OPTI 509 Optical Design and Instrumentation II Course overview and syllabus i Instructor and notes information Instructor: Kurt Thome Email:
[email protected] Office: Meinel 605A Office hours Tues. Wed. Phone: 621-4535 There is no assigned text for the class Reference texts: Optical Radiation Measurements: Radiometry -Grum and Becherer Radiometry and the Optical Detection of Radiation -Boyd Aberrations of Optical Systems -Welford Class notes are available via web access http://www.optics.arizona.edu/kurt/opti509/opti509.php ii Course description Course covers the use of radiometry and impact of aberrations in optical design Discussion of optical systems via ray trace codes, ray fans, & spot diagrams. The effects of optical aberrations and methods for balancing effects of various aberrations. Radiometric concepts of projected area & solid angle, generation and propagation of radiation, absorption, reflection, transmission and scattering, and radiometric laws. Application to laboratory & natural sources and measurement of radiation Why radiometry and aberrations? OPTI 502 gave optical design from the “optics” point of view OPTI 509 shows tools needed to ensure enough light gets through the system (radiometry) and goes to the right place (aberrations) iii Course overview Propagation of radiation 1. Class introduction, Radiometric and photometric terminology 2. Areas and solid angles; projected solid angles, projected areas 3. Radiance, throughput 4. Invariance of throughput and radiance; Lagrange invariant, radiative transfer, radiant flux 5. E, I, M, reflectance, transmittance, absorptance, emissivity, Planck's Law 6. Lambert's law; isotropic vs. lambertian; M vs. L, inverse square and cosine laws, examples 7. Directional reflectance, simplifications, assumptions, view & form factors, basic and simple radiometer 8.