Studies in Nearctic Desert Sand Dune Orthoptera: a New Genus And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae. -
The Early Evolution of Biting–Chewing Performance in Hexapoda
Chapter 6 The Early Evolution of Biting–Chewing Performance in Hexapoda Alexander Blanke Abstract Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (¼ silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a compa- rably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed. 6.1 Introduction Insecta sensu lato (¼ Hexapoda) display a high diversity of mouthpart shapes within the early evolved lineages which started to radiate approximately 479 million years ago (Misof et al. 2014). These shape changes were described qualitatively and were often stated to relate mainly to the type of food consumed (Yuasa 1920; Isely 1944; Evans and Forsythe 1985; Chapman and de Boer 1995). To the knowledge of the author, this and related statements regarding mouthpart mechanics being shaped by functional demands have never been tested in a quantitative framework. -
A Guide to Arthropods Bandelier National Monument
A Guide to Arthropods Bandelier National Monument Top left: Melanoplus akinus Top right: Vanessa cardui Bottom left: Elodes sp. Bottom right: Wolf Spider (Family Lycosidae) by David Lightfoot Compiled by Theresa Murphy Nov 2012 In collaboration with Collin Haffey, Craig Allen, David Lightfoot, Sandra Brantley and Kay Beeley WHAT ARE ARTHROPODS? And why are they important? What’s the difference between Arthropods and Insects? Most of this guide is comprised of insects. These are animals that have three body segments- head, thorax, and abdomen, three pairs of legs, and usually have wings, although there are several wingless forms of insects. Insects are of the Class Insecta and they make up the largest class of the phylum called Arthropoda (arthropods). However, the phylum Arthopoda includes other groups as well including Crustacea (crabs, lobsters, shrimps, barnacles, etc.), Myriapoda (millipedes, centipedes, etc.) and Arachnida (scorpions, king crabs, spiders, mites, ticks, etc.). Arthropods including insects and all other animals in this phylum are characterized as animals with a tough outer exoskeleton or body-shell and flexible jointed limbs that allow the animal to move. Although this guide is comprised mostly of insects, some members of the Myriapoda and Arachnida can also be found here. Remember they are all arthropods but only some of them are true ‘insects’. Entomologist - A scientist who focuses on the study of insects! What’s bugging entomologists? Although we tend to call all insects ‘bugs’ according to entomology a ‘true bug’ must be of the Order Hemiptera. So what exactly makes an insect a bug? Insects in the order Hemiptera have sucking, beak-like mouthparts, which are tucked under their “chin” when Metallic Green Bee (Agapostemon sp.) not in use. -
Renewable Energy in the California Desert Mechanisms for Evaluating Solar Development on Public Lands
Renewable Energy in the California Desert Mechanisms for Evaluating Solar Development on Public Lands By Jesse Fernandes Natalie Flynn Samantha Gibbes Matthew Griffis Takahiro Isshiki Sean Killian Laura Palombi Nerissa Rujanavech Sarah Tomsky Meredith Tondro A project submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) School of Natural Resources and Environment University of Michigan April 2010 Faculty Advisor: Professor Steven Yaffee ACKNOWLEDGEMENTS We would like to express our sincere gratitude to our funders, who made this project possible: The Wilderness Society and Educational Foundation of America We would like to recognize and thank the many individuals who selflessly contributed their time and expertise, especially Alice Bond of The Wilderness Society. This project would have been nothing without your input and support. Thank you also to our advisor Professor Steve Yaffee for your valuable insight and feedback throughout this project. Lastly, we would like to thank our families and loved ones for their tireless patience and support through the whole of this sixteen-month process. www.snre.umich.edu/ecomgt/recd i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES ............................................................................................................. vi LIST OF MAPS ............................................................................................................ -
D1) Biological Resources Existing Conditions
SAN BERNARDINO COUNTYWIDE PLAN DRAFT PEIR COUNTY OF SAN BERNARDINO Appendices Appendix D: Biological Resources Existing Conditions Report June 2019 SAN BERNARDINO COUNTYWIDE PLAN DRAFT PEIR COUNTY OF SAN BERNARDINO Appendices This page intentionally left blank. PlaceWorks DRAFT San Bernardino Countywide Plan Biological Resources Existing Conditions Prepared for: County of San Bernardino Land Use Services Division, Advance Planning Division 385 North Arrowhead Avenue, 1st Floor San Bernardino, California 94215-0182 Contact: Terri Rahhal Prepared by: 3544 University Avenue Riverside, California 92501 Contact: Linda Archer DATA AND ANALYSIS AS NOVEMBER 2016 UPDATED WITH OUTREACH SUMMARY IN NOVEMBER 2018 DRAFTMAY 2019 D-1 REPORT USE, INTENT, AND LIMITATIONS This Background Report was prepared to inform the preparation of the Countywide Plan. This report is not intended to be continuously updated and may contain out-of-date material and information. This report reflects data collected in 2016 and analyzed in 2016 and 2017 as part of due diligence and issue identification. This report is not intended to be comprehensive and does not address all issues that were or could have been considered and discussed during the preparation of the Countywide Plan. Additionally, many other materials (reports, data, etc.) were used in the preparation of the Countywide Plan. This report is not intended to be a compendium of all reference materials. This report may be used to understand some of the issues considered and discussed during the preparation of the Countywide Plan, but should not be used as the sole reference for data or as confirmation of intended or desired policy direction. Final policy direction was subject to change based on additional input from the general public, stakeholders, and decision makers during regional outreach meetings, public review of the environmental impact report, and public adoption hearings. -
Insect Biodiversity of the Algodones Dunes of California
Biodiversity Data Journal 5: e21715 doi: 10.3897/BDJ.5.e21715 Research Article Insect biodiversity of the Algodones Dunes of California Lynn S. Kimsey‡, Thomas J. Zavortink‡, Robert B. Kimsey‡, Steven L. Heydon‡ ‡ University of California, Davis, United States of America Corresponding author: Lynn S. Kimsey ([email protected]) Academic editor: Yasen Mutafchiev Received: 17 Oct 2017 | Accepted: 20 Nov 2017 | Published: 24 Nov 2017 Citation: Kimsey L, Zavortink T, Kimsey R, Heydon S (2017) Insect biodiversity of the Algodones Dunes of California. Biodiversity Data Journal 5: e21715. https://doi.org/10.3897/BDJ.5.e21715 Abstract Over a nine year period beginning in 2007 we surveyed the insects of the Algodones Dunes, Imperial Count, California, as part of a study undertaken for the U.S. Bureau of Land Management. In a series of 22 collecting trips ranging in duration from 2 to 8 days we thus far have accumulated records of 1,840 species, 21 orders and 244 families from the dunes. Hymenoptera constituted the most diverse order, comprising about 45% of all the species recovered. Insect diversity and abundance peaked during the hottest part of the year between the months of May and September. Life history traits of the insects sampled included herbivores (29.6%), parasitoids (28.7%), predators (18.1%), pollen/nectar feeders (10.9%), detritivores (6.2%) and scavengers (2.4%). Seventy-nine or 4% of the insect species collected in the dunes have been solely recorded from there, and 3% of the species almost certainly derive from adjacent aquatic habitats or agricultural ecosystems, as their life histories could not be completed in Algodones Dunes habitat. -
Orthoptera: Ensifera)?
Zootaxa 4291 (1): 001–033 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4291.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BD31B828-E7EF-46AD-B618-1BAAA2D63DBD Tackling an intractable problem: Can greater taxon sampling help resolve relationships within the Stenopelmatoidea (Orthoptera: Ensifera)? AMY G. VANDERGAST1,7, DAVID B. WEISSMAN2, DUSTIN A. WOOD3, DAVID C. F. RENTZ4, CORINNA S. BAZELET5 & NORIHIRO UESHIMA6 1U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road Suite 200, San Diego, CA 92101, USA. E-mail: [email protected] 2Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA. E-mail: [email protected] 3U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station, 4165 Spruance Road Suite 200, San Diego, CA 92101, USA. E-mail: [email protected] 4School of Marine & Tropical Biology, James Cook University, Australia. E-mail: [email protected] 5Steinhardt Museum, Tel Aviv University, Department of Zoology, Sherman Building Rm. 403, Tel Aviv, Israel; Department of Conser- vation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. E-mail: [email protected] 61435-1 Kubocho, Matsusaka, Mie 515-0044, Japan. E-mail: [email protected] 7Corresponding Author Abstract The relationships among and within the families that comprise the orthopteran superfamily Stenopelmatoidea (suborder Ensifera) remain poorly understood. We developed a phylogenetic hypothesis based on Bayesian analysis of two nuclear ribosomal and one mitochondrial gene for 118 individuals (84 de novo and 34 from GenBank). -
Jerusalem Cricket
Colorado Insect of Interest Jerusalem Cricket Scientific Name: Stenopelmatus fuscus Haldeman Order: Orthoptera (Grasshoppers, Crickets, Katydids, and Relatives) Family: Stenopelmatidae (Jerusalem, Sand or Stone Crickets) Figure 1. Jerusalem Cricket side -view. Photo courtesy of Description and Distinctive Features: Gene Nelson. The Jerusalem crickets (Figure 1, 2, and 3) are arguably one of the most bizarre looking insects you can find in Colorado. They are large insects (about an inch long), flightless with spiny legs. Their bulbous abdomen is often banded but the most noticeable feature is their very large, round and somewhat humanlike head (Figure 2). These odd insects usually attract attention when encountered and are called by many common names including “child of the earth”, “potato bug”, “skull head” and “old bald-headed man”. Distribution in Colorado: Within Colorado, Jerusalem crickets are most common in the western counties bordering Utah. They are also known to occur in extreme southeastern Colorado. Life History and Habits: Jerusalem crickets spend almost their entire life below ground. Females lay eggs in small masses in soil and early stages burrow through the soil. The front legs of Jerusalem crickets are thickened to allow them to dig, and they Figure 2. Jerusalem Cricket head-on view. Photo courtesy of Howard Evans. have large and powerful jaws. Much of their food consists of roots and tubers but they are omnivorous and will eat other insects as well as scavenge dead plant and animal matter. The adult stage is likely reached in about 1 ½ years after eggs hatch. The early instar nymphs remain below ground and periodically molt, which they do on their back. -
Jerusalem Cricket (Stenopelmatus Spp.) Jerusalem! I See Linkages: the Community Value of a Misunderstood Insect
Photos 1 and 2 SPECIES SPOTLIGHT: by Jeffery T. Wilcox1 Photos courtesy of the author Jerusalem Cricket (Stenopelmatus spp.) Jerusalem! I see linkages: The community value of a misunderstood insect As I was growing up in the San Francisco Bay Area in the ’60s and Those jaws are reputed to deliver a painful bite, but when handled ’70s, new tracts of homes quickly filled vacant fields as erstwhile gently in an open hand, none has ever offered to bite this author orchards and rangelands were sold off ahead of the rising land (Photo 1). values that augured a burgeoning population. When we weren’t But what’s with the name? Across its extensive range, this insect in school, those vacant fields were our playgrounds, places we goes by many names—potato bug and Jerusalem cricket, as escaped to after being pent up indoors, after weekend chores— mentioned, but also stone cricket, sand cricket, and skull insect and especially, once spring arrived. On those first warm, sunny (Riley 1888; Weissman 2005), each rooted in a behavioral or days of the year we bounded through the new grass, saltating from physiognomic anecdote. Although not a significant pest of the rock to rock, or between old boards, flipping each in hopes of “propitious esculent” (as John Reader subtitled his 2011 book, finding a mouse, a toad, or the first snake or salamander of the Potato), Stenopelmatus species are indeed opportunistically fond of season. Invariably, a cry would rise from the grasses: “Oh, gross, a potatoes (“potato bug”). The insects are often found under rocks potato bug!” followed by “Kill it, they bite!” Unfortunately, fear (“stone cricket”), and many Stenopelmatidae species are sand- being the root of that disgust, the potato bug often got squished. -
Chapulines, Langostas, Grillos Y Esperanzas De México Chapulines, Langostas
GRASSHOPPERS, CHAPULINES, LANGOSTAS, LOCUSTS, CRICKETS GRILLOS Y ESPERANZAS & KATYDIDS DE MÉXICO OF MEXICO GUÍA FOTOGRÁFICA PHOTOGRAPHIC GUIDE CHAPULINES, LANGOSTAS, GRILLOS Y ESPERANZAS DE MÉXICO CHAPULINES, LANGOSTAS, ISSN 1973-7815 ISBN 978-88-903323-0-2 Paolo Fontana, Filippo Maria Buzzetti, Ricardo Mariño-Pérez Paolo Fontana, Filippo Maria Buzzetti, Ricardo Mariño-Pérez Edited by World Biodiversity Association onlus ©2008 Verona - Italy WBA HANDBOOKS 1 WBA HANDBOOKS 1 CHAPULINES, LANGOSTAS, GRILLOS Y ESPERANZAS DE MÉXICO GUÍA FOTOGRÁFICA GRASSHOPPERS, LOCUSTS, CRICKETS & KATYDIDS OF MEXICO PHOTOGRAPHIC GUIDE PAOLO FONTANA, FILIPPO MARIA BUZZETTI, RICARDO MARIÑO-PÉREZ 2. Biologia Centrali Americana. Insecta. Orthoptera, Vol. I, Tab. 21. 11 9 10 11 12 9-12. Algunos hábitats de México: matorral xerófilo (9), pastizal (10) , bosque de coníferas y encinos (11) y bos- que tropical perennifolio (12). – Some Mexican Habitat: thorn Scrub (9), grassland (10), pine-oak forest (11) and tropical rain forest (12). 23 Ciclo biológico Life Cycle Los estados de desarrollo de los ortópteros son el The development stages of Orthoptera are the egg, huevo, ninfa (figs. 13-14) (antes de ninfa, un periodo nymph (figs. 13-14) (before becoming a nymph, they corto en forma de gusano o vermiforme) y adulto go through a short period as larva (vermiform)), and (conocido como imago cuando recién ha mudado). adult (a newly emerged adult is known as an imago). Normalmente las hembras de Caelifera entierran los Females of Caelifera usually bury their eggs in the huevos en el suelo con ayuda del ovipositor, mien- ground, whereas females of Ensifera deposit their tras que las hembras de Ensifera depositan los hue- eggs within stems, leaves or roots, or they attach the vos en los tallos, hojas o raíces, o bien, los pegan a las eggs to stems or branches (Rentz and Ning Su, 2003). -
Department of the Interior
Friday J uary 6, 1989 MEN Part IV Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Animal Notice of Review • 554 Federal Register / Vol. 54, No. 4 / Friday, January 6, 1989 / Proposed Rules DEPARTMENT OF THE INTERIOR Regional Director (FWE/SE), U.S. Fish least at times, to merit conSideration for and Wildlife Service, P.O. Box 1306, addition to the List of Endangered and Fish and Wildlife Service Albuquerque, New Mexico 87103 (505/ Threatened Wildlife. The accompanying 766-2321 or FTS 474-2321). table identifies many of these taxa 50 CFR Part 17 Region 3. Illinois, Indiana, Iowa, (including, by definition, biological Michigan, Minnesota, Missouri, Ohio, subspecies and certain populations of Endangered and Threatened Wildlife and Wisconsin. vertebrate animals) and assigns each to and Plants; Animal Notice of Review Regional Director (AE/SE), U.S. Fish one of the three categories described AGENCY: Fish and Wildlife Service, and Wildlife Service, Federal Building, below. Unless it is the subject of a Interior. Fort Snelling, Twin Cities, Minnesota current published proposed or final rule 55111 (612/725-3276 or FTS 725-3276). determining endangered or threatened Notice of review. ACTION: Region 4. Alabama, Arkansas, Florida, status, none of these taxa receives Georgia, Kentucky, Louisiana, SUMMARY: The Service issues a revised substantive or procedural protection notice identifying vertebrate and Mississippi, North Carolina, South pursuant to the Act (those species that invertebrate animal taxa, native to the Carolina, Tennessee, Puerto Rico, and are the subject of a proposed or final the Virgin Islands. -
Occurrence Report California Department of Fish and Wildlife California Natural Diversity Database
Occurrence Report California Department of Fish and Wildlife California Natural Diversity Database Map Index Number: 34038 EO Index: 12605 Key Quad: Merritt (3812157) Element Code: AAAAA01180 Occurrence Number: 384 Occurrence Last Updated: 1996-07-09 Scientific Name: Ambystoma californiense Common Name: California tiger salamander Listing Status: Federal: Threatened Rare Plant Rank: State: Threatened Other Lists: CDFW_SSC-Species of Special Concern IUCN_VU-Vulnerable CNDDB Element Ranks: Global: G2G3 State: S2S3 General Habitat: Micro Habitat: CENTRAL VALLEY DPS FEDERALLY LISTED AS THREATENED. SANTA NEED UNDERGROUND REFUGES, ESPECIALLY GROUND SQUIRREL BARBARA & SONOMA COUNTIES DPS FEDERALLY LISTED AS BURROWS, & VERNAL POOLS OR OTHER SEASONAL WATER ENDANGERED. SOURCES FOR BREEDING. Last Date Observed: 1993-01-31 Occurrence Type: Natural/Native occurrence Last Survey Date: 1993-01-31 Occurrence Rank: Unknown Owner/Manager: PVT Trend: Unknown Presence: Presumed Extant Location: SOUTH WEST CORNER OF COVELL BLVD AND LAKE BLVD, IN THE CITY OF DAVIS. Detailed Location: FOUND IN THE PARKING LOT AT THE WILLOWS APARTMENTS. Ecological: Threats: URBAN DEVELOPMENT, AGRICULTURAL FIELDS AND TWO VERY BUSY ROADS. General: APARTMENT COMPLEX PARKING LOT LOCATED ACROSS LAKE BLVD FROM "WET POND" A CITY OWNED WILDLIFE HABITAT AREA MANAGED BY THE YOLO AUDUBON SOCIETY. PLSS: T08N, R02E, Sec. 07 (M) Accuracy: 80 meters Area (acres): 0 UTM: Zone-10 N4268740 E605722 Latitude/Longitude: 38.56082 / -121.78655 Elevation (feet): 50 County Summary: Quad Summary: Yolo