Dr47.Pdf (4.010Mb)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
II. a Cladistic Analysis of Rbcl Sequences and Morphology
Systematic Botany (2003), 28(2): pp. 270±292 q Copyright 2003 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: II. A Cladistic Analysis of rbcL Sequences and Morphology TIMOTHY M. EVANS,1,3 KENNETH J. SYTSMA,1 ROBERT B. FADEN,2 and THOMAS J. GIVNISH1 1Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 2Department of Systematic Biology-Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; 3Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ([email protected]) Communicating Editor: John V. Freudenstein ABSTRACT. The chloroplast-encoded gene rbcL was sequenced in 30 genera of Commelinaceae to evaluate intergeneric relationships within the family. The Australian Cartonema was consistently placed as sister to the rest of the family. The Commelineae is monophyletic, while the monophyly of Tradescantieae is in question, due to the position of Palisota as sister to all other Tradescantieae plus Commelineae. The phylogeny supports the most recent classi®cation of the family with monophyletic tribes Tradescantieae (minus Palisota) and Commelineae, but is highly incongruent with a morphology-based phylogeny. This incongruence is attributed to convergent evolution of morphological characters associated with pollination strategies, especially those of the androecium and in¯orescence. Analysis of the combined data sets produced a phylogeny similar to the rbcL phylogeny. The combined analysis differed from the molecular one, however, in supporting the monophyly of Dichorisandrinae. The family appears to have arisen in the Old World, with one or possibly two movements to the New World in the Tradescantieae, and two (or possibly one) subsequent movements back to the Old World; the latter are required to account for the Old World distribution of Coleotrypinae and Cyanotinae, which are nested within a New World clade. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Development of the Gametophytes, Flower, and Floral Vasculature in Dichorisandra Thyrsiflora (Commelinaceae)1
American Journal of Botany 87(9): 1228±1239. 2000. DEVELOPMENT OF THE GAMETOPHYTES, FLOWER, AND FLORAL VASCULATURE IN DICHORISANDRA THYRSIFLORA (COMMELINACEAE)1 CHRISTOPHER R. HARDY,2,3,5 DENNIS WM.STEVENSON,2,3 AND HELEN G. KISS4 2 L. H. Bailey Hortorium, Cornell University, Ithaca, New York 14853 USA; 3 New York Botanical Garden, Bronx, New York 10458 USA; and 4 Department of Botany, Miami University, Oxford, Ohio 45056 USA The ¯owers of Dichorisandra thyrsi¯ora (Commelinaceae) are monosymmetric and composed of three sepals, three petals, six stamens, and three connate carpels. The anthers are poricidal and possess a wall of ®ve cell layers (tapetum included). This type of anther wall, not previously observed in the Commelinaceae, is developmentally derived from the monocotyledonous type via an additional periclinal division and the persistence of the middle layers through anther dehiscence. Secondary endothecial thickenings develop in the cells of the two middle layers only. The tapetum is periplasmodial and contains raphides. Microsporogenesis is successive and yields both decussate and isobilateral tetrads. Pollen is shed as single binucleate grains. The gynoecium is differentiated into a globose ovary, hollow elongate style, and trilobed papillate stigma. Each locule contains six to eight hemianatropous to slightly campylotropous crassinucellar ovules with axile (submarginal) placentation. The ovules are bitegmic with a slightly zig-zag micropyle. Megagametophyte development is of the Polygonum type. The mature megagametophyte consists of an egg apparatus and fusion nucleus; the antipodals having degenerated. The ¯oral vasculature is organized into an outer and inner system of bundles in the pedicel. The outer system becomes ventral carpellary bundles. -
Botany-Illustrated-J.-Glimn-Lacy-P.-Kaufman-Springer-2006.Pdf
Janice Glimn-Lacy Peter B. Kaufman 6810 Shadow Brook Court Department of Molecular, Cellular, and Indianapolis, IN 46214-1901 Developmental Biology USA University of Michigan [email protected] Ann Arbor, MI 48109-1048 USA [email protected] Library of Congress Control Number: 2005935289 ISBN-10: 0-387-28870-8 eISBN: 0-387-28875-9 ISBN-13: 978-0387-28870-3 Printed on acid-free paper. C 2006 Janice Glimn-Lacy and Peter B. Kaufman All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (TB/MVY) 987654321 springer.com Preface This is a discovery book about plants. It is for everyone For those interested in the methods used and the interested in plants including high school and college/ sources of plant materials in the illustrations, an expla- university students, artists and scientific illustrators, nation follows. For a developmental series of drawings, senior citizens, wildlife biologists, ecologists, profes- there are several methods. -
Inventory of Vascular Plants of the Kahuku Addition, Hawai'i
CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 157 INVENTORY OF VASCULAR PLANTS OF THE KAHUKU ADDITION, HAWAI`I VOLCANOES NATIONAL PARK June 2008 David M. Benitez1, Thomas Belfield1, Rhonda Loh2, Linda Pratt3 and Andrew D. Christie1 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 2 National Park Service, Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 3 U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawai`i National Park, HI 96718 TABLE OF CONTENTS ABSTRACT.......................................................................................................................1 INTRODUCTION...............................................................................................................1 THE SURVEY AREA ........................................................................................................2 Recent History- Ranching and Resource Extraction .....................................................3 Recent History- Introduced Ungulates...........................................................................4 Climate ..........................................................................................................................4 -
The Leipzig Catalogue of Plants (LCVP) ‐ an Improved Taxonomic Reference List for All Known Vascular Plants
Freiberg et al: The Leipzig Catalogue of Plants (LCVP) ‐ An improved taxonomic reference list for all known vascular plants Supplementary file 3: Literature used to compile LCVP ordered by plant families 1 Acanthaceae AROLLA, RAJENDER GOUD; CHERUKUPALLI, NEERAJA; KHAREEDU, VENKATESWARA RAO; VUDEM, DASHAVANTHA REDDY (2015): DNA barcoding and haplotyping in different Species of Andrographis. In: Biochemical Systematics and Ecology 62, p. 91–97. DOI: 10.1016/j.bse.2015.08.001. BORG, AGNETA JULIA; MCDADE, LUCINDA A.; SCHÖNENBERGER, JÜRGEN (2008): Molecular Phylogenetics and morphological Evolution of Thunbergioideae (Acanthaceae). In: Taxon 57 (3), p. 811–822. DOI: 10.1002/tax.573012. CARINE, MARK A.; SCOTLAND, ROBERT W. (2002): Classification of Strobilanthinae (Acanthaceae): Trying to Classify the Unclassifiable? In: Taxon 51 (2), p. 259–279. DOI: 10.2307/1554926. CÔRTES, ANA LUIZA A.; DANIEL, THOMAS F.; RAPINI, ALESSANDRO (2016): Taxonomic Revision of the Genus Schaueria (Acanthaceae). In: Plant Systematics and Evolution 302 (7), p. 819–851. DOI: 10.1007/s00606-016-1301-y. CÔRTES, ANA LUIZA A.; RAPINI, ALESSANDRO; DANIEL, THOMAS F. (2015): The Tetramerium Lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc Hypothesis for South American seasonally dry Forests. In: American Journal of Botany 102 (6), p. 992–1007. DOI: 10.3732/ajb.1400558. DANIEL, THOMAS F.; MCDADE, LUCINDA A. (2014): Nelsonioideae (Lamiales: Acanthaceae): Revision of Genera and Catalog of Species. In: Aliso 32 (1), p. 1–45. DOI: 10.5642/aliso.20143201.02. EZCURRA, CECILIA (2002): El Género Justicia (Acanthaceae) en Sudamérica Austral. In: Annals of the Missouri Botanical Garden 89, p. 225–280. FISHER, AMANDA E.; MCDADE, LUCINDA A.; KIEL, CARRIE A.; KHOSHRAVESH, ROXANNE; JOHNSON, MELISSA A.; STATA, MATT ET AL. -
Abstracts of the Monocots VI.Pdf
ABSTRACTS OF THE MONOCOTS VI Monocots for all: building the whole from its parts Natal, Brazil, October 7th-12th, 2018 2nd World Congress of Bromeliaceae Evolution – Bromevo 2 7th International Symposium on Grass Systematics and Evolution III Symposium on Neotropical Araceae ABSTRACTS OF THE MONOCOTS VI Leonardo M. Versieux & Lynn G. Clark (Editors) 6th International Conference on the Comparative Biology of Monocotyledons 7th International Symposium on Grass Systematics and Evolution 2nd World Congress of Bromeliaceae Evolution – BromEvo 2 III Symposium on Neotropical Araceae Natal, Brazil 07 - 12 October 2018 © Herbário UFRN and EDUFRN This publication may be reproduced, stored or transmitted for educational purposes, in any form or by any means, if you cite the original. Available at: https://repositorio.ufrn.br DOI: 10.6084/m9.figshare.8111591 For more information, please check the article “An overview of the Sixth International Conference on the Comparative Biology of Monocotyledons - Monocots VI - Natal, Brazil, 2018” published in 2019 by Rodriguésia (www.scielo.br/rod). Official photos of the event in Instagram: @herbarioufrn Front cover: Cryptanthus zonatus (Vis.) Vis. (Bromeliaceae) and the Carnaúba palm Copernicia prunifera (Mill.) H.E. Moore (Arecaceae). Illustration by Klei Sousa and logo by Fernando Sousa Catalogação da Publicação na Fonte. UFRN / Biblioteca Central Zila Mamede Setor de Informação e Referência Abstracts of the Monocots VI / Leonardo de Melo Versieux; Lynn Gail Clark, organizadores. - Natal: EDUFRN, 2019. 232f. : il. ISBN 978-85-425-0880-2 1. Comparative biology. 2. Ecophysiology. 3. Monocotyledons. 4. Plant morphology. 5. Plant systematics. I. Versieux, Leonardo de Melo; Clark, Lynn Gail. II. Título. RN/UF/BCZM CDU 58 Elaborado por Raimundo Muniz de Oliveira - CRB-15/429 Abstracts of the Monocots VI 2 ABSTRACTS Keynote lectures p. -
Biological Control of Tradescantia Fluminensis with Pathogens Report August 2011 After 18 Days of Inoculation Symptoms Appeared
Biological control of Tradescantia fluminensis with pathogens report August 2011 Robert W. Barreto1 Davi M. Macedo1 1 Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 3657-000, Brazil Host-specificity of Kordyana brasiliensis: test involving direct basidiospore ejection on species of Commelinaceae In order to confirm the high host-specificity indicated by the results obtained in the indirect host- range test for K. brasiliensis, as described in the previous report, and also in order to overcome the limitations imposed by the lack of infectivity of fungal strutures of this species produced in culture, a new methodology for host-specificity evaluation was used for a more direct test. This involved gathering T. fluminensis leaves naturally colonized by K. brasiliensis in the shade house near the lab at Viçosa (Minas Gerais), and attaching them to a sheet of glass coated with vaseline leaving the sporulating abaxial side exposed and placed above test-plants. The sheet of glass was placed 60 cm. above healthy test plants of each species (listed in Tab. 1) in a dew chamber for 48 hours at 22oC +/- 3oC and then transferred to benches in a greenhouse at 25°C ± 2oC (Fig 1). Controls consisted of healthy plants of T. fluminensis (biotype from New Zealand) that were either exposed to basidiospore drop together with the other Commelinaceae (positive control) or kept free of inoculation (negative control). Plants were observed weekly for the appearance of symptoms. After 18 days of inoculation symptoms appeared on T. fluminensis but not in any other species (Fig. 2). The situation remained unchanged until the last evaluation, 65 days after inoculation. -
Phylogenetic Relationships in the Commelinaceae: I
Systematic Botany (2000), 25(4): pp. 668±691 q Copyright 2000 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: I. A Cladistic Analysis of Morphological Data TIMOTHY M. EVANS1 Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 1Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ROBERT B. FADEN Department of Botany, NHB 166, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 MICHAEL G. SIMPSON Department of Biology, San Diego State University, San Diego, California 92182 KENNETH J. SYTSMA Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 Communicating Editor: Richard Jensen ABSTRACT. The plant family Commelinaceae displays a wide range of variation in vegetative, ¯oral, and in¯orescence morphology. This high degree of variation, particularly among characters operating under strong and similar selective pressures (i.e., ¯owers), has made the assessment of homology among morpho- logical characters dif®cult, and has resulted in several discordant classi®cation schemes for the family. Phy- logenetic relationships among 40 of the 41 genera in the family were evaluated using cladistic analyses of morphological data. The resulting phylogeny shows some similarity to the most recent classi®cation, but with some notable differences. Cartonema (subfamily Cartonematoideae) was placed basal to the rest of the family. Triceratella (subfamily Cartonematoideae), however, was placed among genera within tribe Tradescantieae of subfamily Commelinoideae. Likewise, the circumscriptions of tribes Commelineae and Tradescantieae were in disagreement with the most recent classi®cation. The discordance between the phylogeny and the most recent classi®cation is attributed to a high degree of convergence in various morphological characters, par- ticularly those relating to the androecium and the in¯orescence. -
Systematic Botany 25
Phylogenetic Relationships in the Commelinaceae: I. A. Cladistic Analysis of Morphological Data Author(s): Timothy M. Evans, Robert B. Faden, Michael G. Simpson, Kenneth J. Sytsma Source: Systematic Botany, Vol. 25, No. 4 (Oct. - Dec., 2000), pp. 668-691 Published by: American Society of Plant Taxonomists Stable URL: http://www.jstor.org/stable/2666727 Accessed: 10/09/2010 13:35 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aspt. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Plant Taxonomists is collaborating with JSTOR to digitize, preserve and extend access to Systematic Botany. -
9036581Aa63236dbad838d5b1
A peer-reviewed open-access journal PhytoKeys 83: 1–41 (2017) Recircumscription and taxonomic revision of Siderasis 1 doi: 10.3897/phytokeys.83.13490 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Recircumscription and taxonomic revision of Siderasis, with comments on the systematics of subtribe Dichorisandrinae (Commelinaceae) Marco O. O. Pellegrini1,2,3, Robert B. Faden3 1 Universidade de São Paulo, Departamento de Botânica, Rua do Matão 277, CEP 05508-900, São Paulo, SP, Brazil 2 Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, CEP 22460-030, Rio de Janeiro, RJ, Brazil 3 Smithsonian Institution, NMNH, Department of Botany, MRC 166, P.O. Box 37012, Washington D.C. 20013-7012, USA Corresponding author: Marco O. O. Pellegrini ([email protected]) Academic editor: Peter Boyce | Received 30 April 2017 | Accepted 6 July 2017 | Published 13 July 2017 Citation: Pellegrini MOO, Faden RB (2017) Recircumscription and taxonomic revision of Siderasis, with comments on the systematics of subtribe Dichorisandrinae (Commelinaceae). PhytoKeys 83: 1–41. https://doi.org/10.3897/ phytokeys.83.13490 Abstract A new circumscription and a total of six microendemic species, four of them new to science, are herein presented for Siderasis, based on field and herbaria studies, and cultivated material. We provide an identi- fication key to the species and a distribution map, description, comments, conservation assessment, and illustration for each species. Also, we present an emended key to the genera of subtribe Dichorisandrinae, and comments on the morphology and systematics of the subtribe. Keywords Atlantic Forest, Brazil, Commelinales, Neotropical flora, spiderwort, Tradescantieae Introduction Siderasis Raf. -
ERMA200683 Further Information FINAL.Pdf
Appendix 4. The host range of the potential biological control agents Neolema abbreviata and Lema basicostata. 4.1 Summary 4.2 Source of insects 4.3 Selection of plant species to test 4.4 Test methods 4.5 Test results 4.6 Discussion and conclusions 4.1 Summary The ability of young larvae of Neolema abbreviata and Lema basicostata to feed and develop when placed on cut foliage of 18 test plant species (including T. fluminensis controls) was assessed in the laboratory. The acceptability of these plants as a food source for adult beetles was also assessed. There are no native plants in New Zealand that are even remotely related to tradescantia. Apart from some ornamental house plants, there are no closely-related exotic plants in New Zealand that are valued either. Only limited host range testing was required because of these two characteristics. Nīkau palm was tested because it is the most closely related native plant in New Zealand, even though it is not even in the same order as the weed. There was no semblance of attack on this species. Several host plants supported complete development of L. basicostata and N abbreviata larvae. All of these plant species belong within the tribe Tradescantieae. Similarly, when confined on test plants, adult beetles did not feed significantly on any plants outside the Tribe. This suggests that adults would not lay eggs on these plants. These test results indicate that the physiological host range of both N. abbreviata and L. basicostata lies within the Family Commelinaceae, and possibly within the Tribe Tradescantieae.