Chapulines, Langostas, Grillos Y Esperanzas De México Chapulines, Langostas

Total Page:16

File Type:pdf, Size:1020Kb

Chapulines, Langostas, Grillos Y Esperanzas De México Chapulines, Langostas GRASSHOPPERS, CHAPULINES, LANGOSTAS, LOCUSTS, CRICKETS GRILLOS Y ESPERANZAS & KATYDIDS DE MÉXICO OF MEXICO GUÍA FOTOGRÁFICA PHOTOGRAPHIC GUIDE CHAPULINES, LANGOSTAS, GRILLOS Y ESPERANZAS DE MÉXICO CHAPULINES, LANGOSTAS, ISSN 1973-7815 ISBN 978-88-903323-0-2 Paolo Fontana, Filippo Maria Buzzetti, Ricardo Mariño-Pérez Paolo Fontana, Filippo Maria Buzzetti, Ricardo Mariño-Pérez Edited by World Biodiversity Association onlus ©2008 Verona - Italy WBA HANDBOOKS 1 WBA HANDBOOKS 1 CHAPULINES, LANGOSTAS, GRILLOS Y ESPERANZAS DE MÉXICO GUÍA FOTOGRÁFICA GRASSHOPPERS, LOCUSTS, CRICKETS & KATYDIDS OF MEXICO PHOTOGRAPHIC GUIDE PAOLO FONTANA, FILIPPO MARIA BUZZETTI, RICARDO MARIÑO-PÉREZ 2. Biologia Centrali Americana. Insecta. Orthoptera, Vol. I, Tab. 21. 11 9 10 11 12 9-12. Algunos hábitats de México: matorral xerófilo (9), pastizal (10) , bosque de coníferas y encinos (11) y bos- que tropical perennifolio (12). – Some Mexican Habitat: thorn Scrub (9), grassland (10), pine-oak forest (11) and tropical rain forest (12). 23 Ciclo biológico Life Cycle Los estados de desarrollo de los ortópteros son el The development stages of Orthoptera are the egg, huevo, ninfa (figs. 13-14) (antes de ninfa, un periodo nymph (figs. 13-14) (before becoming a nymph, they corto en forma de gusano o vermiforme) y adulto go through a short period as larva (vermiform)), and (conocido como imago cuando recién ha mudado). adult (a newly emerged adult is known as an imago). Normalmente las hembras de Caelifera entierran los Females of Caelifera usually bury their eggs in the huevos en el suelo con ayuda del ovipositor, mien- ground, whereas females of Ensifera deposit their tras que las hembras de Ensifera depositan los hue- eggs within stems, leaves or roots, or they attach the vos en los tallos, hojas o raíces, o bien, los pegan a las eggs to stems or branches (Rentz and Ning Su, 2003). ramas o los tallos (Rentz y Ning Su, 2003). Las nin- Nymphs are similar to adults, but their pronotum, fas son similares a los adultos, pero éstas no poseen wings and genitals are not well developed, and their el pronoto, las alas ni los genitales bien desarrollados, antennae have less segments (Rentz and Ning Su, y tienen menos segmentos en las antenas (Rentz y 2003). Orthoptera usually have five to six instars (de- Ning Su, 2003). Los ortópteros presentan por lo re- velopment period of nymphs between one moult (fig. gular entre cinco y seis ínstares (periodo de desarro- 15) and another). The instars of winged species are llo de las ninfas entre una muda (fig. 15) y la distinguished by the morphology of their wing pads; siguiente). Los ínstares de las especies aladas se dis- the first and second instars have very small and tinguen por la morfología de sus primordios alares; el rounded wings, instars three and four have longer primer y segundo ínstar tenen las alas muy pequeñas wings with tips pointing downwards, and the pattern y redondeadas, los ínstares tres y cuatro tienen las alas is inverted in instars five and six, with the tip of the más elongadas y las puntas están dirigidas hacia abajo, wings pointing upwards (Capinera et al., 2004). In a y en los ínstares cinco y seis el patrón se invierte, la typical biological cycle of the Orthoptera, the eggs punta de las alas se dirige hacia arriba (Capinera et hatch in spring, the nymphs develop during summer, al., 2004). En un ciclo biológico típico de ortópteros, and the adults reproduce between summer and fall. los huevos eclosionan en primavera, las ninfas se des- Diapause, a period that halts development, is present arrollan en verano y los adultos se reproducen entre during the egg stage in northern latitudes. Nymphs 14. Stilpnochlora sp. Ninfa - Nymph. San Luis Potosi, S. Martín de Abajo. IX 2004. 25 19-20. Venta de chapulines para comer, en el mercado – Edible Orthoptera sold in the market. Oaxaca, X 2007. 31 32 33 34 32-34. Montaje en vista lateral – Mounting lateral view (32). Montaje con la genitalia masculina extraída – Mounting with male genitalia extracted (33). Genitalia masculina adherida en la etiqueta – Male genitalia glued on label (34). 42 CLAVE DE IDENTIFICACIÓN DE LAS FAMILIAS Y SUBFAMILIAS Clave para la identificación de las subfamilias de Tettigoniidae de Panama Traducción de Nickel,1992a 1. Espiráculo auditivo torácico pequeño, circular u oval, expuesto debajo del margen ventral del lóbulo la- teral del pronoto; cabeza usualmente globosa, con sockets antenales, especialmente márgenes internos bien desarrollados PSEUDOPHYLLINAE Espiráculo auditivo torácico largo, elíptico, oculto cuando se ve de lado, pero se observa cuando en vista posterolateral detrás del margen posterior del lóbulo lateral del pronoto; cabeza globosa o cónica, con pe- queños sockets antenales o con sockets antenales no muy bien desarrollados a lo largo de los márgenes in- ternos 2 2. Tarsómero proximal cilíndrico, no bilateralmente sulcado; prosternón desarmado; cabeza usualmente glo- bosa (excepciones: Aegimia, Dysonia, Markia); ovipositor usualmente corto, curveado hacia arriba (menos frecuentemente largo y recto: (Anaulacomera), lateralmente aplanado, usualmente en la parte apical cre- nulado a lo largo de los márgenes; tímpanos usualmente expuestos en al menos una cara y usualmente en ambas caras de las tibias anteriores PHANEROPTERINAE Tarsómero proximal cuadrado, bilateralmente sulcado; prosternón usualmente armado con dos espinas; cabeza globosa o cónica; ovipositor usualmente largo, recto o curveado hacia arriba, lateralemente apla- nado, usualmente en la parte apical liso a lo largo de los márgenes; tímpanos usualmente ocultos debajo de una inflación cuticular en ambas caras de las tibias anteriores 3 3. Tibias anteriores armadas con 4-8 espinas opuestas largas y movibles en cada margen ventral; fastigium extremadamente angosto, lateralmente comprimido en un angosto pliegue sobre la frente LISTROSCELIDINAE Tibias anteriores armadas con un número variable de espinas, ninguna de las cuales se encuentra notable- mente alargada, y usualmente más cortas que aquellas de los márgenes dorsales de las tibias posteriores; fastigio cónico, alargado, no clavado, pero comprimido en un pliegue angosto. 4 4. Fastigio, medido en la base, usualmente más angosto que el primer segmento antenal y sin un diente ven- tral AGRAECIINAE Fastigio del vértex, medido en su base, usualmente más ancho que el primer segmento antenal, y con o sin diente ventral 5 5. Fémur medio y anterior desarmado; fastigio ancho, obtuso, con la porción ventral cefálica sin diente CONOCEPHALINAE Fémur medio y anterior con un número variable de espinas no movibles; fastigio ancho, obtuso o cónico, usualmente con diente o nodo que se extiende desde el margen ventral del cono. COPIPHORINAE 46 61.Copiphora monoceros ɉ. Veracruz, Est. Biol. Los Tuxtlas, XI 2007. 62. Copiphora sp. juv. ɉ Veracruz, Est. Biol. Los Tuxtlas, XII 2006. 65 69. Neobarrettia bambalio Ɋ, (conducta aterradora - terrific behaviour). San Luis Potosi, Ciudad del Maíz. IX 2004. 70. Neobarrettia bambalio juv. Ɋ San Luis Potosi, Ciudad del Maíz. IX 2004. 69 93. Dichopetala mexicana Ɋ. Puebla, Izúcar de Matamoros. X 2004. 94. Dichopetala mexicana ɉ. Morelos, Amacuzac. IX 2004. 81 131. Vellea mexicana Ɋ. Veracruz, Est. Biol. Los Tuxtlas, XI 2007. 132. Vellea mexicana ɉ. Veracruz, Est. Biol. Los Tuxtlas, XI 2007. 100 173. Xyronotus aztecus Ɋ. Veracruz, Fortín, XII 2006. 174. Xyronotus aztecus ɉ. Veracruz, Fortín, XII 2006. 121 211. Aulocara femoratum ɉ. Hidalgo, Tula. XII 2005. 212. Boopedon diabolicum Ɋ. Querétaro, Parque Nal. El Cimatario. XII 2006. 140 247. Aztecacris laevis Ɋ. Michoacán, Quiroga. X 2004. 248. Aztecacris laevis ɉ+Ɋ. Hidalgo, Huichapan. IX 2004. 158 255. Dactylotum bicolor bicolor Ɋ. San Luis Potosí, Ciudad del Maíz. IX 2004. 256. Dactylotum bicolor bicolor ɉ. San Luis Potosí, Santa Catarina. IX 2004. 162 293. Perixerus squamipennis ɉ+Ɋ. Oaxaca, M. Albán. X 2007. 294. Perixerus squamipennis Ɋ. Oaxaca, M. Albán. X 2007. 181 359. Proctolabus mexicanus ɉ+Ɋ. Puebla, Acatlán. X 2004. 360. Proctolabus mexicanus Ɋ. Puebla, Acatlán. X 2004. 214 375. Brachystola mexicana (rosado - pink) ɉ. Querétaro, Parque Nac. El Cimatario. XII 2005. 376. Chromacris colorata ɉ. San Luis Potosi, San Martín de Abajo. IX 2004. 222 392. Ripipteryx tricolor ɉ. Chiapas, Palenque, XII 2006. 393. Ripipteryx sp. ɉ. Oaxaca, Oaxaca-Puerto Escondido. X 2007. 231 Listado actualizado de Orthoptera de México Updated checklist of Mexican Orthoptera Subord. ENSIFERA Superfam. Gryllacridoidea Fam. Anostostomatidae Subfam. Anostostomatinae Anabropsis aptera (Brunner von Wattenwyl, 1888) Anabropsis mexicana (Saussure, 1859) Anabropsis microptera Gorochov, 2001 Anabropsis modesta Gorochov, 2001 Anostostoma tolteca Saussure, 1861 Cnemotettix miniatus Rentz, D.C.F. & Weissman, 1973 Glaphyrosoma bruneri (Cockerell, 1912) Glaphyrosoma gracile Brunner von Wattenwyl, 1888 Glaphyrosoma mexicanum (Saussure, 1859) Lutosa azteca (Saussure & Pictet, 1897) Lutosa obliqua Walker, F., 1869 Fam. Rhaphidophoridae Subfam. Ceuthophilinae Anargyrtes annulata (Bilimek, 1867) Anargyrtes bolivari Hubbell, 1972 Argyrtes aztecus (Saussure & Pictet, 1897) Argyrtes macropus (Rehn, J.A.G., 1904) Argyrtes maculatus Strohecker, 1945 Argyrtes mexicana Saussure & Pictet, 1897 Leptargyrtes boneti Hubbell, 1972 Leptargyrtes tejamanilae Hubbell, 1972 Ceuthophilus (Ceuthophilus) variegatus Scudder, S.H., 1894 Ceuthophilus (Hemiudeopsylla) genicularis (Saussure & Pictet, 1897) Ceuthophilus (Hemiudeopsylla) latipes Scudder, S.H., 1894 Ceuthophilus (Geotettix) nodulosus Brunner
Recommended publications
  • The Genus Markia (Orthoptera: Tettigoniidae; Phaneropterinae), New Species and Some Clarifications
    Zootaxa 3599 (6): 501–518 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3599.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:394886D5-B574-479D-83D4-F602ADDE7587 The tribe Dysoniini part II: The genus Markia (Orthoptera: Tettigoniidae; Phaneropterinae), new species and some clarifications OSCAR J. CADENA-CASTAÑEDA Universidad Distrital Francisco José de Caldas. Grupo de Investigación en Artrópodos “Kumangui”. Bogotá–Colombia. E-mail: [email protected] Abstract This paper clarifies the status of the species of the genus Markia White, 1862, also providing new distribution data. It describes M. erinaceus from Peru, M. arizae n.sp. from the Amazonian foothills of Colombia and Ecuador, M. sarriai n.sp. from the Colombian Biogeographic Chocó, M. espinachi n.sp. from Costa Rica; as well as the true male of M. major (Brunner von Wattenwyl, 1878), clarifying the real distributional range this latter species. M. longivertex n. syn., is proposed as a synonym of M. major. The colour polymorphism in M. hystrix (Westwood, 1844) is discussed and its distribution range is defined. A key to the species of Markia is provided. Key words: biodiversity, camouflage, lichen, Neotropics, Phaneropterinae, colour polymorphism, rainforest, Usnea Resumen Se esclarece el estatus de las especies del género Markia White, 1862 aportando nuevos datos de distribución. Se describe a M. erinaceus n.sp. del Perú, M. arizae n.sp. proveniente del pie de monte amazónico de Colombia y Ecuador, M. sarriai n.sp. del Chocó Biogeográfico colombiano, y M.
    [Show full text]
  • SEVEN PREVIOUSLY UNDOCUMENTED ORTHOPTERAN SPECIES in LUNA COUNTY, NEW MEXICO Niccole D
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 10, No 4, 2021, 105 – 115 2277-663X (P) SEVEN PREVIOUSLY UNDOCUMENTED ORTHOPTERAN SPECIES IN LUNA COUNTY, NEW MEXICO Niccole D. Rech1*, Brianda Alirez2 and Lauren Paulk2 1Western New Mexico University, Deming, New Mexico 2Early College High School, Deming, New Mexico E-mail: [email protected] (*Corresponding Author) Abstract: The Chihuahua Desert is the largest hot desert (BWh) in North America. Orthopterans are an integral part of desert ecosystems. They include grasshoppers, katydids and crickets. A large section of the Northern Chihuahua Desert is in Luna County, New Mexico. There is a dearth of information on the Orthopterans in this area. Between May and October of 2020, sixty adult grasshoppers, two katydids and one camel cricket were captured from a 5-hectare (ha) area at base of the Florida Mountains, which is the extreme southern portion of Luna County. Luna County was in a severe drought during 2020. The insects were identified using several taxonomic keys (Cigliano, Braun, Eades & Otte, 2018; Guala & Doring, 2019; Triplehorn & Johnson, 2005; Richman, Lightfoot, Sutherland & Fergurson, 1993, Otte, 1984, 1981; Tinkham, 1944). A previous New Mexico State University (NMSU) survey from 1993 had only documented grasshoppers in the Acrididae and Romaleidae families. The objective of this continuing study is to identify and document all species of Orthopterans found in Luna County, and correlate the populations with changing weather patterns. In this portion of the study, the majority of Orthopterans captured were Leprus wheeleri (Thomas), a previously documented specie. However, seven undocumented species were also captured.
    [Show full text]
  • Insectivory Characteristics of the Japanese Marten (Martes Melampus): a Qualitative Review
    Zoology and Ecology, 2019, Volumen 29, Issue 1 Print ISSN: 2165-8005 Online ISSN: 2165-8013 https://doi.org/10.35513/21658005.2019.1.9 INSECTIVORY CHARACTERISTICS OF THE JAPANESE MARTEN (MARTES MELAMPUS): A QUALITATIVE REVIEW REVIEW PAPER Masumi Hisano Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada Corresponding author. Email: [email protected] Article history Abstract. Insects are rich in protein and thus are important substitute foods for many species of Received: 22 December generalist feeders. This study reviews insectivory characteristics of the Japanese marten (Martes 2018; accepted 27 June 2019 melampus) based on current literature. Across the 16 locations (14 studies) in the Japanese archi- pelago, a total of 80 different insects (including those only identified at genus, family, or order level) Keywords: were listed as marten food, 26 of which were identified at the species level. The consumed insects Carnivore; diet; food were categorised by their locomotion types, and the Japanese martens exploited not only ground- habits; generalist; insects; dwelling species, but also arboreal, flying, and underground-dwelling insects, taking advantage of invertebrates; trait; their arboreality and ability of agile pursuit predation. Notably, immobile insects such as egg mass mustelid of Mantodea spp, as well as pupa/larvae of Vespula flaviceps and Polistes spp. from wasp nests were consumed by the Japanese marten in multiple study areas. This review shows dietary general- ism (specifically ‘food exploitation generalism’) of the Japanese marten in terms of non-nutritive properties (i.e., locomotion ability of prey). INTRODUCTION have important functions for martens with both nutritive and non-nutritive aspects (sensu, Machovsky-Capuska Dietary generalists have capability to adapt their forag- et al.
    [Show full text]
  • Let's Taco 'Bout It! El Chisme (Enchiladas) Para Charlar (Entres)
    Conociendonos (To Share) Let’s Taco ’bout it! Tlayuda Oaxaqueña $11 Three “street” tacos served over fresh homemade, hand pressed corn Comal-toasted large corn tortillas, refried red beans, quesillo cheese, tortillas tomatoes, onions, shaved romaine, avocado, and salsa morita Barbacoa de Lengua $ 16 Add: Beef tasajo, huitlacoche mushrooms, or sautéed chapulines $ 3 Braised for 6 hours: Beef tongue, green cabbage, chili de arbol salsa Queso Flameado $7 Carnitas de Pato $ 14 Melted menonita cheese with roasted corn, piquillo pepper, served with fresh hand pressed corn tortillas Carnitas-style seared duck legs, cooked in own fat, with jicama escabeche and pineapple habanero salsa Add: Pork chorizo, roasted poblanos rajas, or sautéed chapulines $3 Chapulines del Monte $15 Guacamole Charla $11 Oaxaca-style dried grasshoppers with cilantro and lime avocado salsa Avocado, cilantro, onions, serrano peppers, and lime, served with fresh hand pressed corn tortillas Nopalitos $13 El secreto (Starters) Red bean purée, grilled cactus, and huitlacoche mushrooms with verde salsa Pozole Rojo $11 Tasajo del Centro $14 Corn hominy, braised sheered pork, oregano, and chile huajillo broth Seared tasajo beef, poblano rajas, melted menonita cheese, and salsa Sopa Azteca $10 Oaxaca Oaxaca style with dried pasilla pepper, tomato, chicken broth, tortilla El Chisme (Enchiladas) strips, queso Oaxaca, avocado cubes, and cream Enchiladas Tultecas $13 Tacos Dorados $8 House made guajillo tortillas topped with chorizo, potatoes, and stew- Three homemade rolled crispy
    [Show full text]
  • Generation of Extreme Ultrasonics in Rainforest Katydids Fernando Montealegre-Z1,*, Glenn K
    4923 The Journal of Experimental Biology 209, 4923-4937 Published by The Company of Biologists 2006 doi:10.1242/jeb.02608 Generation of extreme ultrasonics in rainforest katydids Fernando Montealegre-Z1,*, Glenn K. Morris2 and Andrew C. Mason1 1Integrative Behaviour and Neuroscience Group, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada, M1C 1A4 and 2Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6 *Author for correspondence: (e-mail: [email protected]) Accepted 19 October 2006 Summary The calling song of an undescribed Meconematinae species make pure-tone ultrasonic pulses. Wing velocities katydid (Tettigoniidae) from South America consists of and carriers among these pure-tone species fall into two trains of short, separated pure-tone sound pulses at groups: (1) species with ultrasonic carriers below 40·kHz 129·kHz (the highest calling note produced by an that have higher calling frequencies correlated with higher Arthropod). Paradoxically, these extremely high- wing-closing velocities and higher tooth densities: for these frequency sound waves are produced by a low-velocity katydids the relationship between average tooth strike movement of the stridulatory forewings. Sound production rate and song frequency approaches 1:1, as in cricket during a wing stroke is pulsed, but the wings do not pause escapement mechanisms; (2) a group of species with in their closing, requiring that the scraper, in its travel ultrasonic carriers above 40·kHz (that includes the along the file, must do so to create the pulses. We Meconematinae): for these katydids closing wing velocities hypothesize that during scraper pauses, the cuticle behind are dramatically lower and they make short trains of the scraper is bent by the ongoing relative displacement of pulses, with intervening periods of silence greater than the the wings, storing deformation energy.
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]
  • Modeling and Popula
    IV.6 Melanoplus sanguinipes Phenology North–South Across the Western United States J. R. Fisher, W. P. Kemp, and J. S. Berry Distribution and abundance of an insect species are A. elliotti hatchlings typically appear earlier in the spring affected by its habitat requirements, such as food and/or than M. sanguinipes hatchlings (Kemp and Sanchez climatic resources. As requirements become more spe- 1987), mainly because the pods of A. elliotti are nearer cific, distribution and abundance become more limited. the surface of the soil and are generally laid in areas de- For instance, Melanoplus bowditchi, a grasshopper found void of vegetation. Heat reaches the A. elliotti eggs ear- in many Western States, is limited to the range of its pri- lier in the spring, and thus they begin to develop earlier mary host plants, silver sagebrush and sand sagebrush than M. sanguinipes eggs, which are placed 0.4 inch (1 (Pfadt 1994). In fact, the relative abundance of these cm) deeper in the soil and among grass clumps (in areas plants will determine if you can even find M. bowditchi. cooler than bare areas) (Fisher 1993, Kemp and Sanchez Distribution of the bigheaded grasshopper, Aulocara 1987). elliotti, appears to be limited by climatic conditions. It feeds mainly on grasses and sedges but is restricted to M. sanguinipes and most other economically important States west of longitude 95° W, where it is particularly grasshopper species on rangeland have an embryonic dia- abundant in the more arid areas (Pfadt 1994). But M. pause. Diapause can be defined as a genetically con- femurrubrum, a general feeder (polyphagous), is distrib- trolled physiological state of suspended animation that uted throughout North America from coast to coast and will revert to normal working physiological processes from northern British Columbia to northern Guatemala and growth only after occurrence of a specific event or a (Pfadt 1994).
    [Show full text]
  • Anaphylaxis After First Ingestion of Chapulines (Grasshopper) In
    Research Article iMedPub Journals 2017 Clinical Immunology and Infectious Diseases www.imedpub.com Vol. 1 No. 1: 1 Anaphylaxis After First Ingestion of William N Sokol1*, Sabina Wünschmann2 and Chapulines (Grasshopper) in Patients Sayeh Agah2 Allergic to House Dust Mite, Cockroach, and Crustaceans. Is Tropomyosin The Cause? 1 University of California Irvine, Irvine, California, USA 2 Indoor Biotechnologies, Inc., Charlottesville, Virgenia, USA Abstract Two patients presented with a history of anaphylaxis (one with loss of *Corresponding author: consciousness, the other with laryngeal edema, urticaria, angioedema, and near William N. Sokol syncope) immediately after eating chapuline from Oaxaca, Mexico. Prick puncture testing to grasshopper antigen was 4+ in both patients and [email protected] negative in five non-allergic controls. Both patients gave a prior history of urticaria/angioedema/laryngeal edema following ingestion of crustaceans. In vitro University of California Irvine, Irvine, IgE specific antibodies to crustaceans, dust mites, and cockroach were positive in California, USA. both patients. Total IgE was greater than 2000 IU/mL in one patient, and 92.6 IU/ mL in the other (nl<87 IU/mL). Tryptase levels in both patients were not elevated. Tel: 9496511427 Specific IgE inhibition studies reveal that grasshopper extract contains antigens capable of binding to patient's specific IgE to crustaceans, cockroach, and mites, indicating the presence of a cross reacting pan-allergen in grasshopper extract. Immunoblot analysis of the grasshopper extract revealed the presence of a 30 kD molecular weight protein in grasshopper and chapuline and a 38 kD molecular Citation: Sokol WN, Wünschmann S, Agah weight protein in shrimp, which bound patient-specific IgE antibody.
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Studies in Nearctic Desert Sand Dune Orthoptera: a New Genus And
    Great Basin Naturalist Volume 25 Article 4 Number 3 – Number 4 12-31-1965 Studies in Nearctic desert sand dune Orthoptera: a new genus and species of stenopelmatine crickets from the Kelso Dunes with notes on its multi- annual life history and key. Part X Ernest R. Tinkham Indio, California Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Tinkham, Ernest R. (1965) "Studies in Nearctic desert sand dune Orthoptera: a new genus and species of stenopelmatine crickets from the Kelso Dunes with notes on its multi-annual life history and key. Part X," Great Basin Naturalist: Vol. 25 : No. 3 , Article 4. Available at: https://scholarsarchive.byu.edu/gbn/vol25/iss3/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. STUDIES IN NEARCTIC DESERT SAND DUNE OR'IHOPTERA A new (ienus and Species of Stenopehnatine Crickets fioni the Kelso Dunes with notes on its multi-annual life history and k(>\-. Part X Eitu'st R. Tinkliiiin' During the past decade the author has made a score of trips to the great Kelso Dunes studying its fauna and flora; the summers of 1957-1960 assisted by National Science Foundation grants. As these dunes lie 155 miles north of Indio. California, by road, a total of 6200 miles has been travelled in these trips during the period 1954-1964.
    [Show full text]