California Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

California Agriculture California Agriculture Volume 62, Number 4 2008 Page 167 Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex Kent M. Daane Monica L. Cooper Serquei V. Triapitsyn Vaughn M. Walton Glenn Y. Yokota David R. Haviland Walter Joseph Bentley Kris Godfrey Lynn R. Wunderlich Copyright c 2008 by Regents of the University of California, unless otherwise noted. This article is part of the collected publications of California Agriculture. California Agriculture is archived by the eScholarship Repository of the California Digital Library. Abstract Mealybugs have become increasingly important vineyard pests — a result of their direct damage to the vine, their role in transmitting grapevine leafroll viruses, and the costs for their control. Numerous mealybug species are found in vineyards, and each has different biological traits that affect sustainable control options. We review the mealybug pests and their natural enemies to provide some clarification about current trends in biological control tactics and needed directions for future work. Keywords: mealybugs, biological control, sustainable agriculture Suggested Citation: Kent M. Daane, Monica L. Cooper, Serquei V. Triapitsyn, Vaughn M. Walton, Glenn Y. Yokota, David R. Haviland, Walter Joseph Bentley, Kris Godfrey, and Lynn R. Wunderlich (2008) “Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex”, California Agriculture: Vol. 62: No. 4, Page 167. http://repositories.cdlib.org/anrcs/californiaagriculture/v62/n4/p167 REVIEW ARTICLE ▼ Vineyard managers and researchers seek sustainable solutions for mealybugs, a changing pest complex ▼ by Kent M. Daane, Monica L. Cooper, In an uncontrolled vine mealybug Serguei V. Triapitsyn, Vaughn M. Walton, infestation in a San Glenn Y. Yokota, David R. Haviland, Joaquin Valley raisin- Walt J. Bentley, Kris E. Godfrey grape vineyard, mealybug and honey- and Lynn R. Wunderlich dew accumulate on the fruit, canes and leaves. Mealybugs have become increasingly important vineyard pests — a result of their direct damage to the vine, their role in transmitting grapevine leafroll viruses, and the costs for their control. Numerous mealybug species are found in vineyards, and each has ▼ An obscure mealy- different biological traits that af- bug infestation fect sustainable control options. We in a Central Coast wine-grape vineyard review the mealybug pests and their shows growth of sooty molds that are natural enemies to provide some often associated with clarifi cation about current trends in mealybug excretion (honeydew), espe- biological control tactics and needed cially in cooler grape directions for future work. regions. ver the past 100 years, a series of different mealybug species have beenO found in California vineyards, with fi ve species currently causing damage and a sixth posing a threat. Mealybugs have needlelike mouth- specimens collected on coastal buck- Mealybug pests parts that feed on the plant’s phloem, wheat in California in 1900 and was which contains the nutrients needed Most of California’s vineyard mealy- the only vineyard mealybug thought to for mealybug development. As mealy- bugs are invasive species — although be native to North America (Miller et bugs digest their food, they excrete a some of them have been here for nearly al. 1984) until the arrival of Ferrisia gilli sugar-rich fl uid called “honeydew.” 100 years. For newly invasive species, Gullan. Grape mealybugs can be found All vineyard mealybugs can feed on eradication should be the fi rst response. throughout California’s Central Valley the vine’s trunk, canes, leaves or fruit, If eradication is not feasible, then an and coastal grape regions, as well as and some species feed on vine roots. integrated program that includes clas- in Oregon and Washington vineyards. Crop loss occurs when mealybugs sical biological controls should be con- Typically, there are two generations per infest fruit or excrete honeydew that sidered. For native mealybug species, year (Geiger and Daane 2001). For most covers fruit and leaves, often result- resident natural enemies often provide of the year, grape mealybugs are found ing in sooty mold growth, defoliation substantial control or can be manipu- under the bark, but during the second and sunburned fruit. Continuous high lated to improve their effectiveness. generation (beginning in June) they levels of infestation over successive The history of each mealybug species in move into grape clusters, especially years may also lead to the deteriora- California and its distinctive biological clusters in contact with the trunk or tion of vines. And many mealybug characteristics affect the level of eco- spurs. The population overwinters as species transmit viruses such as grape- nomic damage and potential effective- eggs or small nymphs under the bark, vine leafroll (see sidebar, page 174). ness of biological controls. with a required diapause that helps to However, these mealybug pests can be Pseudococcus. The grape mealybug, synchronize generations each year. controlled, to some extent, by natural Pseudococcus maritimus (Ehrhorn), is one The longtailed mealybug, Pseudo- enemies that are often present in sus- of the oldest California vineyard pests coccus longispinus (Targioni Tozzetti) is tainable management programs. (Essig 1914). It was fi rst described from believed to be of Austro-Oriental origin http://CaliforniaAgriculture.ucop.edu • OctOBER–DEcEMBER 2008 167 A B Africa, South Africa, Argentina, the Middle East and Mexico. In California, crawlers blown by wind or carried by animals and farm machinery aid its spread. Infested nursery stock (Haviland et al. 2005) and pomace from the wine-grape crush (see sidebar, page 172) can also harbor this pest. Vine mealybug has a number of traits that make it particularly dam- C D aging and difficult to control. Most notably, there are four to seven annual generations in much of California’s grape-growing regions, resulting in rapid population growth. Vine mealy- bug also feeds on all parts of the vine throughout the season, resulting in a portion of the population protected under the bark. It can feed on a num- ber of plant species; however, while it is common in Europe on fig Ficus( sp.), Common mealybug species in vineyards there are no reports on this host from E are (A) grape mealybug, with orange-to- red ostiolar secretion near the head and California. The closely related citrus anus (the fluid is often a defensive tactic to mealybug, Planococcus citri (Risso), has ward off predators); (B) obscure mealybug; been found on vines but has never been (C) longtailed mealybug; (D) vine mealybug recorded as an economically important approaching a grape berry; and (E) Gill’s mealybug with glasslike rods brushed pest in vineyards. aside to show adult wax pattern. Ferrisia. Ferrisia gilli Gullan is a close relative of the striped mealybug (F. virgata Cockerell), which is probably native to southeastern North America. In fact, until recently the California population was considered to be the (Ben-Dov 1994). This cosmopolitan spe- Biological traits that make obscure striped mealybug, but differences in cies has been resident in California since mealybug more damaging than grape its adult morphology and economic at least 1933 and is best known as a pest mealybug are that it readily feeds on importance in pistachios and almonds of ornamental plants. Longtailed mealy- leaves (causing leaf damage and rain- prompted studies that led to its new bug has been limited to Central Coast ing honeydew down onto grape clus- species description in 2003 (Gullan et vineyards, where it has three generations ters), it can survive on common weeds al. 2003). Damaging vineyard popula- yearly. Unlike the other Pseudococcus spe- such as malva and burclover (Walton tions have only recently been found in cies discussed, longtailed mealybugs give and Pringle 2004b), it has three or four the Sierra foothills. Because F. gilli — birth to live crawlers (1st-instar mealy- overlapping generations per year, and commonly called Gill’s mealybug, after bugs, which disperse before they settle it excretes more honeydew. It is limited, Raymond Gill — is so new to scientists, and feed) rather than depositing eggs. however, to the cooler grape-growing research on its seasonal occurrence The origin of the obscure mealybug, regions, and is most commonly found in has, to date, only been conducted on Pseudococcus viburni (Signoret), is un- Central Coast vineyards. pistachios grown in the Central Valley known, and both Australia and South Planococcus. The vine mealy- (Haviland et al. 2006). There, the mealy- America have been suggested. While bug, Planococcus ficus (Signoret), is bug has three annual generations. In known to be in North America since a relatively new invasive species to fall, adult females produce crawlers that the early 1900s, its history is poorly Californian and Mexican vineyards overwinter in protected crevices of the documented due in part to earlier taxo- (Daane et al. 2006). In 1994, it was trunk and scaffolding branches. During nomic confusion — it is a close relative found in Coachella Valley table grapes, bud-break, the overwintering nymphs of the grape mealybug and was often although it probably entered the state migrate to buds to feed; they become misidentified (Miller et al. 1984). The years before. Vine mealybug has al- adults between late May and mid-June obscure mealybug is primarily a pest of ways been associated with vineyards and
Recommended publications
  • Abiotic and Biotic Pest Refuges Hamper Biological Control of Mealybugs in California Vineyards K.M
    ____________________________________ Abiotic and biotic pest refuges in California vineyards 389 ABIOTIC AND BIOTIC PEST REFUGES HAMPER BIOLOGICAL CONTROL OF MEALYBUGS IN CALIFORNIA VINEYARDS K.M. Daane,1 R. Malakar-Kuenen,1 M. Guillén,2 W.J. Bentley3, M. Bianchi,4 and D. González,2 1 Division of Insect Biology, University of California, Berkeley, California, U.S.A. 2 Department of Entomology, University of California, Riverside, California, U.S.A. 3 University of California Statewide IPM Program, Kearney Agricultural Center, Parlier, California, U.S.A. 4 University of California Cooperative Extension, San Luis Obispo, California, U.S.A. INTRODUCTION Four mealybug species cause economic damage in California vineyards. These are the grape mealy- bug, Pseudococcus maritimus (Ehrhorn); obscure mealybug, Pseudococcus viburni (Signoret); longtailed mealybug, Pseudococcus longispinus (Targioni-Tozzeti); and vine mealybug, Planococcus ficus (Signoret) (Godfrey et al., 2002). The grape, obscure, and longtailed mealybugs belong to the Pseudococcus maritimus-malacearum complex–a taxonomically close group of mealybugs (Wilkey and McKenzie, 1961). However, while the origins of the grape and longtailed mealybugs are believed to be in North America, the ancestral lines of the obscure mealybug are unclear. Regardless, these three species have been known as pests in North America for nearly 100 years. The vine mealybug, in contrast, was first identified in California in the Coachella Valley in the early 1990s (Gill, 1994). It has since spread into California’s San Joaquin Valley and central coast regions, with new infestations reported each year. The four species are similar in appearance; however, mealybugs in the P. maritimus- malacearum complex have longer caudal filaments than vine mealybug (Godfrey et al., 2002).
    [Show full text]
  • Alternative Transmission Patterns in Independently Acquired Nutritional Co-Symbionts of Dictyopharidae Planthoppers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.07.438848; this version posted April 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Alternative transmission patterns in independently acquired nutritional co-symbionts of Dictyopharidae planthoppers Anna Michalik1*, Diego C. Franco2, Michał Kobiałka1, Teresa Szklarzewicz1, Adam Stroiński3, Piotr Łukasik2 1Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland 2Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland 3Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland Abstract Keywords: planthoppers, nutritional endosymbiosis, Sap-sucking hemipterans host specialized, heritable transovarial transmission microorganisms that supplement their unbalanced diet with essential nutrients. These microbes show unusual features Significance statement that provide a unique perspective on the evolution of life but Sup-sucking hemipterans host ancient heritable have not been systematically studied. Here, we combine microorganisms that supplement their unbalanced diet with microscopy with high-throughput sequencing to revisit 80- essential nutrients, and which have repeatedly been year-old reports on the diversity of symbiont transmission complemented or replaced by other microorganisms. They modes in a broadly distributed planthopper family need to be reliably transmitted to subsequent generations Dictyopharidae. We show that in all species examined, the through the reproductive system, and often they end up using ancestral nutritional endosymbionts Sulcia and Vidania are the same route as the ancient symbionts.
    [Show full text]
  • Biological Control of Insect Pests in Iraq: 1) an Overview of Parasitoids and Predators Research Development
    Academic Journal of Entomology 10 (2): 10-18, 2017 ISSN 1995-8994 © IDOSI Publications, 2017 DOI: 10.5829/idosi.aje.2017.10.18 Biological Control of Insect Pests in Iraq: 1) an Overview of Parasitoids and Predators Research Development Hussain F. Alrubeai Ministry of Science and Technology, Directorate of Agricultural Research, Baghdad, Iraq Abstract: This review consider the first attempt to retrospect biological control activities of insect pests using parasitoids and predators in Iraq from its early beginning. The technology, introduction and implementation faced and still many obstacles, the most important are nation unrest and relaying heavily upon insecticides, which constrains progress in this field. However, successful cases of biological control using parasitoids and predators within the contest of Integrated Pest Management philosophy have been reported in Iraq. The first attempt occurred in the 1980s when lab reared of the predators, Exochomus nigripennis and Dicrodiplosis manihoti, were released in the field to control mealy bug, followed by rearing and releasing of the native parasitoid, Apanteles angaleti to control carob moth, Ectomyelois ceratoniae infesting pomegranate fruits and IPM programs of releasing the egg parasitoid, Trichogramma spp. to control Ephestia spp. in orchards and date fruit warehouses, spiny bollworm, Earias insulana and the lesser date moth, Btrachedra amydraula. Unfortunately, most of the studies in this area have been published in Arabic and are, therefore, not readily available internationally. Key word: Biological Control Parasitoid Predator Iraq INTRODUCTION integrates practices for economic control of pests. IPM aims to suppress pest populations below the economic Biological control (BC), especially using insects injury level, taking into account economical, ecological predators and parasitoids to control pest insects, is a and social criteria.
    [Show full text]
  • MOLECULAR BIOLOGY and EPIDEMIOLOGY of GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES by BHANU PRIYA DONDA a Dissertation Submitted in Pa
    MOLECULAR BIOLOGY AND EPIDEMIOLOGY OF GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES By BHANU PRIYA DONDA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2016 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved THANKS Bioengineering MAY 2014 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BHANU PRIYA DONDA find it satisfactory and recommend that it be accepted. Naidu A. Rayapati, Ph.D., Chair Dennis A. Johnson, Ph.D. Duroy A. Navarre, Ph.D. George J. Vandemark, Ph.D. Siddarame Gowda, Ph.D. ii ACKNOWLEDGEMENT I would like to express my respect and deepest gratitude towards my advisor and mentor, Dr. Naidu Rayapati. I am truly appreciative of the opportunity to pursue my doctoral degree under his guidance at Washington State University (WSU), a challenging and rewarding experience that I will value the rest of my life. I am thankful to my doctoral committee members: Dr. Dennis Johnson, Dr. George Vandemark, Dr. Roy Navarre and Dr. Siddarame Gowda for helpful advice, encouragement and guidance. I would like to thank Dr. Sandya R Kesoju (USDA-IAREC, Prosser, WA) and Dr. Neil Mc Roberts (University of California, Davis) for their statistical expertise, suggestions and collaborative research on the epidemiology of grapevine leafroll disease. To Dr. Gopinath Kodetham (University of Hyderabad, Hyderabad, India), thank you for believing in me and encouraging me to go the extra mile. I thank Dr. Sridhar Jarugula (Ohio State University Agricultural Research and Development Center, Wooster, University of Ohio, Ohio, USA), Dr.
    [Show full text]
  • A Study of the Scale Insect Genera Puto Signoret (Hemiptera
    Zootaxa 2802: 1–22 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A study of the scale insect genera Puto Signoret (Hemiptera: Sternorrhyncha: Coccoidea: Putoidae) and Ceroputo Šulc (Pseudococcidae) with a comparison to Phenacoccus Cockerell (Pseudococcidae) D.J. WILLIAMS1, P.J. GULLAN2,3,6 , D.R. MILLER4, D. MATILE-FERRERO5 & SARAH I. HAN2 1Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. 2Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 3Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, A.C.T., 0200, Australia. E-mail: [email protected] 4U.S. Department of Agriculture, Systematic Entomology Laboratory, PSI, Agricultural Research Service, Building 005, Barc-West, 10300 Baltimore Avenue, Beltsville, MD 20705, U.S.A. E-mail: [email protected] 5Muséum national d’Histoire naturelle, Département Systématique etÉvolution, UMR 7205, MNHN-CNRS, Entomologie. 45, rue Buf- fon, CP 50, F-75231 Paris Cedex 05, France. 6Corresponding author: E-mail: [email protected] Abstract For almost a century, the scale insect genus Puto Signoret (Hemiptera: Sternorrhyncha: Coccoidea) was considered to be- long to the family Pseudococcidae (the mealybugs), but recent consensus accords Puto its own family, the Putoidae. This paper reviews the taxonomic history of Puto and family Putoidae, compares the morphology of Puto to that of Ceroputo Šulc and Phenacoccus Cockerell, and reassesses the status of all species that have been placed in Puto to determine wheth- er they belong to the Putoidae or to the Pseudococcidae.
    [Show full text]
  • Essential Oil on the Tea Mealy Bug, Pseudococcus Viburni Sigornet (Hemiptera: Pseudococcidae)
    Archives of Phytopathology and Plant Protection ISSN: 0323-5408 (Print) 1477-2906 (Online) Journal homepage: http://www.tandfonline.com/loi/gapp20 Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae) Samar Ramzi, Ali Seraji, Reza Azadi Gonbad, Seyyedeh Kimia Mirhaghparast, Zahra Mojib Haghghadam & Shiva Haghighat To cite this article: Samar Ramzi, Ali Seraji, Reza Azadi Gonbad, Seyyedeh Kimia Mirhaghparast, Zahra Mojib Haghghadam & Shiva Haghighat (2018): Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae), Archives of Phytopathology and Plant Protection, DOI: 10.1080/03235408.2017.1352223 To link to this article: https://doi.org/10.1080/03235408.2017.1352223 Published online: 08 Jan 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gapp20 Download by: [EPFL Bibliothèque] Date: 08 January 2018, At: 07:49 ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2018 https://doi.org/10.1080/03235408.2017.1352223 Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae) Samar Ramzia, Ali Serajia, Reza Azadi Gonbada, Seyyedeh Kimia Mirhaghparastb, Zahra Mojib Haghghadamc and Shiva Haghighata aTea Research Center, Horticulture Science Research Institute, Agricultural
    [Show full text]
  • Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female.
    [Show full text]
  • Environment Vs Mode Horizontal Mixed Vertical Aquatic 34 28 6 Terrestrial 36 122 215
    environment vs mode horizontal mixed vertical aquatic 34 28 6 terrestrial 36 122 215 route vs mode mixed vertical external 54 40 internal 96 181 function vs mode horizontal mixed vertical nutrition 60 53 128 defense 1 33 15 multicomponent 0 9 8 unknown 9 32 70 manipulation 0 23 0 host classes vs symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Arachnida 0 0 2 0 0 2 0 2 2 0 0 0 0 Bivalvia 19 13 2 19 0 15 34 0 34 0 0 0 0 Bryopsida 2 0 0 2 0 0 0 2 2 0 0 0 0 Bryozoa 0 1 0 0 0 1 1 0 0 1 0 0 0 Cephalopoda 1 0 0 1 0 0 1 0 0 1 0 0 0 Chordata 0 1 0 0 1 0 1 0 1 0 0 0 0 Chromadorea 0 2 0 0 2 0 2 0 2 0 0 0 0 Demospongiae 1 2 0 1 0 2 3 0 0 0 0 3 0 Filicopsida 0 2 0 0 0 2 0 2 2 0 0 0 0 Gastropoda 5 0 0 5 0 0 5 0 5 0 0 0 0 Hepaticopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Homoscleromorpha 0 1 0 0 0 1 1 0 0 0 0 1 0 Insecta 8 112 208 8 82 238 3 325 151 43 9 105 20 Liliopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Magnoliopsida 17 4 0 17 0 4 0 21 17 4 0 0 0 Malacostraca 2 2 0 2 0 2 3 1 2 0 0 0 2 Maxillopoda 0 1 0 0 0 1 1 0 0 0 0 0 1 Nematoda 0 1 1 0 1 1 0 2 0 0 1 1 0 Oligochaeta 0 8 0 0 8 0 6 2 7 0 0 1 0 Polychaeta 6 0 0 6 0 0 6 0 6 0 0 0 0 Secernentea 0 0 7 0 0 7 0 7 0 0 7 0 0 Sphagnopsida 1 0 0 1 0 0 0 1 1 0 0 0 0 Turbellaria 0 0 1 0 0 1 1 0 1 0 0 0 0 host families vs.
    [Show full text]
  • Population Dynamic of the Long-Tailed
    Assiut J. of Agric. Sci., 42 No.(5) (143-164) Population Dynamic of the Long-tailed Mealybug, Pseudococcus longispinus (Targioni-Tozzetti) Infest- ing the Ornamental Plant, Acalypha marginata Green, under Assiut governorate conditions. Ghada,S.Mohamed1; Abou-Ghadir,M.F.2; Abou- Elhagag,G.H.2 and Gamal H. Sewify3 1Dept. of plant protec., Fac. Agric., South Valley Univ. 2Dept. of plant protec., Fac. Agric., Assiut Univ. 3Dept. of plant protec., Fac. Agric., Cairo Univ. Abstract centages of parasitism ranged The shrubs of ornamental from 0.01 in January to 0.06% in plant were inspected as host of March and 0.007 to 0.05% in the the studied pest. The present same months during the first and study was carried out in the Ag- the second season of study. The riculture Experimental Station of seasonal abundance of this para- the Faculty of Agriculture, Assiut sitoid species and the effect of university, during two successive weather elements on its popula- seasons of 2008/2009 and tion were also studied. 2009/2010. Results of both sea- Introduction sons showed that the highest The ornamental plant, Aca- weekly population count of the lypha marginata is a common mealybug, Pesudococcus long- shrub planted for decoration ispinus (Targioni-Tozzetti) was along the streets. This plant is found during the 2rd half of Au- susceptible to the mealybug in- gust. The highest percentage of festation that cause a serious mal- the total monthly mean count was formation to its leaves. The also recorded during August common name of the mealy bugs (30% out of the total year is derived from the mealy wax count).The pest has four genera- secretion that usually covers their tions in each of the tow studied bodies (Kosztarab, 1996).
    [Show full text]
  • Review of Ecologically-Based Pest Management in California Vineyards
    insects Review Review of Ecologically-Based Pest Management in California Vineyards Houston Wilson 1,* and Kent M. Daane 2 ID 1 Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA 2 Department Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-559-646-6519 Academic Editors: Alberto Pozzebon, Carlo Duso, Gregory M. Loeb and Geoff M. Gurr Received: 28 July 2017; Accepted: 6 October 2017; Published: 11 October 2017 Abstract: Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.
    [Show full text]
  • Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus Maritimus (Hemiptera: Pseudococcidae)
    insects Article Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus maritimus (Hemiptera: Pseudococcidae) Arinder K. Arora 1, Noah Clark 1, Karen S. Wentworth 2, Stephen Hesler 2, Marc Fuchs 3 , Greg Loeb 2 and Angela E. Douglas 1,4,* 1 Department of Entomology, Cornell University, Ithaca, NY 14850, USA; [email protected] (A.K.A.); [email protected] (N.C.) 2 Department of Entomology, Cornell University, Geneva, NY 14456, USA; [email protected] (K.S.W.); [email protected] (S.H.); [email protected] (G.L.) 3 School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; [email protected] 4 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA * Correspondence: [email protected] Received: 19 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Simple Summary: RNA interference (RNAi) is a defense mechanism that protects insects from viruses by targeting and degrading RNA. This feature has been exploited to reduce the expression of endogenous RNA for determining functions of various genes and for killing insect pests by targeting genes that are vital for insect survival. When dsRNA matching perfectly to the target RNA is administered, the RNAi machinery dices the dsRNA into ~21 bp fragments (known as siRNAs) and one strand of siRNA is employed by the RNAi machinery to target and degrade the target RNA. In this study we used a cocktail of dsRNAs targeting grape mealybug’s aquaporin and sucrase genes to kill the insect. Aquaporins and sucrases are important genes enabling these insects to maintain water relations indispensable for survival and digest complex sugars in the diet of plant sap-feeding insects, including mealybugs.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1994 Part 2: Notes1
    1 RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1994 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1994 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this volume [Bishop Museum Occasional Papers 41]. New Hawaiian Plant Records. I BARBARA M. HAWLEY & B. LEILANI PYLE (Herbarium Pacificum, Department of Natural Sciences, Bishop Museum, P.O. Box 19000A, Honolulu, Hawaii 96817, USA) Amaranthaceae Achyranthes mutica A. Gray Significance. Considered extinct and previously known from only 2 collections: sup- posedly from Hawaii Island 1779, D. Nelson s.n.; and from Kauai between 1851 and 1855, J. Remy 208 (Wagner et al., 1990, Manual of the Flowering Plants of Hawai‘i, p. 181). Material examined. HAWAII: South Kohala, Keawewai Gulch, 975 m, gulch with pasture and relict Koaie, 10 Nov 1991, T.K. Pratt s.n.; W of Kilohana fork, 1000 m, on sides of dry gulch ca. 20 plants seen above and below falls, 350 °N aspect, 16 Dec 1992, K.R. Wood & S. Perlman 2177 (BISH). Caryophyllaceae Silene lanceolata A. Gray Significance. New island record for Oahu. Distribution in Wagner et al. (1990: 523, loc. cit.) limited to Kauai, Molokai, Hawaii, and Lanai. Several plants were later noted by Steve Perlman and Ken Wood from Makua, Oahu in 1993. Material examined. OAHU: Waianae Range, Ohikilolo Ridge at ca. 700 m elevation, off ridge crest, growing on a vertical rock face, facing northward and generally shaded most of the day but in an open, exposed face, only 1 plant noted, 25 Sep 1992, J.
    [Show full text]