Characterizing Drinking Water Microbiome Using Oxford Nanopore Miniontm Sequencer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011
SGR 129 Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – APRIL 2011 DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION CENTER FOR FOOD SAFETY AND APPLIED NUTRITION OFFICE OF FOOD SAFETY Fish and Fishery Products Hazards and Controls Guidance Fourth Edition – April 2011 Additional copies may be purchased from: Florida Sea Grant IFAS - Extension Bookstore University of Florida P.O. Box 110011 Gainesville, FL 32611-0011 (800) 226-1764 Or www.ifasbooks.com Or you may download a copy from: http://www.fda.gov/FoodGuidances You may submit electronic or written comments regarding this guidance at any time. Submit electronic comments to http://www.regulations. gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition (240) 402-2300 April 2011 Table of Contents: Fish and Fishery Products Hazards and Controls Guidance • Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance ................................ 1 • CHAPTER 1: General Information .......................................................................................................19 • CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan -
The Diversity of Cultivable Hydrocarbon-Degrading
THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia Sekkour, Abdelkader Bekki, Zoulikha Bouchiba, Timothy Vogel, Elisabeth Navarro, Ing Sonia To cite this version: Sonia Sekkour, Abdelkader Bekki, Zoulikha Bouchiba, Timothy Vogel, Elisabeth Navarro, et al.. THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA. Journal of Microbiology, Biotechnology and Food Sciences, Faculty of Biotechnology and Food Sci- ences, Slovak University of Agriculture in Nitra, 2019, 9 (1), pp.70-77. 10.15414/jmbfs.2019.9.1.70-77. ird-02497490 HAL Id: ird-02497490 https://hal.ird.fr/ird-02497490 Submitted on 3 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia SEKKOUR1*, Abdelkader BEKKI1, Zoulikha BOUCHIBA1, Timothy M. Vogel2, Elisabeth NAVARRO2 Address(es): Ing. Sonia SEKKOUR PhD., 1Université Ahmed Benbella, Faculté des sciences de la nature et de la vie, Département de Biotechnologie, Laboratoire de biotechnologie des rhizobiums et amélioration des plantes, 31000 Oran, Algérie. -
Biogeographic Variations of Picophytoplankton in Three Contrasting Seas: the Bay of Bengal, South China Sea and Western Pacific Ocean
Vol. 84: 91–103, 2020 AQUATIC MICROBIAL ECOLOGY Published online April 9 https://doi.org/10.3354/ame01928 Aquat Microb Ecol OPENPEN ACCESSCCESS Biogeographic variations of picophytoplankton in three contrasting seas: the Bay of Bengal, South China Sea and Western Pacific Ocean Yuqiu Wei1, Danyue Huang1, Guicheng Zhang2,3, Yuying Zhao2,3, Jun Sun2,3,* 1Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266200, PR China 2Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, PR China 3Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, PR China ABSTRACT: Marine picophytoplankton are abundant in many oligotrophic oceans, but the known geographical patterns of picophytoplankton are primarily based on small-scale cruises or time- series observations. Here, we conducted a wider survey (5 cruises) in the Bay of Bengal (BOB), South China Sea (SCS) and Western Pacific Ocean (WPO) to better understand the biogeographic variations of picophytoplankton. Prochlorococcus (Pro) were the most abundant picophytoplank- ton (averaging [1.9−3.6] × 104 cells ml−1) across the 3 seas, while average abundances of Syne- chococcus (Syn) and picoeukaryotes (PEuks) were generally 1−2 orders of magnitude lower than Pro. Average abundances of total picophytoplankton were similar between the BOB and SCS (4.7 × 104 cells ml−1), but were close to 2-fold less abundant in the WPO (2.5 × 104 cells ml−1). Pro and Syn accounted for a substantial fraction of total picophytoplankton biomass (70−83%) in the 3 con- trasting seas, indicating the ecological importance of Pro and Syn as primary producers. -
Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family. -
Molecular Interaction Between Fish Pathogens and Host Aquatic Animals
K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, Jr. and M. J. Kaiser, eds. Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008, pp. 277–288. © by TERRAPUB 2008. Molecular Interaction between Fish Pathogens and Host Aquatic Animals Laura L. Brown* and Stewart C. Johnson National Research Council of Canada Institute for Marine Biosciences 1411 Oxford Street Halifax, NS, B3H 3Z1, Canada Present address: Fisheries and Oceans Canada Pacific Biological Station 3190 Hammond Bay Road Nanaimo, NS, V9T 6N7, Canada *E-mail: [email protected] We have studied the host-pathogen interactions between Atlantic salmon (Salmo salar L.) and Aeromonas salmonicida. Sequencing the genome of the bacterium allowed us to investigate virulence factors and other gene products with potential as vaccines. Using knock-out mutants of A. salmonicida, we identified key virulence factors. Proteomics studies of bacterial cells grown in a variety of media as well as in an in vivo implant system revealed differential protein production and have shed new light on bacterial proteins such as superoxide dismutase, pili and flagellar proteins, type three secretion systems, and their roles in A. salmonicida pathogenicity. We constructed a whole ge- nome DNA microarray to use in comparative genomic hybridizations (M-CGH) and bacterial gene expression studies. Carbohydrate analysis has shown the variation in LPS between strains and reveals the importance of LPS in viru- lence. Salmon were challenged with A. salmonicida and tissues were taken to construct suppressive subtractive hybridization libraries to investigate differ- ential host gene expression. We constructed an Atlantic salmon cDNA microarray to investigate the host response to A. -
Mote Marine Laboratory Red Tide Studies
MOTE MARINE LABORATORY RED TIDE STUDIES FINAL REPORT FL DEP Contract MR 042 July 11, 1994 - June 30, 1995 Submitted To: Dr. Karen Steidinger Florida Marine Research Institute FL DEPARTMENT OF ENVIRONMENTAL PROTECTION 100 Eighth Street South East St. Petersburg, FL 33701-3093 Submitted By: Dr. Richard H. Pierce Director of Research MOTE MARINE LABORATORY 1600 Thompson Parkway Sarasota, FL 34236 Mote Marine Laboratory Technical Report No. 429 June 20, 1995 This document is printed on recycled paper Suggested reference Pierce RH. 1995. Mote Marine Red Tide Studies July 11, 1994 - June 30, 1995. Florida Department of Environmental Pro- tection. Contract no MR 042. Mote Marine Lab- oratory Technical Report no 429. 64 p. Available from: Mote Marine Laboratory Library. TABLE OF CONTENTS I. SUMMARY. 1 II. CULTURE MAINTENANCE AND GROWTH STUDIES . 1 Ill. ECOLOGICAL INTERACTION STUDIES . 2 A. Brevetoxin Ingestion in Black Seabass B. Evaluation of Food Carriers C. First Long Term (14 Day) Clam Exposure With Depuration (2/6/95) D. Second Long Term (14 Day) Clam Exposure (3/21/95) IV. RED TIDE FIELD STUDIES . 24 A. 1994 Red Tide Bloom (9/16/94 - 1/4/95) B. Red Tide Bloom (4/13/94 - 6/16/95) C. Red Tide Pigment D. Bacteriological Studies E. Brevetoxin Analysis in Marine Organisms Exposed to Sublethal Levels of the 1994 Natural Red Tide Bloom V. REFERENCES . 61 Tables Table 1. Monthly Combined Production and Use of Laboratory C. breve Culture. ....... 2 Table 2. Brevetoxin Concentration in Brevetoxin Spiked Shrimp and in Black Seabass Muscle Tissue and Digestive Tract Following Ingestion of the Shrimp ............... -
Résurrection Du Passé À L'aide De Modèles Hétérogènes D'évolution Des Séquences Protéiques
Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques Mathieu Groussin To cite this version: Mathieu Groussin. Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques. Biologie moléculaire. Université Claude Bernard - Lyon I, 2013. Français. NNT : 2013LYO10201. tel-01160535 HAL Id: tel-01160535 https://tel.archives-ouvertes.fr/tel-01160535 Submitted on 5 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No 201-2013 Année 2013 These` de l’universitedelyon´ Présentée devant L’UNIVERSITÉ CLAUDE BERNARD LYON 1 pour l’obtention du Diplomeˆ de doctorat (arrêté du 7 août 2006) soutenue publiquement le 8 novembre 2013 par Mathieu Groussin Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques. Directeur de thèse : Manolo Gouy Jury : Céline Brochier-Armanet Examinateur - Président Laurent Duret Examinateur Nicolas Galtier Rapporteur Olivier Gascuel Rapporteur Manolo Gouy Directeur de thèse Dominique Madern Examinateur Hervé Philippe Examinateur 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M. François-Noël GILLY Vice-président du Conseil d’Administration M. le Professeur Hamda BEN HADID Vice-président du Conseil des Etudes et de la Vie Universitaire M. -
2019 ASEAN-FEN 9Th International Fisheries Symposium BOOK of ABSTRACTS
2019 ASEAN-FEN 9th International Fisheries Symposium BOOK OF ABSTRACTS A New Horizon in Fisheries and Aquaculture Through Education, Research and Innovation 18-21 November 2019 Seri Pacific Hotel Kuala Lumpur Malaysia Contents Oral Session Location… .................................................................... 1 Poster Session ...................................................................................... 2 Special Session… ................................................................................ 3 Special Session 1: ....................................................................... 4 Special Session 2: ..................................................................... 10 Special Session 3: ..................................................................... 16 Oral Presentation… ......................................................................... 26 Session 1: Fisheries Biology and Resource Management 1 ………………………………………………………………….…...27 Session 2: Fisheries Biology and Resource Management 2 …………………………………………………………...........….…62 Session 3: Nutrition and Feed........................................................ 107 Session 4: Aquatic Animal Health ................................................ 146 Session 5: Fisheries Socio-economies, Gender, Extension and Education… ..................................................................................... 196 Session 6: Information Technology and Engineering .................. 213 Session 7: Postharvest, Fish Products and Food Safety… ......... 219 Session -
Directed Isolation of Prochlorococcus
Directed isolation of Prochlorococcus Selected tools for the Prochlorococcus model system Berube PM*, Becker JW*, Biller SJ, Coe AC, Cubillos-Ruiz A, Ding H, Kelly L, Thompson JW, Chisholm SW Sampling within the euphotic * co-presenters Massachusetts Institute of Technology, Cambridge, MA zone of oligotrophic ocean regions • Depth specific targeting of Prochlorococcus ecotypes Isolation and characterization of vesicles from marine bacteria • Utilization of ecotype abundance data from time-series Density measurements when available 0.2 µm TFF Pellet by Obtain final gradient Tips for optimal vesicle preparations filter concentration ultracentrifugation sample purification Keep TFF feed pressure < 10 psi at all times Low-light adapted Prochlorococcus populations when concentrating samples. are underrepresented in culture collections Total Prochlorococcus (Flow Cytometry) Ecotype Counts / Flow Cytometry Counts Vesicle pellets are usually colorless, but don’t 0 6 0 6 5 4 worry, it’ll be there! 50 50 100 4 100 2 3 0 150 150 Depth [m] 2 Depth [m] -2 Resuspension of vesicles by gentle manual 200 log cells/mL 200 1 -4 Prochlorococcus Vesicle Other media components 250 250 pipetting works best; keep resuspension 0 -6 log2 ratio (ecotype/FCM) volumes to an absolute minimum. 100 W 90 W 80 W 70W 100 W 90 W 80 W 70W Pre-filtration of Tangential Flow Filtration (TFF) TEM of purified Prochlorococcus Culture Prochlorococcus vesicles Field samples require careful collection of Targeting of low-light adapted Prochlorococcus smaller density gradient fractions -
Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine. -
Respiratory Disorders of Fish
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish.