Bioactivities and Molecular Networking-Based Elucidation of Metabolites of Potent Actinobacterial Strains Isolated from the Unke
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Successful Drug Discovery Informed by Actinobacterial Systematics
Successful Drug Discovery Informed by Actinobacterial Systematics Verrucosispora HPLC-DAD analysis of culture filtrate Structures of Abyssomicins Biological activity T DAD1, 7.382 (196 mAU,Up2) of 002-0101.D V. maris AB-18-032 mAU CH3 CH3 T extract H3C H3C Antibacterial activity (MIC): S. leeuwenhoekii C34 maris AB-18-032 175 mAU DAD1 A, Sig=210,10 150 C DAD1 B, Sig=230,10 O O DAD1 C, Sig=260,20 125 7 7 500 Rt 7.4 min DAD1 D, Sig=280,20 O O O O Growth inhibition of Gram-positive bacteria DAD1 , Sig=310,20 100 Abyssomicins DAD1 F, Sig=360,40 C 75 DAD1 G, Sig=435,40 Staphylococcus aureus (MRSA) 4 µg/ml DAD1 H, Sig=500,40 50 400 O O 25 O O Staphylococcus aureus (iVRSA) 13 µg/ml 0 CH CH3 300 400 500 nm 3 DAD1, 7.446 (300 mAU,Dn1) of 002-0101.D 300 mAU Mode of action: C HO atrop-C HO 250 atrop-C CH3 CH3 CH3 CH3 200 H C H C H C inhibitior of pABA biosynthesis 200 Rt 7.5 min H3C 3 3 3 Proximicin A Proximicin 150 HO O HO O O O O O O O O O A 100 O covalent binding to Cys263 of PabB 100 N 50 O O HO O O Sea of Japan B O O N O O (4-amino-4-deoxychorismate synthase) by 0 CH CH3 CH3 CH3 3 300 400 500 nm HO HO HO HO Michael addition -289 m 0 B D G H 2 4 6 8 10 12 14 16 min Newcastle Michael Goodfellow, School of Biology, University Newcastle University, Newcastle upon Tyne Atacama Desert In This Talk I will Consider: • Actinobacteria as a key group in the search for new therapeutic drugs. -
Genome-Based Classification of The
Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-021-01564-0 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune Ali B. Kusuma . Imen Nouioui . Michael Goodfellow Received: 26 January 2021 / Accepted: 18 March 2021 Ó The Author(s) 2021 Abstract A polyphasic study was designed to fatty acids. Whole-genome sequences generated for determine the taxonomic provenance of a strain, the isolate and Streptomyces albiflaviniger DSM isolate PRKS01-29T, recovered from an Indonesian 41598T and Streptomyces javensis DSM 41764T were sand dune and provisionally assigned to the Strepto- compared with phylogenetically closely related myces violaceusniger clade. Genomic, genotypic and strains, the isolate formed a branch within the S. phenotypic data confirmed this classification. The violaceusniger clade in the resultant phylogenomic isolate formed an extensively branched substrate tree. Whole-genome sequences data showed that mycelium which carried aerial hyphae that differen- isolate PRKS01-29T was most closely related to the tiated into spiral chains of rugose ornamented spores, S. albiflaviniger strain but was distinguished from the contained LL-as the wall diaminopimelic acid, MK-9 latter and from other members of the clade using (H6,H8) as predominant isoprenologues, phos- combinations of phenotypic properties and average phatidylethanolamine as the diagnostic phospholipid nucleotide identity and digital DNA:DNA hybridiza- and major proportions of saturated, iso- and anteiso- tion scores. Consequently, it is proposed that isolate PRKS01-29T (= CCMM B1303T = ICEBB-02T- = NCIMB 15210T) should be classified in the genus Supplementary Information The online version contains Streptomyces as Streptomyces sabulosicollis sp. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1 -
Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents
Review Biomol Ther 27(2), 127-133 (2019) Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents Myung-A Cho, Songhee Han, Young-Ran Lim, Vitchan Kim, Harim Kim and Donghak Kim,* Department of Biological Sciences, Konkuk University, Seoul 05025, Republic of Korea Abstract The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights. Key Words: Streptomyces, P450, CYP, Biosynthesis, Macrolide, Secondary metabolite INTRODUCTION isms became important to human health with the discovery of penicillin in 1928 by Fleming, and the discovery of the anti- The phylum actinobacteria is one of the major lineages cur- tuberculosis agent streptomycin from Streptomyces griseus rently recognized within bacteria (Ventura et al., 2007). Acti- in 1944 by Waksman (Ikeda, 2017). More recently, the 2015 nobacteria are widely distributed in terrestrial, especially soil, Nobel prize in Physiology or Medicine was awarded to Omura and aquatic ecosystems (McCarthy and Williams, 1992; Stach and Campbell for their contributions to the discovery of the and Bull, 2005). -
Tenggerimyces Flavus Sp. Nov., Isolated from Soil in a Karst Cave, and Emended Description of the Genus Tenggerimyces
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 1499–1505 DOI 10.1099/ijsem.0.000908 Tenggerimyces flavus sp. nov., isolated from soil in a karst cave, and emended description of the genus Tenggerimyces Xiao-Jun Li,1,2 Su-Juan Dai,1 Shao-Wei Liu,1 Jia-Meng Liu,1 Li Chen,3 Lin Hu3 and Cheng-Hang Sun1 Correspondence 1Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Cheng-Hang Sun Medical College, Beijing 100050, PR China [email protected] or 2College of laboratory Medical Science, Hebei North University, Zhangjiakou 075000, PR China [email protected] 3Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China A novel actinomycete, designated strain S6R2A4-9T, was isolated from a soil sample collected from a karst cave in Henan Province, China, and subjected to a polyphasic taxonomic study. This isolate grew optimally at 25–28 8C, pH 6.5–8.0 and in the absence of NaCl. The substrate mycelium of the isolate was well developed with irregular branches. Aerial mycelium fragmented into long, rod-shaped elements. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain S6R2A4-9T resided in the cluster of the genus Tenggerimyces within the family Nocardioidaceae and shared the highest 16S rRNA gene sequence similarity (98.98 %) with Tenggerimyces mesophilus I12A-02601T. The G+C content of the genomic DNA was 67.0 mol%. The strain contained glucose, ribose and xylose in its whole-cell hydrolysates. Strain S6R2A4-9T possessed a novel variation of peptidoglycan derived from the type A1c meso-Dpm-direct. -
Niche Differentiation Is Spatially and Temporally Regulated in the Rhizosphere
bioRxiv preprint first posted online Apr. 18, 2019; doi: http://dx.doi.org/10.1101/611863. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Niche differentiation is spatially and temporally regulated in the rhizosphere 2 3 Erin E. Nuccio1, Evan Starr2, Ulas Karaoz3, Eoin L. Brodie3, Jizhong Zhou3,4,5, Susannah Tringe6, Rex R. 4 Malmstrom6, Tanja WoyKe6, Jillian F. Banfield3,7, Mary K. Firestone3,7, and Jennifer Pett-Ridge1 5 6 1Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore CA, 94551 7 USA; 2Department of Plant and Microbial Biology, University of California, BerKeley, CA 94720 USA; 8 3Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 9 USA; 4Institute for Environmental Genomics, Department of Botany and Microbiology, University of 10 Oklahoma, Norman, OK 73019 USA; 5State Key Joint Laboratory of Environment Simulation and 11 Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; 6DOE Joint 12 Genome Institute, Walnut CreeK, CA 94598, USA; 7Department of Environmental Science, Policy and 13 Management, University of California, BerKeley, CA, 94720 USA 14 15 Running title: Decomposition gene expression in the rhizosphere 16 17 Corresponding authors: Erin Nuccio [email protected] 925-423-9983, Jennifer Pett-Ridge 18 [email protected] 925-424-2882, Lawrence Livermore National Laboratory, Livermore CA, 94551 19 USA 1 bioRxiv preprint first posted online Apr. 18, 2019; doi: http://dx.doi.org/10.1101/611863. -
Rhizosphere Soil Microbial Properties on Tetraena Mongolica in the Arid and Semi-Arid Regions, China
International Journal of Environmental Research and Public Health Article Rhizosphere Soil Microbial Properties on Tetraena mongolica in the Arid and Semi-Arid Regions, China Mengying Ruan 1, Yuxiu Zhang 1,* and Tuanyao Chai 2 1 School of Chemical and Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China; [email protected] 2 College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-62331792 Received: 26 June 2020; Accepted: 13 July 2020; Published: 16 July 2020 Abstract: Tetraena mongolica is a rare and endangered species unique to China. The total number and density of Tetraena mongolica shrubs in desertification areas have experienced a sharp decrease with increases in coal mining activities. However, available information on the T. mongolica rhizosphere soil quality and microbial properties is scarce. Here, we investigated the effect of coal mining on the soil bacterial community and its response to the soil environment in the T. mongolica region. The results showed that the closer to the coal mining area, the lower the vegetation coverage and species diversity. The electrical conductivity (EC) in the contaminated area increased, while the total nitrogen (TN), available phosphorus (AP), available potassium (AK), and soil organic carbon (SOC) decreased. The activity of NAG, sucrose, β-glucosidase, and alkaline phosphatase further decreased. In addition, the mining area could alter the soil’s bacterial abundance and diversity. The organic pollutant degradation bacteria such as Sphingomonas, Gemmatimonas, Nocardioides, and Gaiella were enriched in the soil, and the carbon-nitrogen cycle was changed. -
Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergol
applied sciences Article Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergola, Museum of King John III’s Palace at Wilanow, Poland Magdalena Dyda 1,2,* , Agnieszka Laudy 3, Przemyslaw Decewicz 4 , Krzysztof Romaniuk 4, Martyna Ciezkowska 4, Anna Szajewska 5 , Danuta Solecka 6, Lukasz Dziewit 4 , Lukasz Drewniak 4 and Aleksandra Skłodowska 1 1 Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] 2 Research and Development for Life Sciences Ltd. (RDLS Ltd.), Miecznikowa 1/5a, 02-096 Warsaw, Poland 3 Laboratory of Environmental Analysis, Museum of King John III’s Palace at Wilanow, Stanislawa Kostki Potockiego 10/16, 02-958 Warsaw, Poland; [email protected] 4 Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] (P.D.); [email protected] (K.R.); [email protected] (M.C.); [email protected] (L.D.); [email protected] (L.D.) 5 The Main School of Fire Service, Slowackiego 52/54, 01-629 Warsaw, Poland; [email protected] 6 Department of Plant Molecular Ecophysiology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +48-786-28-44-96 Citation: Dyda, M.; Laudy, A.; Abstract: The aim of the presented investigation was to describe seasonal changes of microbial com- Decewicz, P.; Romaniuk, K.; munity composition in situ in different biocenoses on historical sandstone of the Northern Pergola in Ciezkowska, M.; Szajewska, A.; the Museum of King John III’s Palace at Wilanow (Poland). -
Optimization of Medium for the Production of Streptomycin by Streptomyces Griseus
International Journal of Pharmaceutical Science Invention ISSN (Online): 2319 – 6718, ISSN (Print): 2319 – 670X www.ijpsi.org Volume 3 Issue 11 ‖ November 2014 ‖ PP.01-08 Optimization of Medium for the Production of Streptomycin By Streptomyces Griseus Lekh Ram* M.Sc. Biotechnology 2009-2011 Azyme Biosciences Pvt. Ltd. Bangalore, India. Beehive College of Advance Studies, Dehradun, India. ABSTRACT: The present investigation was made to find out the optimal media for the growth of the Streptomyces griseus bacteria which is more useful for the production of Streptomycin. The soil sample was collected from the Jayanagar 4th block from Shalini park Bangalore. A specific media Starch Casine Agar (SCA) was used for the isolation and culturing of the bacterial strain. Characterizations of these strains were also studied by visual observation of colony, microscopic observation and biochemical tests identified the specific bacteria namely Streptomyces griseus. Antimicrobial activity of isolated bacteria was performed against E.coli bacteria. Estimation of Streptomycin sample was done with the help of HPLC. The isolated sample contained 80% of the Streptomycin per 100ml. Optimization of medium for the production of Streptomycin was done by on the basis of pH, Time, Carbon Source, Nitrogen source. Streptomyces griseus showed maximum growth at pH value of 9, incubation time of more than 72 hours, maximum growth in the medium having glycine as nitrogen source, and maximum growth in the medium which contain rice bran as a carbon source. KEYWORDS: Bacterial isolation, characterization, antimicrobial activity, estimation of streptomycin by HPLC, Optimization of media. I. INTRODUCTION Antibiotics are the antimicrobial agents, which are produced by some micro-organisms to inhibit or to kill many other micro-organisms including different bacteria, viruses and eukaryotic cells. -
Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.