Overview Radiometry and Photometry

Total Page:16

File Type:pdf, Size:1020Kb

Overview Radiometry and Photometry Overview Foundations of Computer Graphics (Spring 2012) . Lighting and shading key in computer graphics . CS 184, Lecture 21: Radiometry HW 2 etc. ad-hoc shading models, no units http://inst.eecs.berkeley.edu/~cs184 . Really, want to match physical light reflection . Next 3 lectures look at this formally . Today: physical measurement of light: radiometry . Formal reflection equation, reflectance models . Global Illumination (later) Many slides courtesy Pat Hanrahan Radiometry and Photometry . Physical measurement of electromagnetic energy . Measure spatial (and angular) properties of light . Radiant Power . Radiant Intensity . Irradiance . Inverse square and cosine law . Radiance . Radiant Exitance (Radiosity) . Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF . Reflection Equation 1 2 Radiometry and Photometry . Physical measurement of electromagnetic energy . Measure spatial (and angular) properties of light . Radiant Power . Radiant Intensity . Irradiance . Inverse square and cosine law . Radiance . Radiant Exitance (Radiosity) . Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF . Reflection Equation 3 Radiometry and Photometry . Physical measurement of electromagnetic energy . Measure spatial (and angular) properties of light . Radiant Power . Radiant Intensity . Irradiance . Inverse square and cosine law . Radiance . Radiant Exitance (Radiosity) . Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF . Reflection Equation Radiance E Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray E Symbol: L(x,ω) (W/m2 sr) E Flux given by dΦ = L(x,ω) cos θ dω dA Radiance properties E Radiance constant as propagates along ray – Derived from conservation of flux – Fundamental in Light Transport. dΦ == L dωω dA L d dA = dΦ 1 1112 2 2 2 22 dωω12== dA r d 21 dA r dA dA dωω dA==12 d dA 11 r 2 2 2 ∴LL12= 4 Radiance properties Irradiance, Radiosity E Sensor response proportional to radiance E Irradiance E is radiant power per unit area (constant of proportionality is throughput) E Integrate incoming radiance over – Far surface: See more, but subtend smaller angle hemisphere – Wall equally bright across viewing distances – Projected solid angle (cos θ dω) Consequences – Uniform illumination: Irradiance = π [CW 24,25] – Radiance associated with rays in a ray tracer – Units: W/m2 – Other radiometric quants derived from radiance E Radiant Exitance (radiosity) – Power per unit area leaving surface (like irradiance) 5 Irradiance Environment Maps R N Incident Radiance Irradiance Environment Map (Illumination Environment Map) Radiometry and Photometry . Physical measurement of electromagnetic energy . Measure spatial (and angular) properties of light . Radiant Power . Radiant Intensity . Irradiance . Inverse square and cosine law . Radiance . Radiant Exitance (Radiosity) . Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF . Reflection Equation 6 Building up the BRDF E Bi-Directional Reflectance Distribution Function [Nicodemus 77] E Function based on incident, view direction E Relates incoming light energy to outgoing E Unifying framework for many materials BRDF E Reflected Radiance proportional Irradiance E Constant proportionality: BRDF E Ratio of outgoing light (radiance) to incoming light (irradiance) – Bidirectional Reflection Distribution Function – (4 Vars) units 1/sr Lr(ω r ) f (ω i,ω r ) = Li(ω i)cosθ idω i Lr(ω r ) = Li(ω i)f (ω i,ω r )cosθ idω i 7 Isotropic vs Anisotropic . Isotropic: Most materials (you can rotate about normal without changing reflections) . Anisotropic: brushed metal etc. preferred tangential direction Isotropic Anisotropic Radiometry and Photometry Reflection Equation . Physical measurement of electromagnetic energy . Measure spatial (and angular) properties of light . Radiant Power . Radiant Intensity ω ω . Irradiance i r . Inverse square and cosine law x . Radiance . Radiant Exitance (Radiosity) . Reflection functions: Bi-Directional Reflectance L (x,ω ) = L (x,ω ) + L (x,ω )f (x,ω ,ω )(ω i n) r r e r i i i r i Distribution Function or BRDF Reflected Light Emission Incident BRDF Cosine of (Output Image) Light (from Incident angle . Reflection Equation (and simple BRDF models) light source) Reflection Equation Reflection Equation ω ω ω ω i r dωi i r x x Replace sum with integral Sum over all light sources Lx(,ω )=+ L (, xω ) Lx (,ωω )(,fx ωθ , )cos dω L (x,ω ) = L (x,ω ) + L (x,ω )f (x,ω ,ω )(ω i n) r r e r∫ i i ir i i r r e r ∑ i i i r i Ω Reflected Light Emission Incident BRDF Cosine of Reflected Light Emission Incident BRDF Cosine of (Output Image) Light (from Incident angle (Output Image) Light (from Incident angle light source) light source) 8 BRDF Viewer plots Diffuse Torrance-Sparrow Anisotropic bv written by Szymon Rusinkiewicz 9 Analytical BRDF: TS example Torrance-Sparrow . One famous analytically derived BRDF is the . Assume the surface is made up grooves at microscopic level. Torrance-Sparrow model . T-S is used to model specular surface, like Phong . more accurate than Phong . Assume the faces of these grooves (called microfacets) are . has more parameters that can be set to match different perfect reflectors. materials . derived based on assumptions of underlying geometry. Take into account 3 phenomena (instead of ‘because it works well’) Shadowing Masking Interreflection Torrance-Sparrow Result Other BRDF models Fresnel term: Geometric Attenuation: allows for reduces the output based on the . Empirical: Measure and build a 4D table wavelength amount of shadowing or masking dependency that occurs. Anisotropic models for hair, brushed steel Distribution: . Cartoon shaders, funky BRDFs F(θ i)G(ω i,ω r )D(θ h) distribution f = function . Capturing spatial variation 4cos(θ i)cos(θ r ) determines what How much of the percentage of . Very active area of research macroscopic microfacets are How much of oriented to reflect surface is visible the macroscopic to the light source in the viewer surface is visible direction. to the viewer Environment Maps Reflection Equation . Light as a function of direction, from entire environment . Captured by photographing a chrome steel or mirror sphere . Accurate only for one point, but distant lighting same at other scene locations (typically use only one env. map) ω ω dωi i r x Replace sum with integral Lx(,ω )=+ L (, xω ) Lx (,ωω )(,fx ωθ , )cos dω r r e r∫ i i ir i i Ω Reflected Light Emission Environment BRDF Cosine of (Output Image) Map (continuous) Incident angle Blinn and Newell 1976, Miller and Hoffman, 1984 Later, Greene 86, Cabral et al. 87 1 0 Environment Maps Demo . Environment maps widely used as lighting representation . Many modern methods deal with offline and real-time rendering with environment maps . Image-based complex lighting + complex BRDFs 1 1 .
Recommended publications
  • CIE Technical Note 004:2016
    TECHNICAL NOTE The Use of Terms and Units in Photometry – Implementation of the CIE System for Mesopic Photometry CIE TN 004:2016 CIE TN 004:2016 CIE Technical Notes (TN) are short technical papers summarizing information of fundamental importance to CIE Members and other stakeholders, which either have been prepared by a TC, in which case they will usually form only a part of the outputs from that TC, or through the auspices of a Reportership established for the purpose in response to a need identified by a Division or Divisions. This Technical Note has been prepared by CIE Technical Committee 2-65 of Division 2 “Physical Measurement of Light and Radiation" and has been approved by the Board of Administration as well as by Division 2 of the Commission Internationale de l'Eclairage. The document reports on current knowledge and experience within the specific field of light and lighting described, and is intended to be used by the CIE membership and other interested parties. It should be noted, however, that the status of this document is advisory and not mandatory. Any mention of organizations or products does not imply endorsement by the CIE. Whilst every care has been taken in the compilation of any lists, up to the time of going to press, these may not be comprehensive. CIE 2016 - All rights reserved II CIE, All rights reserved CIE TN 004:2016 The following members of TC 2-65 “Photometric measurements in the mesopic range“ took part in the preparation of this Technical Note. The committee comes under Division 2 “Physical measurement of light and radiation”.
    [Show full text]
  • Fundametals of Rendering - Radiometry / Photometry
    Fundametals of Rendering - Radiometry / Photometry “Physically Based Rendering” by Pharr & Humphreys •Chapter 5: Color and Radiometry •Chapter 6: Camera Models - we won’t cover this in class 782 Realistic Rendering • Determination of Intensity • Mechanisms – Emittance (+) – Absorption (-) – Scattering (+) (single vs. multiple) • Cameras or retinas record quantity of light 782 Pertinent Questions • Nature of light and how it is: – Measured – Characterized / recorded • (local) reflection of light • (global) spatial distribution of light 782 Electromagnetic spectrum 782 Spectral Power Distributions e.g., Fluorescent Lamps 782 Tristimulus Theory of Color Metamers: SPDs that appear the same visually Color matching functions of standard human observer International Commision on Illumination, or CIE, of 1931 “These color matching functions are the amounts of three standard monochromatic primaries needed to match the monochromatic test primary at the wavelength shown on the horizontal scale.” from Wikipedia “CIE 1931 Color Space” 782 Optics Three views •Geometrical or ray – Traditional graphics – Reflection, refraction – Optical system design •Physical or wave – Dispersion, interference – Interaction of objects of size comparable to wavelength •Quantum or photon optics – Interaction of light with atoms and molecules 782 What Is Light ? • Light - particle model (Newton) – Light travels in straight lines – Light can travel through a vacuum (waves need a medium to travel in) – Quantum amount of energy • Light – wave model (Huygens): electromagnetic radiation: sinusiodal wave formed coupled electric (E) and magnetic (H) fields 782 Nature of Light • Wave-particle duality – Light has some wave properties: frequency, phase, orientation – Light has some quantum particle properties: quantum packets (photons). • Dimensions of light – Amplitude or Intensity – Frequency – Phase – Polarization 782 Nature of Light • Coherence - Refers to frequencies of waves • Laser light waves have uniform frequency • Natural light is incoherent- waves are multiple frequencies, and random in phase.
    [Show full text]
  • About SI Units
    Units SI units: International system of units (French: “SI” means “Système Internationale”) The seven SI base units are: Mass: kg Defined by the prototype “standard kilogram” located in Paris. The standard kilogram is made of Pt metal. Length: m Originally defined by the prototype “standard meter” located in Paris. Then defined as 1,650,763.73 wavelengths of the orange-red radiation of Krypton86 under certain specified conditions. (Official definition: The distance traveled by light in vacuum during a time interval of 1 / 299 792 458 of a second) Time: s The second is defined as the duration of a certain number of oscillations of radiation coming from Cs atoms. (Official definition: The second is the duration of 9,192,631,770 periods of the radiation of the hyperfine- level transition of the ground state of the Cs133 atom) Current: A Defined as the current that causes a certain force between two parallel wires. (Official definition: The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 × 10-7 Newton per meter of length. Temperature: K One percent of the temperature difference between boiling point and freezing point of water. (Official definition: The Kelvin, unit of thermodynamic temperature, is the fraction 1 / 273.16 of the thermodynamic temperature of the triple point of water. Amount of substance: mol The amount of a substance that contains Avogadro’s number NAvo = 6.0221 × 1023 of atoms or molecules.
    [Show full text]
  • Black Body Radiation and Radiometric Parameters
    Black Body Radiation and Radiometric Parameters: All materials absorb and emit radiation to some extent. A blackbody is an idealization of how materials emit and absorb radiation. It can be used as a reference for real source properties. An ideal blackbody absorbs all incident radiation and does not reflect. This is true at all wavelengths and angles of incidence. Thermodynamic principals dictates that the BB must also radiate at all ’s and angles. The basic properties of a BB can be summarized as: 1. Perfect absorber/emitter at all ’s and angles of emission/incidence. Cavity BB 2. The total radiant energy emitted is only a function of the BB temperature. 3. Emits the maximum possible radiant energy from a body at a given temperature. 4. The BB radiation field does not depend on the shape of the cavity. The radiation field must be homogeneous and isotropic. T If the radiation going from a BB of one shape to another (both at the same T) were different it would cause a cooling or heating of one or the other cavity. This would violate the 1st Law of Thermodynamics. T T A B Radiometric Parameters: 1. Solid Angle dA d r 2 where dA is the surface area of a segment of a sphere surrounding a point. r d A r is the distance from the point on the source to the sphere. The solid angle looks like a cone with a spherical cap. z r d r r sind y r sin x An element of area of a sphere 2 dA rsin d d Therefore dd sin d The full solid angle surrounding a point source is: 2 dd sind 00 2cos 0 4 Or integrating to other angles < : 21cos The unit of solid angle is steradian.
    [Show full text]
  • Section 22-3: Energy, Momentum and Radiation Pressure
    Answer to Essential Question 22.2: (a) To find the wavelength, we can combine the equation with the fact that the speed of light in air is 3.00 " 108 m/s. Thus, a frequency of 1 " 1018 Hz corresponds to a wavelength of 3 " 10-10 m, while a frequency of 90.9 MHz corresponds to a wavelength of 3.30 m. (b) Using Equation 22.2, with c = 3.00 " 108 m/s, gives an amplitude of . 22-3 Energy, Momentum and Radiation Pressure All waves carry energy, and electromagnetic waves are no exception. We often characterize the energy carried by a wave in terms of its intensity, which is the power per unit area. At a particular point in space that the wave is moving past, the intensity varies as the electric and magnetic fields at the point oscillate. It is generally most useful to focus on the average intensity, which is given by: . (Eq. 22.3: The average intensity in an EM wave) Note that Equations 22.2 and 22.3 can be combined, so the average intensity can be calculated using only the amplitude of the electric field or only the amplitude of the magnetic field. Momentum and radiation pressure As we will discuss later in the book, there is no mass associated with light, or with any EM wave. Despite this, an electromagnetic wave carries momentum. The momentum of an EM wave is the energy carried by the wave divided by the speed of light. If an EM wave is absorbed by an object, or it reflects from an object, the wave will transfer momentum to the object.
    [Show full text]
  • Variable Star Photometry with a DSLR Camera
    Variable star photometry with a DSLR camera Des Loughney Introduction now be studied. I have used the method to create lightcurves of stars with an amplitude of under 0.2 magnitudes. In recent years it has been found that a digital single lens reflex (DSLR) camera is capable of accurate unfiltered pho- tometry as well as V-filter photometry.1 Undriven cameras, Equipment with appropriate quality lenses, can do photometry down to magnitude 10. Driven cameras, using exposures of up to 30 seconds, can allow photometry to mag 12. Canon 350D/450D DSLR cameras are suitable for photome- The cameras are not as sensitive or as accurate as CCD try. My experiments suggest that the cameras should be cameras primarily because they are not cooled. They do, used with quality lenses of at least 50mm aperture. This however, share some of the advantages of a CCD as they allows sufficient light to be gathered over the range of have a linear response over a large portion of their range1 exposures that are possible with an undriven camera. For and their digital data can be accepted by software pro- bright stars (over mag 3) lenses of smaller aperture can be grammes such as AIP4WIN.2 They also have their own ad- used. I use two excellent Canon lenses of fixed focal length. vantages as their fields of view are relatively large. This makes One is the 85mm f1.8 lens which has an aperture of 52mm. variable stars easy to find and an image can sometimes in- This allows undriven photometry down to mag 8.
    [Show full text]
  • Chapter 4 Introduction to Stellar Photometry
    Chapter 4 Introduction to stellar photometry Goal-of-the-Day Understand the concept of stellar photometry and how it can be measured from astro- nomical observations. 4.1 Essential preparation Exercise 4.1 (a) Have a look at www.astro.keele.ac.uk/astrolab/results/week03/week03.pdf. 4.2 Fluxes and magnitudes Photometry is a technique in astronomy concerned with measuring the brightness of an astronomical object’s electromagnetic radiation. This brightness of a star is given by the flux F : the photon energy which passes through a unit of area within a unit of time. The flux density, Fν or Fλ, is the flux per unit of frequency or per unit of wavelength, respectively: these are related to each other by: Fνdν = Fλdλ (4.1) | | | | Whilst the total light output from a star — the bolometric luminosity — is linked to the flux, measurements of a star’s brightness are usually obtained within a limited frequency or wavelength range (the photometric band) and are therefore more directly linked to the flux density. Because the measured flux densities of stars are often weak, especially at infrared and radio wavelengths where the photons are not very energetic, the flux density is sometimes expressed in Jansky, where 1 Jy = 10−26 W m−2 Hz−1. However, it is still very common to express the brightness of a star by the ancient clas- sification of magnitude. Around 120 BC, the Greek astronomer Hipparcos ordered stars in six classes, depending on the moment at which these stars became first visible during evening twilight: the brightest stars were of the first class, and the faintest stars were of the sixth class.
    [Show full text]
  • Properties of Electromagnetic Waves Any Electromagnetic Wave Must Satisfy Four Basic Conditions: 1
    Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell’s Equations: Maxwell’s Equations James Clerk Maxwell •1831 – 1879 •Scottish theoretical physicist •Developed the electromagnetic theory of light •His successful interpretation of the electromagnetic field resulted in the field equations that bear his name. •Also developed and explained – Kinetic theory of gases – Nature of Saturn’s rings – Color vision Start at 12:50 https://www.learner.org/vod/vod_window.html?pid=604 Correcting Ampere’s Law Two surfaces S1 and S2 near the plate of a capacitor are bounded by the same path P. Ampere’s Law states that But it is zero on S2 since there is no conduction current through it. This is a contradiction. Maxwell fixed it by introducing the displacement current: Fig. 34-1, p. 984 Maxwell hypothesized that a changing electric field creates an induced magnetic field. Induced Fields . An increasing solenoid current causes an increasing magnetic field, which induces a circular electric field. An increasing capacitor charge causes an increasing electric field, which induces a circular magnetic field. Slide 34-50 Displacement Current d d(EA)d(q / ε) 1 dq E 0 dt dt dt ε0 dt dq d ε E dt0 dt The displacement current is equal to the conduction current!!! Bsd μ I μ ε I o o o d Maxwell’s Equations The First Unified Field Theory In his unified theory of electromagnetism, Maxwell showed that electromagnetic waves are a natural consequence of the fundamental laws expressed in these four equations: q EABAdd 0 εo dd Edd s BE B s μ I μ ε dto o o dt QuickCheck 34.4 The electric field is increasing.
    [Show full text]
  • Basics of Photometry Photometry: Basic Questions
    Basics of Photometry Photometry: Basic Questions • How do you identify objects in your image? • How do you measure the flux from an object? • What are the potential challenges? • Does it matter what type of object you’re studying? Topics 1. General Considerations 2. Stellar Photometry 3. Galaxy Photometry I: General Considerations 1. Garbage in, garbage out... 2. Object Detection 3. Centroiding 4. Measuring Flux 5. Background Flux 6. Computing the noise and correlated pixel statistics I: General Considerations • Object Detection How do you mathematically define where there’s an object? I: General Considerations • Object Detection – Define a detection threshold and detection area. An object is only detected if it has N pixels above the threshold level. – One simple example of a detection algorithm: • Generate a segmentation image that includes only pixels above the threshold. • Identify each group of contiguous pixels, and call it an object if there are more than N contiguous pixels I: General Considerations • Object Detection I: General Considerations • Object Detection Measuring Flux in an Image • How do you measure the flux from an object? • Within what area do you measure the flux? The best approach depends on whether you are looking at resolved or unresolved sources. Background (Sky) Flux • Background – The total flux that you measure (F) is the sum of the flux from the object (I) and the sky (S). F = I + S = #Iij + npix " sky / pixel – Must accurately determine the level of the background to obtaining meaningful photometry ! (We’ll return to this a bit later.) Photometric Errors Issues impacting the photometric uncertainties: • Poisson Error – Recall that the statistical uncertainty is Poisson in electrons rather than ADU.
    [Show full text]
  • The Human Ear  Hearing, Sound Intensity and Loudness Levels
    UIUC Physics 406 Acoustical Physics of Music The Human Ear Hearing, Sound Intensity and Loudness Levels We’ve been discussing the generation of sounds, so now we’ll discuss the perception of sounds. Human Senses: The astounding ~ 4 billion year evolution of living organisms on this planet, from the earliest single-cell life form(s) to the present day, with our current abilities to hear / see / smell / taste / feel / etc. – all are the result of the evolutionary forces of nature associated with “survival of the fittest” – i.e. it is evolutionarily{very} beneficial for us to be able to hear/perceive the natural sounds that do exist in the environment – it helps us to locate/find food/keep from becoming food, etc., just as vision/sight enables us to perceive objects in our 3-D environment, the ability to move /locomote through the environment enhances our ability to find food/keep from becoming food; Our sense of balance, via a stereo-pair (!) of semi-circular canals (= inertial guidance system!) helps us respond to 3-D inertial forces (e.g. gravity) and maintain our balance/avoid injury, etc. Our sense of taste & smell warn us of things that are bad to eat and/or breathe… Human Perception of Sound: * The human ear responds to disturbances/temporal variations in pressure. Amazingly sensitive! It has more than 6 orders of magnitude in dynamic range of pressure sensitivity (12 orders of magnitude in sound intensity, I p2) and 3 orders of magnitude in frequency (20 Hz – 20 KHz)! * Existence of 2 ears (stereo!) greatly enhances 3-D localization of sounds, and also the determination of pitch (i.e.
    [Show full text]
  • An Introduction to Photometry and Photometric Measurements Henry
    An introduction to photometry and photometric measurements Henry Joy McCracken Institut d’Astrophysique de Paris What is photometry? • Photometry is concerned with obtaining quantitative physical measurements of astrophysical objects using electromagnetic radiation. • The challenge is to relate instrumental measurements (like electrons counted in an electronic detector) to physically meaningful quantities like flux and flux density • The ability to make quantitative measurements transformed astronomy from a purely descriptive science to one with great explanative power. To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsMath control panel. Brightness and Flux Density Astronomers learn about an astronomical source by measuring the strength of its radiation as a function of direction on the sky (by mapping or imaging) and frequency (spectroscopy), plus other quantities (time, polarization) that we ignore for now. We need precise and quantitative definitions to describe the strength of radiation and how it varies with distance between the source and the observer. The concepts of brightness and flux density are deceptively simple, but they regularly trip up experienced astronomers. It is very important to understand them clearly because they are so fundamental. We start with the simplest possible case of radiation traveling from a source through empty space (so there is no absorption, scattering, or emission along the way) to an observer. In the ray-optics approximation, radiated energy flows in straight lines. This approximation is valid only for systems much larger than the wavelength of the radiation, a criterion easily met by astronomical sources. You may find it helpful to visualize electromagnetic radiation as a stream of light particles (photons), essentially bullets that travel in straight lines at the speed of light.
    [Show full text]
  • Reflection and Refraction of Light
    Reflection and refraction When light hits a surface, one or more of three things may happen. The light may be reflected back from the surface, transmitted through the material (in which case it will deviate from its initial direction, a process known as refraction) or absorbed by the material if it is not transparent at the wavelength of the incident light. 1. Reflection and refraction Reflection and refraction are governed by two very simple laws. We consider a light wave travelling through medium 1 and striking medium 2. We define the angle of incidence θ as the angle between the incident ray and the normal to the surface (a vector pointing out perpendicular to the surface). For reflection, the reflected ray lies in the plane of incidence, and θ1’ = θ1 For refraction, the refracted ray lies in the plane of incidence, and n1sinθ1 = n2sinθ2 (this expression is called Snell’s law). In the above equations, ni is a dimensionless constant known as the θ1 θ1’ index of refraction or refractive index of medium i. In addition to reflection determining the angle of refraction, n also determines the speed of the light wave in the medium, v = c/n. Just as θ1 is the angle between refraction θ2 the incident ray and the surface normal outside the medium, θ2 is the angle between the transmitted ray and the surface normal inside the medium (i.e. pointing out from the other side of the surface to the original surface normal) 2. Total internal reflection A consequence of Snell’s law is a phenomenon known as total internal reflection.
    [Show full text]