Renewable Energy in the California Desert Mechanisms for Evaluating Solar Development on Public Lands

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy in the California Desert Mechanisms for Evaluating Solar Development on Public Lands Renewable Energy in the California Desert Mechanisms for Evaluating Solar Development on Public Lands By Jesse Fernandes Natalie Flynn Samantha Gibbes Matthew Griffis Takahiro Isshiki Sean Killian Laura Palombi Nerissa Rujanavech Sarah Tomsky Meredith Tondro A project submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) School of Natural Resources and Environment University of Michigan April 2010 Faculty Advisor: Professor Steven Yaffee ACKNOWLEDGEMENTS We would like to express our sincere gratitude to our funders, who made this project possible: The Wilderness Society and Educational Foundation of America We would like to recognize and thank the many individuals who selflessly contributed their time and expertise, especially Alice Bond of The Wilderness Society. This project would have been nothing without your input and support. Thank you also to our advisor Professor Steve Yaffee for your valuable insight and feedback throughout this project. Lastly, we would like to thank our families and loved ones for their tireless patience and support through the whole of this sixteen-month process. www.snre.umich.edu/ecomgt/recd i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES ............................................................................................................. vi LIST OF MAPS ............................................................................................................. viii LIST OF ACRONYMS .......................................................................................................... ix EXECUTIVE SUMMARY ........................................................................................................ 1 CHAPTER 1 | INTRODUCTION AND METHODOLOGY ........................................................................... 7 Background .......................................................................................................... 7 Research Questions ................................................................................................ 9 Methodology ....................................................................................................... 11 Report Outline ..................................................................................................... 19 CHAPTER 2 | MANAGEMENT AND ECOLOGY OF THE CALIFORNIA DESERT .................................................... 23 Current Status of Development ................................................................................. 26 Management of the CDCA ........................................................................................ 26 Ecology of the California Desert ................................................................................ 31 Current Ecological Stressors ..................................................................................... 37 CHAPTER 3 | UTILITY-SCALE SOLAR TECHNOLOGIES ........................................................................ 45 Solar Technologies ................................................................................................ 45 Cooling Systems ................................................................................................... 51 Key Considerations of Developers .............................................................................. 54 CHAPTER 4 | POLICIES PROMOTING UTILITY-SCALE SOLAR DEVELOPMENT ON PUBLIC LANDS ................................ 57 Economic Drivers of Utility-Scale Solar Development ....................................................... 57 Policies Affecting Siting of Utility-Scale Solar Development on Public Land ............................ 66 Can Distributed Generation Eliminate the Need for Utility-Scale Solar Development? ................ 70 The Future of Utility-Scale Solar Development in California ............................................... 77 CHAPTER 5 | SITE-LEVEL SOLAR DEVELOPMENT AND ECOLOGICAL IMPACTS ................................................. 81 Site Development and Ecological Impacts ..................................................................... 81 Grading, Hydrological Modification, and Vegetation Removal ............................................. 82 Perimeter Fencing ................................................................................................ 92 Roads and Transmission Lines ................................................................................... 95 Facility Location and Placement ................................................................................ 98 CHAPTER 6 | LANDSCAPE-LEVEL SOLAR DEVELOPMENT AND ECOLOGICAL IMPACTS ......................................... 103 Land Use Efficiency .............................................................................................. 103 Water Use Efficiency ............................................................................................ 110 Solar Development Impacts: Species Case Studies .......................................................... 118 CHAPTER 7 | SPATIAL IMPACTS............................................................................................ 131 Ecological Impact Analyses: Defining the Scope ............................................................ 133 Ecological Impact Analyses: Sensitive Habitat ............................................................... 136 Ecological Impact Analyses: Transmission and Grading Disturbance ..................................... 154 Visual Impact Analysis ........................................................................................... 159 Conclusions ........................................................................................................ 169 CHAPTER 8 | SOCIOECONOMIC IMPACT ANALYSIS .......................................................................... 171 The Socioeconomic Impacts of Oil and Gas and Wind Energy Development ............................ 172 The Socioeconomic Impacts of Nevada Solar One on Boulder City: A Case Study ..................... 178 Utility-Scale Solar Development and Job Creation ......................................................... 186 Predicting the Impacts of Future Solar Facilities ........................................................... 190 ii Conclusion ......................................................................................................... 195 CHAPTER 9 | COMMUNITY ATTITUDES ..................................................................................... 197 Stakeholder Survey............................................................................................... 198 Attitudes Toward Utility-Scale Solar Development ......................................................... 199 Grouped Sample Results ........................................................................................ 203 Analysis of Open-Ended Questions ............................................................................. 204 Stakeholder Perceptions and Study Findings ................................................................. 207 Information Gaps and Sources ................................................................................. 212 Summary ........................................................................................................... 214 CHAPTER 10 | DECISION-MAKING PROCESS................................................................................ 217 Permitting Processes for Solar Development ................................................................ 217 Evaluation of the BLM Right-of-Way Process for Solar Facilities ......................................... 227 Analysis of Alternative Processes .............................................................................. 239 CHAPTER 11 | RECOMMENDATIONS ........................................................................................ 245 Recommendations for the BLM ................................................................................. 245 Recommendations for Supporting Continued Growth of Distributed Generation in California ...... 265 Recommendations for Future Research ....................................................................... 266 APPENDIX A | STAKEHOLDER SURVEY ...................................................................................... 271 APPENDIX B | UTILITY-SCALE SOLAR PROJECTS IN CALIFORNIA ............................................................ 285 APPENDIX C | ROAD ESTIMATES SUMMARY TABLE BY PROJECT ............................................................. 287 APPENDIX D | LAND USE EFFICIENCIES FOR INDIVIDUAL PROJECTS ......................................................... 289 APPENDIX E | SPATIAL ANALYSIS PROCESSING STEPS ...................................................................... 297 Appendix E1 | Standard Data Processing ..................................................................... 297 Appendix E2 | Defining the Scope ............................................................................. 300 Appendix E3 | Ecology Numerical Scores ..................................................................... 303 Appendix E4 | Sensitive Habitat Processing ................................................................. 307 Appendix E5 | Transmission and Grading Disturbance Processing ........................................ 328 Appendix
Recommended publications
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • Investigations Into Stability in the Fig/Fig-Wasp Mutualism
    Investigations into stability in the fig/fig-wasp mutualism Sarah Al-Beidh A thesis submitted for the degree of Doctor of Philosophy of Imperial College London. Declaration I hereby declare that this submission is my own work, or if not, it is clearly stated and fully acknowledged in the text. Sarah Al-Beidh 2 Abstract Fig trees (Ficus, Moraceae) and their pollinating wasps (Chalcidoidea, Agaonidae) are involved in an obligate mutualism where each partner relies on the other in order to reproduce: the pollinating fig wasps are a fig tree’s only pollen disperser whilst the fig trees provide the wasps with places in which to lay their eggs. Mutualistic interactions are, however, ultimately genetically selfish and as such, are often rife with conflict. Fig trees are either monoecious, where wasps and seeds develop together within fig fruit (syconia), or dioecious, where wasps and seeds develop separately. In interactions between monoecious fig trees and their pollinating wasps, there are conflicts of interest over the relative allocation of fig flowers to wasp and seed development. Although fig trees reap the rewards associated with wasp and seed production (through pollen and seed dispersal respectively), pollinators only benefit directly from flowers that nurture the development of wasp larvae, and increase their fitness by attempting to oviposit in as many ovules as possible. If successful, this oviposition strategy would eventually destroy the mutualism; however, the interaction has lasted for over 60 million years suggesting that mechanisms must be in place to limit wasp oviposition. This thesis addresses a number of factors to elucidate how stability may be achieved in monoecious fig systems.
    [Show full text]
  • Overview of Concentrated Solar Energy Technologies
    Online Continuing Education for Professional Engineers Since 2009 Overview of Concentrated Solar Energy Technologies PDH Credits: 6 PDH Course No.: CST101 Publication Source: Original Courseware by Donald W. Parnell, PE Release Date: 2018 DISCLAIMER: All course materials available on this website are not to be construed as a representation or warranty on the part of Online-PDH, or other persons and/or organizations named herein. All course literature is for reference purposes only, and should not be used as a substitute for competent, professional engineering council. Use or application of any information herein, should be done so at the discretion of a licensed professional engineer in that given field of expertise. Any person(s) making use of this information, herein, does so at their own risk and assumes any and all liabilities arising therefrom. Copyright © 2009 Online-PDH - All Rights Reserved 1265 San Juan Dr. - Merritt Island, FL 32952 Phone: 321-501-5601 Primer on Concentrated Solar Energy Credits: 6 PDH Course Description This course discusses several of the more proven concentrating solar power technologies presently on the market. Also discussed will be the basic units commonly found in most types of CSP facilities: solar reflectors (mirrors), solar receivers, and solar tracking devices, along with their ancillary components. Discussed will be the primary application of using solar thermal heat for generating steam for turbine electrical power production. Other applications for concentrated solar are high thermal heat processes
    [Show full text]
  • Judy Chicago Unit Living Smoke, a Tribute to the Living Desert
    JUDY CHICAGO UNIT LIVING SMOKE, A TRIBUTE TO THE LIVING DESERT Title of Artists in the Desert Landscape Time: 60 mins. lesson Standards Grade National Core Arts Standards: Visual Arts Anchor Standards-7,10,11 6-8 Addressed level FACILITATION Preparation Before the Lesson 1. Review the entire video. 2. Review the website and video clip used: “Judy Chicago: A Fireworks Story” (note, some nudity) ● Safe Link: https://video.link/w/MzpVb ● Original Link: https://youtu.be/MvqxVu4DHhg 3. Review the hands-on activity in the lesson. 4. Review Vocabulary Terms ● Resonate- sympathetic to your own experience or outlook; something that moves a person emotionally; or initiates action to do or create something as a response ● Land Art- art that is made directly in the landscape, sculpting the land itself into earthworks or making structures in the landscape using natural materials such as rocks or twigs ● Desert Ecology-The study of interactions between both biotic and abiotic components of desert environments. A desert ecosystem is defined by interactions between organisms, the climate in which they live, and any other non-living influences on the habitat. 5. Open each website/resource behind the zoom screen. 6. Start that Zoom session 10 minutes before your scheduled start time to support students with tech challenges. Necessary Student Materials • n/a Step 1: Agreements Set Expectations 3 minutes 1. Use this time to welcome your learners and establish how you expect them to engage/participate. ● Ask the learners: What would help us to stay engaged during the lesson? How can we all be accountable to the learning during this lesson? Step 2: The Hook Activate Prior Knowledge 15-20 minutes 1.
    [Show full text]
  • South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level.
    [Show full text]
  • Studies in Nearctic Desert Sand Dune Orthoptera: a New Genus And
    Great Basin Naturalist Volume 25 Article 4 Number 3 – Number 4 12-31-1965 Studies in Nearctic desert sand dune Orthoptera: a new genus and species of stenopelmatine crickets from the Kelso Dunes with notes on its multi- annual life history and key. Part X Ernest R. Tinkham Indio, California Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Tinkham, Ernest R. (1965) "Studies in Nearctic desert sand dune Orthoptera: a new genus and species of stenopelmatine crickets from the Kelso Dunes with notes on its multi-annual life history and key. Part X," Great Basin Naturalist: Vol. 25 : No. 3 , Article 4. Available at: https://scholarsarchive.byu.edu/gbn/vol25/iss3/4 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. STUDIES IN NEARCTIC DESERT SAND DUNE OR'IHOPTERA A new (ienus and Species of Stenopehnatine Crickets fioni the Kelso Dunes with notes on its multi-annual life history and k(>\-. Part X Eitu'st R. Tinkliiiin' During the past decade the author has made a score of trips to the great Kelso Dunes studying its fauna and flora; the summers of 1957-1960 assisted by National Science Foundation grants. As these dunes lie 155 miles north of Indio. California, by road, a total of 6200 miles has been travelled in these trips during the period 1954-1964.
    [Show full text]
  • Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
    CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case.
    [Show full text]
  • New Energy Plans Talk to Orange County Mensa September 6, 2009
    New Energy Plans Talk to Orange County Mensa September 6, 2009 Dennis Silverman Physics and Astronomy U. C. Irvine www.physics.uci.edu/~silverma/ Topics •Energy Plans being worked on –World –U.S. –California –Local Cities •Individual Energy Possibilities –Transportation Related –Easy Household Actions •Automotive Advances •Greenhouse Gas Free Sources –Nuclear –Solar Worldwide Negotiations in Copenhagen 2009 •This December 7-18 in Copenhagen, the United Nations will meet in the UN Climate Change Conference to decide on new greenhouse gas emissions limits and a framework to follow the Kyoto protocol that ends in 2012. •The least UN goal may be a 50% reduction in greenhouse gases by 2050. This would be on the way to limit global warming to 2°F over the present temperature by the end of the century. •A main problem is China’s participation in limits. •If they don’t participate there is the question of carbon import taxes versus free trade agreements. •The European Union goal is 20% below 1990 levels by 2020, called the “20- 20-20” plan. •European countries are setting goals of a 60% to 80% reduction by 2050. •UN Climate Chief Yvo deBoer adds two other questions: “ 3. How is the help needed by developing countries to engage in reducing their emissions and adapting to the impacts of climate change going to be financed? 4. How is that money going to be managed?” •President Obama will address the Climate Change Summit at the UN on Sept. 22. •Further negotiating sessions before Copenhagen are in Bangkok and in Barcelona. Sources of US Greenhouse Gas Emissions Investments in New Power and Power Research in the US •The US goal is to cut CO2 emissions by 14% from 2005 levels by 2020, and 83% by 2050.
    [Show full text]
  • HISTORICAL VICARIANCE and POSTGLACIAL COLONIZATION EFFECTS on the EVOLUTION of GENETIC STRUCTURE in LOPHOCEREUS, a SONORAN DESERT COLUMNAR CACTUS Author(S): John D
    HISTORICAL VICARIANCE AND POSTGLACIAL COLONIZATION EFFECTS ON THE EVOLUTION OF GENETIC STRUCTURE IN LOPHOCEREUS, A SONORAN DESERT COLUMNAR CACTUS Author(s): John D. Nason, J. L. Hamrick, Theodore H. Fleming Source: Evolution, 56(11):2214-2226. 2002. Published By: The Society for the Study of Evolution DOI: http://dx.doi.org/10.1554/0014-3820(2002)056[2214:HVAPCE]2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1554/0014-3820%282002%29056%5B2214%3AHVAPCE %5D2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Evolution, 56(11), 2002, pp. 2214±2226 HISTORICAL VICARIANCE AND POSTGLACIAL COLONIZATION EFFECTS ON THE EVOLUTION OF GENETIC STRUCTURE IN LOPHOCEREUS, A SONORAN DESERT COLUMNAR CACTUS JOHN D. NASON,1,2 J. L. HAMRICK,3,4 AND THEODORE H. FLEMING5,6 1Department of Botany, Iowa State University, Ames, Iowa 50011 2E-mail: [email protected] 3Departments of Botany and Genetics, University of Georgia, Athens, Georgia 30602 4E-mail: [email protected] 5Department of Biology, University of Miami, Coral Gables, Florida 33124 6E-mail: t¯eming@®g.cox.miami.edu Abstract.
    [Show full text]
  • Similarity of Climate Change Data for Antarctica and Nevada
    Undergraduate Research Opportunities Undergraduate Research Opportunities Program (UROP) Program (UROP) 2010 Aug 3rd, 9:00 AM - 12:00 PM Similarity of climate change data for Antarctica and Nevada Corbin Benally University of Nevada, Las Vegas Shahram Latifi University of Nevada, Las Vegas, [email protected] Karletta Chief Desert Research Institute Follow this and additional works at: https://digitalscholarship.unlv.edu/cs_urop Part of the Climate Commons, and the Desert Ecology Commons Repository Citation Benally, Corbin; Latifi, Shahram; and Chief, Karletta, "Similarity of climate change data for Antarctica and Nevada" (2010). Undergraduate Research Opportunities Program (UROP). 5. https://digitalscholarship.unlv.edu/cs_urop/2010/aug3/5 This Event is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Event in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Event has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Similarity of Climate Change Data for Antarctica and Nevada Corbin Benally1, Dr. Shahram Latifi1, Dr. Karletta Chief2 1University of Nevada, Las Vegas, Las Vegas, NV 2Desert Research Institute, Las Vegas, NV Abstract Results References The correlation between temperature and carbon dioxide Throughout the duration of the research, data was readily 1.
    [Show full text]
  • Biological Resources Study for the Burrtec Waste and Recycling Services Yucca Valley Facility
    BIOLOGICAL RESOURCES STUDY FOR THE BURRTEC WASTE AND RECYCLING SERVICES YUCCA VALLEY FACILITY YUCCA VALLEY, SAN BERNARDINO COUNTY, CALIFORNIA Prepared By: Hernandez Environmental Services 29376 North Lake Drive Lake Elsinore, California 92530 (909) 772-9009 Prepared for: Burrtec Waste and Recycling Services Waste & Recycling Services 9890 Cherry Avenue Fontana, CA 92235 July 2015 Burrtec Waste and Recycling Services Yucca Valley Facility Biological Resources Study TABLE OF CONTENTS TABLE OF CONTENTS............................................................................................................................i EXECUTIVE SUMMARY........................................................................................................................1 1.0 INTRODUCTION........................................................................................................................2 1.1 Project Location......................................................................................................................2 1.2 Project Description..................................................................................................................2 1.3 Purpose of Biological Resources Study......................................................................................2 2.0 METHODOLOGY..........................................................................................................................3 2.1 Biological Resources Study Scope of Work............................................................................3
    [Show full text]