II. a Cladistic Analysis of Rbcl Sequences and Morphology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1.P77-84(Gibasis Pellucida).Indd
林業研究季刊 36(2):77-84, 2014 77 Research paper Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Chien-Ti Chao1 Yu-Lan Huang1 Si-Qian Liu2 Yen-Hsueh Tseng1,* 【Abstract】Commelinaceae is a monocot family mainly distributed in tropical and temperate region. Several naturalized species were recorded in Taiwan these years. Recently we found a newly naturalized species-Gibasis pellucida (Martens & Galeotti) D.R. Hunt in Northern Taiwan. This species was native to Mexico, and introduced as ornamental plant in many countries. This is a newly naturalized species and genus for Flora of Taiwan. Line drawing, photos and distribution map were provided in this study. Finally, we revised naturalized species of Commelinaceae in Taiwan, the naturalization of them were related to ornamental activity, some species had set up large population already, especially the Tradescantia species. Thus we need pay more attention to these potentially invasive plants. 【Key words】Gibasis pellucida, Commelinaceae, naturalized plant, Taiwan 研究報告 臺灣產鴨跖草科一新馴化植物-細梗鴨跖草 趙建棣1 黃郁嵐1 劉思謙2 曾彥學1,3 【摘要】鴨跖草科為熱帶常見的單子葉草本植物,之前多位學者已相繼報導數種本科的馴化植物。 最近作者等又於臺灣北部發現一種新馴化植物,經查為原產於墨西哥之細梗鴨跖草。本種為一園藝 觀賞植物,無性繁殖容易且適應力強,推測是人為引進而逸出於野外。根據這幾年野外的調查發現 其野外族群數量有穩定成長,未來動態值得注意。對台灣的植物誌而言,細梗鴨跖草屬與細梗鴨跖 草均為本島的新記錄。 【關鍵詞】鴨跖草科、細梗鴨跖草、馴化植物、臺灣 1. 國立中興大學森林學系,40227臺灣台中市南區國光路250號 Department of Forestry, National Chung-Hsing University, 250 Kuokwang Rd.,40227 Taichung, Taiwan. 2. 國立中興大學生命科學系,40227臺灣台中市南區國光路250號 Department of Life Sciences, National Chung- Hsing University, 250 Kuokwang Rd., 40227 Taichung, Taiwan. 3. 通訊作者 (E-mail:[email protected]) * Corresponding author, e-mail: [email protected]. Phone number: (04)2284-0345#139 78 Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Introduction (Jacq.) L. -
Flora and Vegetation Survey of the Proposed Kwinana to Australind Gas
__________________________________________________________________________________ FLORA AND VEGETATION SURVEY OF THE PROPOSED KWINANA TO AUSTRALIND GAS PIPELINE INFRASTRUCTURE CORRIDOR Prepared for: Bowman Bishaw Gorham and Department of Mineral and Petroleum Resources Prepared by: Mattiske Consulting Pty Ltd November 2003 MATTISKE CONSULTING PTY LTD DRD0301/039/03 __________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY............................................................................................................................................... 1 2. INTRODUCTION ..................................................................................................................................... 2 2.1 Location................................................................................................................................................. 2 2.2 Climate .................................................................................................................................................. 2 2.3 Vegetation.............................................................................................................................................. 3 2.4 Declared Rare and Priority Flora......................................................................................................... 3 2.5 Local and Regional Significance........................................................................................................... 5 2.6 Threatened -
ALINTA DBNGP LOOPING 10 Rehabilitation Management Plan
DBNGP (WA) Nominees Pty Ltd DBNGP LOOPING 10 Rehabilitation Management Plan ALINTA DBNGP LOOPING 10 Rehabilitation Management Plan November 2005 Ecos Consulting (Aust) Pty Ltd CONTENTS 1 INTRODUCTION ................................................................................ 1 2 REHABILITATION REVIEW............................................................ 1 2.1 REHABILITATION OBJECTIVES ............................................................... 2 3 EXISTING VEGETATION ................................................................. 2 3.1 FLORA AND VEGETATION...................................................................... 2 3.2 VEGETATION STUDIES ........................................................................... 4 3.2.1 Study Method ............................................................................... 4 3.2.2 Study Results ................................................................................ 7 3.3 OTHER ENVIRONMENTAL VALUES ...................................................... 10 4 REHABILITATION STRATEGY..................................................... 11 5 REHABILITATION METHODS ..................................................... 11 5.1 WEED MANAGEMENT.......................................................................... 11 5.2 DIEBACK (PHYTOPHTHORA CINNAMOMI) MANAGEMENT .................... 11 5.3 PRIORITY AND RARE FLORA MANAGEMENT ........................................ 12 5.4 RESOURCE MANAGEMENT ................................................................... 13 5.5 -
Commelina Communis
Commelina communis Commelina communis Asiatic dayflower Introduction The genus Commelina has approximately 100 species worldwide, distributed primarily in tropical and temperate regions. Eight species occur in China[60][167] . Species of Commelina in China Flower of Commelina communis. (Photo pro- Scientific Name Scientific Name vided by LBJWC, Albert, F. W. Frick, Jr.) C. auriculata Bl. C. maculata Edgew. C. bengalensis L. C. paludosa Bl. roadsides [60]. C. communis L. C. suffruticosa Bl. Distribution C. diffusa Burm. f. C. undulata R. Br. C. communis is widely distributed in China, [60] but no records are reported stalk, often hirsute-ciliate marginally, Taxonomy for its distribution in Qinghai, Xinjiang, and acute apically. Cyme inflorescence [6][116][167] Family: Commelinaceae Hainan, and Tibet . has one flower near the top, with dark Genus: Commelina L. blue petals and membranous sepals 5 Economic Importance mm long. Capsules are elliptic, 5–7 Description Commelina communis has caused serious mm, and two-valved. The two seeds Commelina communis is an annual damage in the orchards of northeastern in each valve are brown-yellow, 2–3 [96] herb with numerous branched, creeping China . C. communis is used in Chinese mm long, irregularly pitted, flat-sided, [60] stems, which are minutely pubescent herbal medicine. and truncate at one end[60][167]. distally, 1 m long. Leaves are lanceolate to ovate-lanceolate, 3–9 cm long and Related Species 1.5–2 cm wide. Involucral bracts Habitat C. diffusa occurs in forests, thickets C. communis prefers moist, shady forest grow opposite the leaves. Bracts are and moist areas of southern China and edges. -
Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Glyphosate-Tolerant Asiatic Dayflower (Commelina Communis
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems Jose Maria Gomez Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Gomez, Jose Maria, "Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems" (2012). Graduate Theses and Dissertations. 12332. https://lib.dr.iastate.edu/etd/12332 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Glyphosate-tolerant Asiatic dayflower ( Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems by José María Gómez Vargas A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Crop Production and Physiology (Weed Science) Program of Study Committee: Micheal D.K. Owen, Major Professor Lynn G. Clark Robert Hartzler Allen Knapp Iowa State University Ames, Iowa 2012 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS v THESIS ORGANIZATION vi CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Literature review 2 General description of Commelina species 2 Asiatic dayflower history and general characteristics 2 Glyphosate and glyphosate-tolerant crops 5 Weed shifts in glyphosate-tolerant crops 6 Herbicide resistance and tolerance 7 Weed seed bank and seed burial depth 8 Literature cited 11 CHAPTER 2. -
Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees. -
The Genus Porandra (Commelinaceae) in Thailand
THAI FOR. BULL. (BOT.) 31: 141– 148. 2003. The Genus Porandra (Commelinaceae) in Thailand THAWEESAK THITIMETHAROCH*, PRANOM CHANTARANOTHAI* & ROBERT B. FADEN** ABSTRACT. A revision of the genus Porandra D.Y. Hong in Thailand is presented. Three species are recognised, P. microphylla Y. Wan, P. ramosa D.Y. Hong and P. scandens D.Y. Hong. The first two species are newly recorded from Thailand. A key to the species is provided together with illustrations, distributions and ecological data. INTRODUCTION The genus Porandra was established by Hong (1974) based on two species, namely P. ramosa D.Y. Hong and P. scandens D.Y. Hong. Since his work a third species, P. microphylla Y. Wan has been described from China (Wan, 1986). Faden (1998) considered Porandra to be probably conspecific with Amischotolype but Hong & DeFilipps (2000) maintained the genus. All species except P. scandens were considered endemic to China. The genus was separated from Amischotolype by its climbing habit and anther cells opening by apical pores. In the course of preparing Commelinaceae treatments for the Flora of Thailand, P. ramosa and P. microphylla are newly recorded for the country. In addition, although Hong (1974) and Hong & DeFillips (2000) stated that rhizomes were absent, although we found long horizontal underground rhizomes in P. microphylla and P. scandens and they may also be present in P. ramosa. TAXONOMIC ACCOUNT PORANDRA D.Y. Hong in Acta Phytotax. Sin. 12(4): 462. 1974; Faden, Fam. Gen. Vas. Pl. 4: 120. 1998. Type species: Porandra ramosa D.Y. Hong. Perennial rhizomatous scandent herbs. Leaf blades alternate; petiole unwinged. -
January 1958 the National HORTICULTUR .·\L Magazine
TIIE N A..TIONA..L ~GA'Z , INE 0 & JOURNAL OF THE AMERICAN HORTICULTURAL SOCIETY, INC. * January 1958 The National HORTICULTUR .·\L Magazine *** to accumulate, Increase, and disseminate horticultural information *** OFFICERS EDITOR STUART M. ARMSTRONG, PR ESIDENT B. Y. MORRISON Silver Spring, Maryland MANAGING EDITOR HENRY T. SKINNER, FIRST VICE-PRESIDENT Washington, D.C. JAM ES R . H ARLOW MRS. i'VAL TER DOUGLAS, SECON D VICE-PRESIDENT EDITORIAL COMMITTEE Chauncey, New York I/:;- Phoenix, Arizona i'VALTER H . HOD GE, Chairman EUGENE GRIFFITH, SECRETARY JOH N L. CREECH Takoma Pm'k, Maryland FREDERIC P. LEE MISS OLIVE E. WEA THERELL, TREASURER CONRAD B. LINK Olean, New York & W ashington, D.C. CURTIS IVIA Y DIRECTORS The National Horticultural Maga zine is the official publication of the Te?'ms Expiring 1958 American Horticultural Society and is Stuart lVI. Armstrong, Mm'yland iss ued four times a year during the John L. Creech, Maryland qu arter s commencing with J anuary, Mrs. Peggie Schulz, Min nesota April, July and October. It is devoted to the dissemination of knowledge in R. P. iJ\Thite, Dist?'ict of Columbia the sc ience and art of growing orna Mrs. H arry Wood, Pennsylvania mental plants, fruits, vegetables, and rela ted subjects. Original papers increasing the his· T erms Expiring 1959 torical, varietal, and cultural knowl Donovan S. Correll, T exas edges of plant materials of economic and aesthetic importance are wel Frederick VV. Coe, Mm'yland comed and will be published as early Miss Margaret C. Lancaster, MG1'yland as possible. The CHairman of the ~ di · Mrs. -
The Genus Porandra (Commelinaceae) in Thailand
THAI FOR. BULL. (BOT.) 31: 141– 148. 2003. The Genus Porandra (Commelinaceae) in Thailand THAWEESAK THITIMETHAROCH*, PRANOM CHANTARANOTHAI* & ROBERT B. FADEN** ABSTRACT. A revision of the genus Porandra D.Y. Hong in Thailand is presented. Three species are recognised, P. microphylla Y. Wan, P. ramosa D.Y. Hong and P. scandens D.Y. Hong. The first two species are newly recorded from Thailand. A key to the species is provided together with illustrations, distributions and ecological data. INTRODUCTION The genus Porandra was established by Hong (1974) based on two species, namely P. ramosa D.Y. Hong and P. scandens D.Y. Hong. Since his work a third species, P. microphylla Y. Wan has been described from China (Wan, 1986). Faden (1998) considered Porandra to be probably conspecific with Amischotolype but Hong & DeFilipps (2000) maintained the genus. All species except P. scandens were considered endemic to China. The genus was separated from Amischotolype by its climbing habit and anther cells opening by apical pores. In the course of preparing Commelinaceae treatments for the Flora of Thailand, P. ramosa and P. microphylla are newly recorded for the country. In addition, although Hong (1974) and Hong & DeFillips (2000) stated that rhizomes were absent, although we found long horizontal underground rhizomes in P. microphylla and P. scandens and they may also be present in P. ramosa. TAXONOMIC ACCOUNT PORANDRA D.Y. Hong in Acta Phytotax. Sin. 12(4): 462. 1974; Faden, Fam. Gen. Vas. Pl. 4: 120. 1998. Type species: Porandra ramosa D.Y. Hong. Perennial rhizomatous scandent herbs. Leaf blades alternate; petiole unwinged. -
COMMELINACEAE 鸭跖草科 Ya Zhi Cao Ke Hong Deyuan (洪德元)1; Robert A
Flora of China 24: 19–39. 2000. COMMELINACEAE 鸭跖草科 ya zhi cao ke Hong Deyuan (洪德元)1; Robert A. DeFilipps2 Herbs annual or perennial, sometimes woody at base. Stems with prominent nodes and internodes. Leaves alternate, distichous or spirally arranged, sessile or petiolate; leaf sheath prominent, open or closed; leaf blade simple, entire. Inflorescence usually of cin- cinni in panicles or solitary, sometimes shortened into heads, sometimes sessile with flowers fascicled, sometimes axillary and pene- trating enveloping leaf sheath, rarely flowers solitary and terminal or axillary. Flowers bisexual, rarely unisexual, actinomorphic or zygomorphic. Sepals 3, free or connate only at base, often boat-shaped or carinate, sometimes galeate at apex. Petals (2 or)3, free, sometimes connate and tubular at middle and free at 2 ends (Cyanotis), sometimes clawed. Stamens 6, free, all or only 2 or 3 fertile; filaments glabrous or torulose villous; anthers parallel or slightly divergent, longitudinally dehiscent, rarely dehiscent by apical pores; staminodes 1–3; antherodes 4-lobed and butterflylike, 3-sect, 2-lobed and dumbbell-shaped, or entire. Ovary 3-loculed, or reduced to 2-loculed; ovules 1 to several per locule, orthotropous. Fruit a loculicidal, 2- or 3-valved capsule, rarely baccate and indehiscent. Seeds few, large; endosperm copious; hilum orbicular or linear. About 40 genera and 650 species: mainly in tropical regions, fewer species in subtropical and temperate regions; 15 genera (two introduced) and 59 species (12 endemic, three introduced) in China. Hong Deyuan. 1997. Commelinaceae. In: Wu Kuo-fang, ed., Fl. Reipubl. Popularis Sin. 13(3): 69–133. 1a. Inflorescence penetrating leaf sheath, sessile, capitate; fertile stamens 6.