptomycetes terpenoids, geosmin, and 2-methylisoborneol microorganisms, the vast majority produces the degraded sesquiter- and the tricyclic α,β-unsaturated ketone albaflavenone (Fig. 1) pene alcohol geosmin. Two minor groups of bacteria do not produce are well-known as volatile odoriferous microbial metabolites. The geosmin, with one of these groups instead producing other sesqui- two terpene alcohols are, in fact, the most frequently found sec- terpene alcohols, whereas members of the remaining group do not ondary metabolites in actinomycetes (8, 11, 17), filamentous produce any detectable terpenoid metabolites. Because bacterial