Motivation: Brdfs, Radiometry

Total Page:16

File Type:pdf, Size:1020Kb

Motivation: Brdfs, Radiometry Motivation: BRDFs, Radiometry Sampling and Reconstruction of Visual Appearance § Basics of Illumination, Reflection § Formal radiometric analysis (not ad-hoc) CSE 274 [Fall 2018], Lecture 2 § Reflection Equation Ravi Ramamoorthi § Monte Carlo Rendering next week http://www.cs.ucsd.edu/~ravir § Appreciate formal analysis in a graduate course, even if not absolutely essential in practice Radiometry § Physical measurement of electromagnetic energy § Measure spatial (and angular) properties of light § Radiance, Irradiance § Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF § Reflection Equation § Simple BRDF models 1 Radiance Radiance properties ? Radiance constant as propagates along ray ? Power per unit projected area perpendicular – Derived from conservation of flux to the ray per unit solid angle in the direction of the ray – Fundamental in Light Transport. dΦ == L dωω dA L d dA = dΦ 1 1112 2 2 2 2 ωω==22 ? Symbol: L(x,ω) (W/m sr) d12 dA r d 21 dA r dA dA dωω dA==12 d dA ? Flux given by 11 r 2 2 2 dΦ = L(x,ω) cos θ dω dA ∴LL12= 2 Radiance properties Irradiance, Radiosity ? Sensor response proportional to radiance ? Irradiance E is radiant power per unit area (constant of proportionality is throughput) ? Integrate incoming radiance over – Far away surface: See more, but subtends hemisphere smaller angle – Projected solid angle (cos θ dω) – Wall equally bright across viewing distances – Uniform illumination: Consequences Irradiance = π [CW 24,25] 2 – Radiance associated with rays in a ray tracer – Units: W/m – Other radiometric quants derived from radiance ? Radiant Exitance (radiosity) – Power per unit area leaving surface (like irradiance) Irradiance Environment Maps R N Incident Radiance Irradiance Environment Map (Illumination Environment Map) 3 Radiometry § Physical measurement of electromagnetic energy § Measure spatial (and angular) properties of light § Radiance, Irradiance § Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF § Reflection Equation § Simple BRDF models Building up the BRDF ? Bi-Directional Reflectance Distribution Function [Nicodemus 77] ? Function based on incident, view direction ? Relates incoming light energy to outgoing ? Unifying framework for many materials 4 BRDF ? Reflected Radiance proportional Irradiance ? Constant proportionality: BRDF ? Ratio of outgoing light (radiance) to incoming light (irradiance) – Bidirectional Reflection Distribution Function – (4 Vars) units 1/sr Lrr()ω f (,ωωir )= Ldii(ω )cos θω i i Lrr(ω )= Lf ii ( ω ) ( ωω ir , )cos θ i d ω i Isotropic vs Anisotropic § Isotropic: Most materials (you can rotate about normal without changing reflections) § Anisotropic: brushed metal etc. preferred tangential direction Isotropic Anisotropic Reflection Equation ω i ωr x L (x,ω ) = L (x,ω ) + L (x,ω )f (x,ω ,ω )(ω i n) r r e r i i i r i Reflected Light Emission Incident BRDF Cosine of (Output Image) Light (from Incident angle light source) 5 Reflection Equation Reflection Equation ω ω ω ω i r dωi i r x x Replace sum with integral Sum over all light sources Lx(,ω )=+ L (, xω ) Lx (,ωω )(,fx ωθ , )cos dω L (x,ω ) = L (x,ω ) + L (x,ω )f (x,ω ,ω )(ω i n) r r e r∫ i i ir i i r r e r ∑ i i i r i Ω Reflected Light Emission Incident BRDF Cosine of Reflected Light Emission Incident BRDF Cosine of (Output Image) Light (from Incident angle (Output Image) Light (from Incident angle light source) light source) Radiometry Brdf Viewer plots § Physical measurement of electromagnetic energy § Measure spatial (and angular) properties of light § Radiance, Irradiance § Reflection functions: Bi-Directional Reflectance Diffuse Torrance-Sparrow Distribution Function or BRDF Anisotropic § Reflection Equation § Simple BRDF models bv written by Szymon Rusinkiewicz 6 Specular Term (Phong) Torrance-Sparrow Fresnel term: Geometric Attenuation: allows for wavelength reduces the output based on the dependency amount of shadowing or masking that occurs. Distribution: F(θ i)G(ω i,ω r)D(θ h) distribution function f = determines what 4cos(θ i)cos(θ r) percentage of How much of the microfacets are macroscopic surface oriented to reflect in How much of the the viewer direction. is visible to the light macroscopic source surface is visible to the viewer Other BRDF models § Empirical: Measure and build a 4D table § Anisotropic models for hair, brushed steel § Cartoon shaders, funky BRDFs § Capturing spatial variation § Very active area of research 7 .
Recommended publications
  • Spectral Reflectance and Emissivity of Man-Made Surfaces Contaminated with Environmental Effects
    Optical Engineering 47͑10͒, 106201 ͑October 2008͒ Spectral reflectance and emissivity of man-made surfaces contaminated with environmental effects John P. Kerekes, MEMBER SPIE Abstract. Spectral remote sensing has evolved considerably from the Rochester Institute of Technology early days of airborne scanners of the 1960’s and the first Landsat mul- Chester F. Carlson Center for Imaging Science tispectral satellite sensors of the 1970’s. Today, airborne and satellite 54 Lomb Memorial Drive hyperspectral sensors provide images in hundreds of contiguous narrow Rochester, New York 14623 spectral channels at spatial resolutions down to meter scale and span- E-mail: [email protected] ning the optical spectral range of 0.4 to 14 ␮m. Spectral reflectance and emissivity databases find use not only in interpreting these images but also during simulation and modeling efforts. However, nearly all existing Kristin-Elke Strackerjan databases have measurements of materials under pristine conditions. Aerospace Engineering Test Establishment The work presented extends these measurements to nonpristine condi- P.O. Box 6550 Station Forces tions, including materials contaminated with sand and rain water. In par- Cold Lake, Alberta ticular, high resolution spectral reflectance and emissivity curves are pre- T9M 2C6 Canada sented for several man-made surfaces ͑asphalt, concrete, roofing shingles, and vehicles͒ under varying amounts of sand and water. The relationship between reflectance and area coverage of the contaminant Carl Salvaggio, MEMBER SPIE is reported and found to be linear or nonlinear, depending on the mate- Rochester Institute of Technology rials and spectral region. In addition, new measurement techniques are Chester F. Carlson Center for Imaging Science presented that overcome limitations of existing instrumentation and labo- 54 Lomb Memorial Drive ratory settings.
    [Show full text]
  • Radiosity Radiosity
    Radiosity Radiosity Motivation: what is missing in ray-traced images? Indirect illumination effects Color bleeding Soft shadows Radiosity is a physically-based illumination algorithm capable of simulating the above phenomena in a scene made of ideal diffuse surfaces. Books: Cohen and Wallace, Radiosity and Realistic Image Synthesis, Academic Press Professional 1993. Sillion and Puech, Radiosity and Global Illumination, Morgan- Kaufmann, 1994. Indirect illumination effects Radiosity in a Nutshell Break surfaces into many small elements Light source Formulate and solve a linear system of equations that models the equilibrium of inter-reflected Eye light in a scene. Diffuse Reflection The solution gives us the amount of light leaving each point on each surface in the scene. Once solution is computed, the shaded elements can be quickly rendered from any viewpoint. Meshing (partition into elements) Radiosity Input geometry Change geometry Form-Factors Change light or colors Solution Render Change view 1 Radiometric quantities The Radiosity Equation Radiant energy [J] Assume that surfaces in the scene have been discretized into n small elements. Radiant power (flux): radiant energy per second [W] Assume that each element emits/reflects light Irradiance (flux density): incident radiant power per uniformly across its surface. unit area [W/m2] Define the radiosity B as the total hemispherical Radiosity (flux density): outgoing radiant power per flux density (W/m2) leaving a surface. unit area [W/m2] Let’’s write down an expression describing the total flux (light power) leaving element i in the Radiance (angular flux dedensity):nsity): radiant power per scene: unit projected area per unit solid angle [W/(m2 sr)] scene: total flux = emitted flux + reflected flux The Radiosity Equation The Form Factor Total flux leaving element i: Bi Ai The form factor Fji tells us how much of the flux Total flux emitted by element i: Ei Ai leaving element j actually reaches element i.
    [Show full text]
  • Black Body Radiation and Radiometric Parameters
    Black Body Radiation and Radiometric Parameters: All materials absorb and emit radiation to some extent. A blackbody is an idealization of how materials emit and absorb radiation. It can be used as a reference for real source properties. An ideal blackbody absorbs all incident radiation and does not reflect. This is true at all wavelengths and angles of incidence. Thermodynamic principals dictates that the BB must also radiate at all ’s and angles. The basic properties of a BB can be summarized as: 1. Perfect absorber/emitter at all ’s and angles of emission/incidence. Cavity BB 2. The total radiant energy emitted is only a function of the BB temperature. 3. Emits the maximum possible radiant energy from a body at a given temperature. 4. The BB radiation field does not depend on the shape of the cavity. The radiation field must be homogeneous and isotropic. T If the radiation going from a BB of one shape to another (both at the same T) were different it would cause a cooling or heating of one or the other cavity. This would violate the 1st Law of Thermodynamics. T T A B Radiometric Parameters: 1. Solid Angle dA d r 2 where dA is the surface area of a segment of a sphere surrounding a point. r d A r is the distance from the point on the source to the sphere. The solid angle looks like a cone with a spherical cap. z r d r r sind y r sin x An element of area of a sphere 2 dA rsin d d Therefore dd sin d The full solid angle surrounding a point source is: 2 dd sind 00 2cos 0 4 Or integrating to other angles < : 21cos The unit of solid angle is steradian.
    [Show full text]
  • Reflectometers for Absolute and Relative Reflectance
    sensors Communication Reflectometers for Absolute and Relative Reflectance Measurements in the Mid-IR Region at Vacuum Jinhwa Gene 1 , Min Yong Jeon 1,2 and Sun Do Lim 3,* 1 Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Korea; [email protected] (J.G.); [email protected] (M.Y.J.) 2 Department of Physics, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea 3 Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea * Correspondence: [email protected] Abstract: We demonstrated spectral reflectometers for two types of reflectances, absolute and relative, of diffusely reflecting surfaces in directional-hemispherical geometry. Both are built based on the integrating sphere method with a Fourier-transform infrared spectrometer operating in a vacuum. The third Taylor method is dedicated to the reflectometer for absolute reflectance, by which absolute spectral diffuse reflectance scales of homemade reference plates are realized. With the reflectometer for relative reflectance, we achieved spectral diffuse reflectance scales of various samples including concrete, polystyrene, and salt plates by comparing against the reference standards. We conducted ray-tracing simulations to quantify systematic uncertainties and evaluated the overall standard uncertainty to be 2.18% (k = 1) and 2.99% (k = 1) for the absolute and relative reflectance measurements, respectively. Keywords: mid-infrared; total reflectance; metrology; primary standard; 3rd Taylor method Citation: Gene, J.; Jeon, M.Y.; Lim, S.D. Reflectometers for Absolute and 1. Introduction Relative Reflectance Measurements in Spectral diffuse reflectance in the mid-infrared (MIR) region is now of great interest the Mid-IR Region at Vacuum.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Analyzing Reflectance Data for Various Black Paints and Coatings
    Analyzing Reflectance Data for Various Black Paints and Coatings Mimi Huynh US Army NVESD UNITED STATES OF AMERICA [email protected] ABSTRACT The US Army NVESD has previously measured the reflectance of a number of different levels of black paints and coatings using various laboratory and field instruments including the SOC-100 hemispherical directional reflectometer (2.0 – 25 µm) and the Perkin Elmer Lambda 1050 (0.39 – 2.5 µm). The measurements include off-the-shelf paint to custom paints and coatings. In this talk, a number of black paints and coatings will be presented along with their reflectivity data, cost per weight analysis, and potential applications. 1.0 OVERVIEW Black paints and coatings find an important role in hyperspectral imaging from the sensor side to the applications side. Black surfaces can enhance sensor performance and calibration performance. On the sensor side, black paints and coatings can be found in the optical coatings, mechanical and enclosure coating. Black paints and coating can be used inside the sensor to block or absorb stray light, preventing it from getting to the detector and affecting the imagery. Stray light can affect the signal-to-noise ratio (SNR) as well introduce unwanted photons at certain wavelengths. Black paints or coatings can also be applied to a baffle or area around the sensor in laboratory calibration with a known light source. This is to ensure that no stray light enter the measurement and calculations. In application, black paints and coatings can be applied to calibration targets from the reflectance bands (VIS- SWIR) and also in the thermal bands (MWIR-LWIR).
    [Show full text]
  • Reflectance IR Spectroscopy, Khoshhesab
    11 Reflectance IR Spectroscopy Zahra Monsef Khoshhesab Payame Noor University Department of Chemistry Iran 1. Introduction Infrared spectroscopy is study of the interaction of radiation with molecular vibrations which can be used for a wide range of sample types either in bulk or in microscopic amounts over a wide range of temperatures and physical states. As was discussed in the previous chapters, an infrared spectrum is commonly obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is absorbed at a particular energy (the energy at which any peak in an absorption spectrum appears corresponds to the frequency of a vibration of a part of a sample molecule). Aside from the conventional IR spectroscopy of measuring light transmitted from the sample, the reflection IR spectroscopy was developed using combination of IR spectroscopy with reflection theories. In the reflection spectroscopy techniques, the absorption properties of a sample can be extracted from the reflected light. Reflectance techniques may be used for samples that are difficult to analyze by the conventional transmittance method. In all, reflectance techniques can be divided into two categories: internal reflection and external reflection. In internal reflection method, interaction of the electromagnetic radiation on the interface between the sample and a medium with a higher refraction index is studied, while external reflectance techniques arise from the radiation reflected from the sample surface. External reflection covers two different types of reflection: specular (regular) reflection and diffuse reflection. The former usually associated with reflection from smooth, polished surfaces like mirror, and the latter associated with the reflection from rough surfaces.
    [Show full text]
  • Extraction of Incident Irradiance from LWIR Hyperspectral Imagery Pierre Lahaie, DRDC Valcartier 2459 De La Bravoure Road, Quebec, Qc, Canada
    DRDC-RDDC-2015-P140 Extraction of incident irradiance from LWIR hyperspectral imagery Pierre Lahaie, DRDC Valcartier 2459 De la Bravoure Road, Quebec, Qc, Canada ABSTRACT The atmospheric correction of thermal hyperspectral imagery can be separated in two distinct processes: Atmospheric Compensation (AC) and Temperature and Emissivity separation (TES). TES requires for input at each pixel, the ground leaving radiance and the atmospheric downwelling irradiance, which are the outputs of the AC process. The extraction from imagery of the downwelling irradiance requires assumptions about some of the pixels’ nature, the sensor and the atmosphere. Another difficulty is that, often the sensor’s spectral response is not well characterized. To deal with this unknown, we defined a spectral mean operator that is used to filter the ground leaving radiance and a computation of the downwelling irradiance from MODTRAN. A user will select a number of pixels in the image for which the emissivity is assumed to be known. The emissivity of these pixels is assumed to be smooth and that the only spectrally fast varying variable in the downwelling irradiance. Using these assumptions we built an algorithm to estimate the downwelling irradiance. The algorithm is used on all the selected pixels. The estimated irradiance is the average on the spectral channels of the resulting computation. The algorithm performs well in simulation and results are shown for errors in the assumed emissivity and for errors in the atmospheric profiles. The sensor noise influences mainly the required number of pixels. Keywords: Hyperspectral imagery, atmospheric correction, temperature emissivity separation 1. INTRODUCTION The atmospheric correction of thermal hyperspectral imagery aims at extracting the temperature and the emissivity of the material imaged by a sensor in the long wave infrared (LWIR) spectral band.
    [Show full text]
  • RADIATION HEAT TRANSFER Radiation
    MODULE I RADIATION HEAT TRANSFER Radiation Definition Radiation, energy transfer across a system boundary due to a T, by the mechanism of photon emission or electromagnetic wave emission. Because the mechanism of transmission is photon emission, unlike conduction and convection, there need be no intermediate matter to enable transmission. The significance of this is that radiation will be the only mechanism for heat transfer whenever a vacuum is present. Electromagnetic Phenomena. We are well acquainted with a wide range of electromagnetic phenomena in modern life. These phenomena are sometimes thought of as wave phenomena and are, consequently, often described in terms of electromagnetic wave length, . Examples are given in terms of the wave distribution shown below: m UV X Rays 0.4-0.7 Thermal , ht Radiation Microwave g radiation Visible Li 10-5 10-4 10-3 10-2 10-1 10-0 101 102 103 104 105 Wavelength, , m One aspect of electromagnetic radiation is that the related topics are more closely associated with optics and electronics than with those normally found in mechanical engineering courses. Nevertheless, these are widely encountered topics and the student is familiar with them through every day life experiences. From a viewpoint of previously studied topics students, particularly those with a background in mechanical or chemical engineering, will find the subject of Radiation Heat Transfer a little unusual. The physics background differs fundamentally from that found in the areas of continuum mechanics. Much of the related material is found in courses more closely identified with quantum physics or electrical engineering, i.e. Fields and Waves.
    [Show full text]
  • RADIANCE® ULTRA 27” Premium Endoscopy Visualization
    EW NNEW RADIANCE® ULTRA 27” Premium Endoscopy Visualization The Radiance® Ultra series leads the industry as a revolutionary display with the aim to transform advanced visualization technology capabilities and features into a clinical solution that supports the drive to improve patient outcomes, improve Optimized for endoscopy applications workflow efficiency, and lower operating costs. Advanced imaging capabilities Enhanced endoscopic visualization is accomplished with an LED backlight technology High brightness and color calibrated that produces the brightest typical luminance level to enable deep abdominal Cleanable splash-proof design illumination, overcoming glare and reflection in high ambient light environments. Medi-Match™ color calibration assures consistent image quality and accurate color 10-year scratch-resistant-glass guarantee reproduction. The result is outstanding endoscopic video image performance. ZeroWire® embedded receiver optional With a focus to improve workflow efficiency and workplace safety, the Radiance Ultra series is available with an optional built-in ZeroWire receiver. When paired with the ZeroWire Mobile battery-powered stand, the combination becomes the world’s first and only truly cordless and wireless mobile endoscopic solution (patent pending). To eliminate display scratches caused by IV poles or surgical light heads, the Radiance Ultra series uses scratch-resistant, splash-proof edge-to-edge glass that includes an industry-exclusive 10-year scratch-resistance guarantee. RADIANCE® ULTRA 27” Premium Endoscopy
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • Ikonos DN Value Conversion to Planetary Reflectance Values by David Fleming CRESS Project, UMCP Geography April 2001
    Ikonos DN Value Conversion to Planetary Reflectance Values By David Fleming CRESS Project, UMCP Geography April 2001 This paper was produced by the CRESS Project at the University of Maryland. CRESS is sponsored by the Earth Science Enterprise Applications Directorate at NASA Stennis Space Center. The following formula from the Landsat 7 Science Data Users Handbook was used to convert Ikonos DN values to planetary reflectance values: ρp = planetary reflectance Lλ = spectral radiance at sensor’s aperture 2 ρp = π * Lλ * d ESUNλ = band dependent mean solar exoatmospheric irradiance ESUNλ * cos(θs) θs = solar zenith angle d = earth-sun distance, in astronomical units For Landsat 7, the spectral radiance Lλ = gain * DN + offset, which can also be expressed as Lλ = (LMAX – LMIN)/255 *DN + LMIN. The LMAX and LMIN values for each of the Landsat bands are given below in Table 1. These values may vary for each scene and the metadata contains image specific values. Table 1. ETM+ Spectral Radiance Range (W/m2 * sr * µm) Low Gain High Gain Band Number LMIN LMAX LMIN LMAX 1 -6.2 293.7 -6.2 191.6 2 -6.4 300.9 -6.4 196.5 3 -5.0 234.4 -5.0 152.9 4 -5.1 241.1 -5.1 157.4 5 -1.0 47.57 -1.0 31.06 6 0.0 17.04 3.2 12.65 7 -0.35 16.54 -0.35 10.80 8 -4.7 243.1 -4.7 158.3 (from Landsat 7 Science Data Users Handbook) The Ikonos spectral radiance, Lλ, can be calculated by using the formula given in the Space Imaging Document Number SE-REF-016: 2 Lλ (mW/cm * sr) = DN / CalCoefλ However, in order to use these values in the conversion formula, the values must be in units of 2 W/m * sr * µm.
    [Show full text]