Systematic Botany 25

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Botany 25 Phylogenetic Relationships in the Commelinaceae: I. A. Cladistic Analysis of Morphological Data Author(s): Timothy M. Evans, Robert B. Faden, Michael G. Simpson, Kenneth J. Sytsma Source: Systematic Botany, Vol. 25, No. 4 (Oct. - Dec., 2000), pp. 668-691 Published by: American Society of Plant Taxonomists Stable URL: http://www.jstor.org/stable/2666727 Accessed: 10/09/2010 13:35 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aspt. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Plant Taxonomists is collaborating with JSTOR to digitize, preserve and extend access to Systematic Botany. http://www.jstor.org SystemnaticBotany (2000), 25(4): pp. 668-691 ? Copyright2000 by the AmericanSociety of Plant Taxonomists PhylogeneticRelationships in the Commelinaceae: I. A Cladistic Analysis of Morphological Data TIMOTHY M. EVANS1 Departmentof Botany,University of Wisconsin,430 LincolnDrive, Madison, Wisconsin 53706 Presentaddress, author for correspondence: Department of Biology,Hope College,35 East 12thStreet, Holland,Michigan 49423-9000 ROBERT B. FADEN Departmentof Botany,NHB 166,National Museum of NaturalHistory, Smithsonian Institution, Washington,DC 20560 MICHAEL G. SIMPSON Departmentof Biology,San Diego StateUniversity, San Diego, California92182 KENNETHJ. SYTSMA Departmentof Botany,University of Wisconsin,430 LincolnDrive, Madison, Wisconsin 53706 CommunicatingEditor: Richard Jensen ABSTRACT. The plantfamily Commelinaceae displays a wide rangeof variation in vegetative,floral, and inflorescencemorphology. This high degree of variation,particularly among charactersoperating under strongand similarselective pressures (i.e., flowers), has made the assessmentof homology among morpho- logical charactersdifficult, and has resultedin severaldiscordant classification schemes for the family. Phy- logeneticrelationships among 40 of the 41 generain the familywere evaluatedusing cladisticanalyses of morphologicaldata. The resultingphylogeny shows some similarityto themost recent classification, but with some notabledifferences. Cartonemna (subfamily Cartonematoideae) was placed basal to therest of the family. Triceratella(subfamily Cartonematoideae), however, was placed amonggenera within tribe Tradescantieae of subfamilyCommelinoideae. Likewise, the circumscriptionsof tribesCommelineae and Tradescantieaewere in disagreementwith the mostrecent classification. The discordancebetween the phylogenyand the most recentclassification is attributedto a high degreeof convergencein variousmorphological characters, par- ticularlythose relating to the androeciumand the inflorescence.Anatomical characters (i.e., stomatal struc- ture),on theother hand, show promisefor resolving phylogenetic relationships within the Commelinaceae, based upon theiragreement with the most recent classification. The Commelinaceae,a well definedfamily of 41 neae is foundmainly in Africaand Asia. Only six genera and about 650 species,is characterizedby genera (Aneilema,Buforrestia, Commelina, Floscopa, several featuresincluding a distinctclosed leaf Murdannia,and Pollia)have indigenousspecies in sheath,a succulentleaf blade, and three-merous bothhemispheres. flowerswith distinctpetals and sepals (Cronquist Older classificationsof the Commelinaceae relied 1981; Faden 1985;Faden and Hunt 1991).The gen- heavilyon floralfeatures (see Fadenand Hunt1991, era are largelytropical and subtropical,but several fora review).Woodson (1942) firstused inflores- extendinto temperateregions. The greatestdiver- cence charactersfor higher-level classification, but sity is in Africa,where, along with Madagascar, he was largelyunfamiliar with the Old Worldgen- nearlyhalf the genera and about40% ofthe species era. Pichon(1946) employedanatomical characters are found(Faden 1983a). to separatethe genus Cartonemaas the familyCar- There is a naturaldivision of taxa betweenthe tonemataceae,but he returnedto more traditional Old and the New World.The seven subtribesof charactersto definehis ten tribesof Commelina- tribeTradescantieae (sensu Faden and Hunt 1991) ceae. Brenan(1966) used a varietyof morphological are each whollyconfined to eitherthe Easternor charactersto define15 informal"groups" of gen- Westernhemisphere, whereas the tribeCommeli- era. These have served as the basis of surveysof 668 2000] EVANS ET AL.: COMMELINACEAE 669 anatomical(Tomlinson 1966, 1969) and cytological molecularand morphologicalstudies are similarto (Jonesand Jopling1972) charactersin the family, the molecularphylogenies (e.g., Chase et al. 1995; but theyhave littletaxonomic significance. Linderand Kellogg1995). Recent work by Givnish, The mostrecent classification, which will be used Evans,Pires, and Sytsma(Givnish et al. 1995,1999) in thisstudy, was put forwardby Faden and Hunt generallysupports these findings. It also places the (1991).In theirclassification, the Commelinaceaeis Hanguanaceae as the sisterfamily of the Comme- divided into two unequal subfamilies(Table 1). linaceae and the Xyridaceaeand Eriocaulaceaein SubfamilyCartonematoideae contains the tribes the grass/sedgeclade. Cartonemateaeand Triceratelleae,each comprising Certainmorphological characters also lend sup- a single genus. SubfamilyCommelinoideae con- port to the separationof the Commelinaceaefrom tainsthe remaining38 generathat are arrangedin otherfamilies of the originalCommelinales (sensu two tribes,Tradescantieae and Commelineae,the Cronquist1981, or Dahlgrenet al. 1985). As dis- formerof whichis dividedinto seven subtribes. cussed above,Dahlgren et al. (1985) separatedthe Evans (1995)conducted a cladisticanalysis of the Commelinaceaefrom the othercommelinoid fami- Commelinaceaeusing both morphological and mo- lies in partby the presenceof raphides,which are lecularcharacters. This paper representsa modifi- absentin theMayacaceae, Rapateaceae, Xyridaceae, cation and expansionof the morphologicalcom- and Eriocaulaceae (Dahlgren and Clifford1982). ponentsof thatstudy. Raphides are widespread,however, in the Ponted- Relationshipsof Commelinaceaeto otherMono- eriaceae,Philydraceae, and Haemodoraceae(Dahl- cot Families. The familyCommelinaceae is the gren et al. 1985). Additionally,whereas the Com- namesake forthe order Commelinales.Cronquist melinaceaewere separatedfrom other families in (1981) definedthe orderby thepresence of perfect the Commelinalesby thepresence of an amoeboid flowersthat are adapted for generalinsect polli- tapetum,the genus Pontederiaand all investigated nation,having showy petals thatare differentiatedmembers of the Haemodoraceae also have an amoe- fromthe sepals. He includedthree other families in boid tapetum(Dahlgren and Clifford1982; Simp- this order:Xyridaceae, Rapateaceae, and Mayaca- son 1988, 1990). Finally,flowers in the Commeli- ceae. He separated the Commelinaceaefrom the naceae show a strongtendency toward zygomor- other three families by their well-definedand phy,whereas they are generallyactinomorphic in closed leaf sheath,and thesucculent blade. the other membersof the Commelinalessensu Dahlgrenet al. (1985)included the same families Cronquist(1981) or Dahlgrenet al. (1985). Zygo- in Commelinalesas Cronquist,but with the addi- morphicflowers are common,however, in thePon- tionof theEriocaulaceae. Eriocaulaceae was placed tederiaceae,Philydraceae, and Haemodoraceae. in itsown orderby Cronquist,who maintainedthat Althoughnumerous taxonomic treatments have it was mostlikely derived within Xyridaceae. Dahl- been produced forthe Commelinaceae,there has grenet al. (1985) distinguishedthe Commelinaceae been littleconsensus as to whichcharacters should fromthe othercommelinoid families by the pres- be used to definerelationships among the genera. ence of raphides,an amoeboid tapetum,and the The earliersystems relied heavily upon featuresof leaf charactersused by Cronquist (closed leaf the highlyvariable androecium, but theyignored sheathand succulentblade). charactersof the inflorescence.The classification Although cladistic analyses of morphological producedby Faden and Hunt (1991),which will be data supporta monophyleticCommelinales sensu used throughoutthis study,incorporated a broad Dahlgrenet al. (1985;Stevenson and Loconte1995), rangeof information,such as charactersfrom mor- recentlypublished moleculardata suggest other- phology,anatomy, and palynology.None of these wise. Nucleotidesequence data fromthe chloroplast classifications,however, is rootedin an evolutionary gene rbcL(Chase et al. 1993;Clark et al. 1993;Du- framework.The purpose of this studywas to ex- vall et al. 1993) place the Commelinaceaenear
Recommended publications
  • TAXON:Palisota Pynaertii De Wild. SCORE:6.0 RATING:Low Risk
    TAXON: Palisota pynaertii De Wild. SCORE: 6.0 RATING: Low Risk Taxon: Palisota pynaertii De Wild. Family: Commelinaceae Common Name(s): Palisota pynaertii 'Elizabethae' Synonym(s): Palisota elizabethae L. Gentil Assessor: Chuck Chimera Status: Assessor Approved End Date: 5 Aug 2017 WRA Score: 6.0 Designation: L Rating: Low Risk Keywords: Herb, Rosette-Forming, Tropical, Ornamental, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals 406 Host for recognized pests and pathogens y=1, n=0 y 407 Causes allergies or is otherwise toxic to humans 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Tolerates a wide range of soil conditions (or limestone 410 conditions if not a volcanic island) Creation Date: 5 Aug 2017 (Palisota pynaertii De Wild.) Page 1 of 13 TAXON: Palisota pynaertii De Wild.
    [Show full text]
  • Woodland/Shade Gardening by Jimi Blake
    V OLUME 24, I SSUE 4 O CTOBER— DECEMBER 2015 Piedmont Chapter North American Rock Garden Society The Trillium Chapel Hill, Durham, Raleigh, NC Woodland/Shade Gardening By Jimi Blake Woodland plants are the brave plants that burst into flower in the spring lifting my spirit and encouraging me to start back to gardening in Hunting Brook, Co. Wicklow, Ireland. These plants are so important in the garden to extend the season of interest and brighten up a shady area. An expanse of deciduous woodland is not necessary to create a woodland garden, though it is a dream situation for this purpose but that shaded area in the corner of the garden where you dump the grass mowings can take on a whole new life, or by simply pruning a shrub to let more light under it will allow for your mini woodland garden. The other type of shade in lots of gardens is the shade creat- ed by walls, which is also suitable for growing woodland plants. In the wild, these plants flower under the dappled shade of the deciduous trees before the leaves shade out the woodland floor during the summer months. Generally the woodland plants finish flowering by early to mid sum- mer and form a ground cover of various shades of green. These plants are called spring ephemerals. Remember the secret of a good woodland garden is the preparation of the soil, as these areas can be quite dry in the summer with the roots of the trees or shrubs taking up the moisture. When I started the woodland gardens in Hunting Brook I cleared the weeds by hand and then dug over the soil and incorporated a mixture of leaf mould or garden compost, and very well rotted farmyard manure creating a delicious mixture for these woodland gems to grow well in.
    [Show full text]
  • Murdannia Keisak (Hassk.) Hand.-Maz
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Murdannia keisak (Hassk.) Hand.-Maz. USDA Plants Code: MUKE Common names: Marsh dewflower, wart-removing herb Native distribution: East Asia Date assessed: 10 June 2009 Assessors: Steve Glenn, Gerry Moore Reviewers: LIISMA SRC Date Approved: 19 Aug. 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Not Present High 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 30 ) 24 2 Biological characteristic and dispersal ability 25 ( 25 ) 19 3 Ecological amplitude and distribution 25 ( 25 ) 18 4 Difficulty of control 10 ( 7) 7 Outcome score 100 ( 87 )b 68a † Relative maximum score 78.16 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]
  • The Biodiversity of African Plants
    The Biodiversity of African Plants Proceedings XlVth AETFAT Congress 22 - 27 August 1994, Wageningen, The Netherlands Edited by L.J.G. van der Maesen X.M. van der Burgt J.M. van Medenbach de Rooy Department of Plant Taxonomy - Herbarium Vadense Wageningen Agricultural University The Netherlands KLUWER ACADEMIC PUBLISHERS DORDRECHT/ BOSTON / LONDON Contents Foreword ".' '" xm Sponsors XV Monographs and databases 22 August 1994, Convenors: I.M.M. Hedberg, O. Hedberg 1 Monographs, databases and biodiversity conservation 0. HEDBERG 3 Conspectus of the vascular plants of Madagascar: a taxonomic and conservation electronic database G.E. SCHATZ, P.P. LOWRY II, M. LESCOT, A.E. WOLF, S. ANDRIAMBOLOLONERA, V. RAHARIMALALA & J. RAHARIMAMPIONONA 10 Computerisation of the East African Herbarium: development of a regional plant information service T.R. PEARCE, D. FILER & E. VANDEN BERGHE 18 Posters: Plants of southern Africa database T.H. ARNOLD & M. KOEKEMOER .32 Uses, chromosome number and distribution of Solarium species in Uganda R. BUKENYA-ZIRABA 33 The plants of Pehr Forsskal's Flora Aegyptiaco-Arabica F.N. HEPPER & I. FRIIS 38 Enumeration of the flowering plants of tropical Africa J.-P. LEBRUN & A.L. STORK 40 Thunberg, Hoffmann and the Phytographische Blatter R.O. MOFFETT 42 Biodiversity of succulents and African arid regions 22 August 1994, Convenor: N. Jiirgens 47 Biodiversity of arid islands in tropical Africa: the succulents of inselbergs W. BARTHLOTT & S. POREMBSKI . 49 Patterns and characteristics of the flora of the Succulent Karoo Biome, soutiiern Africa C. HILTON-TAYLOR 58 Taxonomy and biogeography of the anomalous genus Wellstedia M. THULIN & A.N.B. JOHANSSON \ .
    [Show full text]
  • Take Another Look
    Take Contact Details Another SUNSHINE COAST REGIONAL COUNCIL Caloundra Customer Service Look..... 1 Omrah Avenue, Caloundra FRONT p: 07 5420 8200 e: [email protected] Maroochydore Customer Service 11-13 Ocean Street, Maroochydore p: 07 5475 8501 e: [email protected] Nambour Customer Service Cnr Currie & Bury Street, Nambour p: 07 5475 8501 e: [email protected] Tewantin Customer Service 9 Pelican Street, Tewantin p: 07 5449 5200 e: [email protected] YOUR LOCAL CONTACT Our Locals are Beauties HINTERLAND EDITION HINTERLAND EDITION 0 Local native plant guide 2 What you grow in your garden can have major impact, Introduction 3 for better or worse, on the biodiversity of the Sunshine Native plants 4 - 41 Coast. Growing a variety of native plants on your property can help to attract a wide range of beautiful Wildlife Gardening 20 - 21 native birds and animals. Native plants provide food and Introduction Conservation Partnerships 31 shelter for wildlife, help to conserve local species and Table of Contents Table Environmental weeds 42 - 73 enable birds and animals to move through the landscape. Method of removal 43 Choosing species which flower and fruit in different Succulent plants and cacti 62 seasons, produce different types of fruit and provide Water weeds 70 - 71 roost or shelter sites for birds, frogs and lizards can greatly increase your garden’s real estate value for native References and further reading 74 fauna. You and your family will benefit from the natural pest control, life and colour that these residents and PLANT TYPE ENVIRONMENTAL BENEFITS visitors provide – free of charge! Habitat for native frogs Tall Palm/Treefern Local native plants also improve our quality of life in Attracts native insects other ways.
    [Show full text]
  • Botanic Endeavour 250 Trail Botanic Endeavour Trail - 600M | Botanic Explorers Trail - 900M
    Botanic Endeavour 250 Trail Botanic Endeavour Trail - 600m | Botanic Explorers Trail - 900m Botanic Gardens Australia and New Zealand celebrates 250 years of the discovery of the flora of Australia’s east coast and New Zealand by western science in 1770 and over 40,000 years of traditional knowledge. Be an epic voyager for the day and discover some of the plants that Banks and Solander collected during their voyage along the east coast of Australia. Look out for the Botanic Endeavour 250 symbol to find what other plants were discovered during the voyage as you wander through the gardens. Botanic Endeavour 250 Our plants, our future Botanic Gardens and Arboreta throughout Australia and New Zealand (BGANZ) commemorate the anniversary ‘voyage of discovery’ onboard the barque Endeavour, during which Joseph Banks and Daniel Solander made a comprehensive collection of flora. Captain James Cook mapped the entire coastline of New Zealand in 1769 before traversing the east coast of Australia in 1770 from Point Hicks to Cape York. Pressings of over 520 new taxa unknown to western science were collected along the route up the east coast of Australia and these, along with thousands of botanical illustrations, somehow made it back to England in the face of shipwreck, waterlogging and the dank and humid conditions below decks. The rich abundance of diverse flora excited the botanic world and ultimately led to the settlement of the new colony. In Australia, 2020 marks the 250th anniversary of these discoveries. New Zealand celebrated this anniversary in 2019. Our Australian Indigenous heritage Prior to 1770, the Traditional Custodians of Australia lived in harmony with the land for over 40,000 years and discovered the ethnobotanic use for Australia’s native flora for food, medicine, tools, clothing and building materials.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
    Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees.
    [Show full text]
  • The Genus Porandra (Commelinaceae) in Thailand
    THAI FOR. BULL. (BOT.) 31: 141– 148. 2003. The Genus Porandra (Commelinaceae) in Thailand THAWEESAK THITIMETHAROCH*, PRANOM CHANTARANOTHAI* & ROBERT B. FADEN** ABSTRACT. A revision of the genus Porandra D.Y. Hong in Thailand is presented. Three species are recognised, P. microphylla Y. Wan, P. ramosa D.Y. Hong and P. scandens D.Y. Hong. The first two species are newly recorded from Thailand. A key to the species is provided together with illustrations, distributions and ecological data. INTRODUCTION The genus Porandra was established by Hong (1974) based on two species, namely P. ramosa D.Y. Hong and P. scandens D.Y. Hong. Since his work a third species, P. microphylla Y. Wan has been described from China (Wan, 1986). Faden (1998) considered Porandra to be probably conspecific with Amischotolype but Hong & DeFilipps (2000) maintained the genus. All species except P. scandens were considered endemic to China. The genus was separated from Amischotolype by its climbing habit and anther cells opening by apical pores. In the course of preparing Commelinaceae treatments for the Flora of Thailand, P. ramosa and P. microphylla are newly recorded for the country. In addition, although Hong (1974) and Hong & DeFillips (2000) stated that rhizomes were absent, although we found long horizontal underground rhizomes in P. microphylla and P. scandens and they may also be present in P. ramosa. TAXONOMIC ACCOUNT PORANDRA D.Y. Hong in Acta Phytotax. Sin. 12(4): 462. 1974; Faden, Fam. Gen. Vas. Pl. 4: 120. 1998. Type species: Porandra ramosa D.Y. Hong. Perennial rhizomatous scandent herbs. Leaf blades alternate; petiole unwinged.
    [Show full text]
  • Plant Science Today (2019) 6(2): 218-231 218
    Plant Science Today (2019) 6(2): 218-231 218 https://doi.org/10.14719/pst.2019.6.2.527 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Research Article Seedling Morphology of some selected members of Commelinaceae and its bearing in taxonomic studies Animesh Bose1* & Nandadulal Paria2 1 Department of Botany, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006, West Bengal, India 2 Taxonomy & Biosystematics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India Article history Abstract Received: 13 March 2019 Seedling morphology of eight species from four genera of the family Commelinaceae viz. Accepted: 09 April 2019 Commelina appendiculata C.B. Clarke, C. benghalensis L., C. caroliniana Walter, C. paludosa Published: 16 May 2019 Blume, Cyanotis axillaris (L.) D. Don ex Sweet, C. cristata (L.) D. Don, Murdannia nudiflora (L.) Brenan and Tradescantia spathacea Sw. are investigated using both light and scanning electron microscopy. The seedling morphological features explored include germination pattern, seed shape, surface and hilum, root system, cotyledon type, cotyledonary hyperphyll (apocole), cotyledonary hypophyll (cotyledonary sheath), hypocotyl, first leaf and subsequent leaves. All taxa studied had hypogeal and remote tubular cotyledons. However, differences in cotyledon structure (apocole, cotyledonary sheath), seed, hypocotyl, internodes, first leaf and subsequent leaves were observed. Variations of those characters were used to prepare an identification key for the investigated taxa. Commelina spp. and Murdannia nudiflora of the tribe Commelineae were found to differ from Cyanotis spp. and Tradescantia spathacea of tribe Tradescantieae in the petiolate first leaf with papillate margins on upper surface with 6- celled stomata and the glabrous epicotyl.
    [Show full text]
  • January 1958 the National HORTICULTUR .·\L Magazine
    TIIE N A..TIONA..L ~GA'Z , INE 0 & JOURNAL OF THE AMERICAN HORTICULTURAL SOCIETY, INC. * January 1958 The National HORTICULTUR .·\L Magazine *** to accumulate, Increase, and disseminate horticultural information *** OFFICERS EDITOR STUART M. ARMSTRONG, PR ESIDENT B. Y. MORRISON Silver Spring, Maryland MANAGING EDITOR HENRY T. SKINNER, FIRST VICE-PRESIDENT Washington, D.C. JAM ES R . H ARLOW MRS. i'VAL TER DOUGLAS, SECON D VICE-PRESIDENT EDITORIAL COMMITTEE Chauncey, New York I/:;- Phoenix, Arizona i'VALTER H . HOD GE, Chairman EUGENE GRIFFITH, SECRETARY JOH N L. CREECH Takoma Pm'k, Maryland FREDERIC P. LEE MISS OLIVE E. WEA THERELL, TREASURER CONRAD B. LINK Olean, New York & W ashington, D.C. CURTIS IVIA Y DIRECTORS The National Horticultural Maga­ zine is the official publication of the Te?'ms Expiring 1958 American Horticultural Society and is Stuart lVI. Armstrong, Mm'yland iss ued four times a year during the John L. Creech, Maryland qu arter s commencing with J anuary, Mrs. Peggie Schulz, Min nesota April, July and October. It is devoted to the dissemination of knowledge in R. P. iJ\Thite, Dist?'ict of Columbia the sc ience and art of growing orna­ Mrs. H arry Wood, Pennsylvania mental plants, fruits, vegetables, and rela ted subjects. Original papers increasing the his· T erms Expiring 1959 torical, varietal, and cultural knowl­ Donovan S. Correll, T exas edges of plant materials of economic and aesthetic importance are wel­ Frederick VV. Coe, Mm'yland comed and will be published as early Miss Margaret C. Lancaster, MG1'yland as possible. The CHairman of the ~ di · Mrs.
    [Show full text]
  • The Genus Porandra (Commelinaceae) in Thailand
    THAI FOR. BULL. (BOT.) 31: 141– 148. 2003. The Genus Porandra (Commelinaceae) in Thailand THAWEESAK THITIMETHAROCH*, PRANOM CHANTARANOTHAI* & ROBERT B. FADEN** ABSTRACT. A revision of the genus Porandra D.Y. Hong in Thailand is presented. Three species are recognised, P. microphylla Y. Wan, P. ramosa D.Y. Hong and P. scandens D.Y. Hong. The first two species are newly recorded from Thailand. A key to the species is provided together with illustrations, distributions and ecological data. INTRODUCTION The genus Porandra was established by Hong (1974) based on two species, namely P. ramosa D.Y. Hong and P. scandens D.Y. Hong. Since his work a third species, P. microphylla Y. Wan has been described from China (Wan, 1986). Faden (1998) considered Porandra to be probably conspecific with Amischotolype but Hong & DeFilipps (2000) maintained the genus. All species except P. scandens were considered endemic to China. The genus was separated from Amischotolype by its climbing habit and anther cells opening by apical pores. In the course of preparing Commelinaceae treatments for the Flora of Thailand, P. ramosa and P. microphylla are newly recorded for the country. In addition, although Hong (1974) and Hong & DeFillips (2000) stated that rhizomes were absent, although we found long horizontal underground rhizomes in P. microphylla and P. scandens and they may also be present in P. ramosa. TAXONOMIC ACCOUNT PORANDRA D.Y. Hong in Acta Phytotax. Sin. 12(4): 462. 1974; Faden, Fam. Gen. Vas. Pl. 4: 120. 1998. Type species: Porandra ramosa D.Y. Hong. Perennial rhizomatous scandent herbs. Leaf blades alternate; petiole unwinged.
    [Show full text]