Murdannia Keisak (Hasskarl) Hand.-Mazz)

Total Page:16

File Type:pdf, Size:1020Kb

Murdannia Keisak (Hasskarl) Hand.-Mazz) Invasive Alien Plant Species of Virginia Aneilema (Murdannia keisak (Hasskarl) Hand.-Mazz) Description Tibet. In the United States, it is Murdannia keisak has no common found in all coastal states from name and is generally known as Delaware to Louisiana, and in aneilema from its former scientific Kentucky and Tennessee. It is also name, Aneilema keisak. It is a found in a freshwater tidal marsh in member of the spiderwort family the Columbia River estuary between (Commelinaceae) with weak, Washington and Oregon. Initially prostrate stems 12 to 30 inches long, thought to be restricted to the coastal rooting at the lower nodes, with plain, aneilema is increasing in the upturned tips. The alternate leaves Piedmont and Ridge and Valley taper rapidly from the sheath to a Provinces of Virginia, Tennessee, very narrow blade 1 to 2½ inches northern Alabama and northern long. In Virginia the three-petalled, Mississippi. In Virginia, it is present white to bluish-purple, perfect in all Coastal Plain counties except flowers extend from the upper axils the Eastern Shore, most of the in late August to late September. central and northern Piedmont, and in Augusta County of the Habitat Shenandoah Valley. Aneilema seeds Found in freshwater marshes and are a favored food of ducks and along the edges of ponds and other waterfowl, which may be an streams, aneilema is associated with important dispersal vector for the rice culture in East Asia. It was plant. probably first brought to South Threat Carolina or Louisiana in rice The aggressive nature of this plant imported for growth in this country. has now been clearly displayed by While the earliest records of its ability to establish itself in existence in the United States date freshwater wetlands and crowd out to the 1920s and early 1930s, native vegetation by forming a solid circumstantial evidence suggests Aneilema (Murdannia keisak (Hasskarl) mat of vegetation. Even in its native that it could have been associated Hand.-Mazz) region, this species is a troublesome with our rice industry many years ground that will support the weed. Not only does it produce earlier. equipment because remaining stem thousands of very small seeds, it can fragments will root and re-establish reproduce vegetatively. Distribution the plant. Only a biodegradable Aneilema is found today throughout Control herbicide licensed for use in Asia but is generally considered Mechanical removal of aneilema is wetlands can be used. Consult an native to China, Japan, Korea and not recommended even when on agricultural extension agent or For more information, contact the Department of Conservation and Recreation or the Virginia Native Plant Society. Virginia Native Plant Society Blandy Experimental Farm Route 2, Box 214 Boyce, VA 22620 (540) 837-1600 217 Governor Street, Richmond, VA 23219 (804) 786-7951; http://www.state.va.us/~dcr/vaher.html http://www.hort.vt.edu/vnps/ Jim Gilmore, Governor • John Paul Woodley, Jr., Secretary of Natural Resources • David G. Brickley, Director, Department of Conservation and Recreation Invasive Alien Plant Species of Virginia Aneilema (Murdannia keisak (Hasskarl) Hand.-Mazz) natural resource specialist to Natural Heritage Program (see Gleason, Henry A. and Cronquist, Arthur. determine the appropriate control address below). 1991. Manual of vascular plants of method for your situation. northeastern United States and adjacent Canada. New York Botanical Garden. References For more information on native Dunn, Christopher and Rebecca Sharitz. Harvill, A., et al. 1992. Atlas of Virginia plant conservation, contact the 1990. History of Murdannia keizak flora. Burkesville, VA Virginia Native Plant Society at the (Commelinaceae) in the Southeastern address below. For information on United States. Castanea, 55 (2):122-129 Illustration reprinted with permission from Virginia’s natural areas and natural (June 1990). The Illustrated Companion to Gleason and Cronquist’s Manual: Illustrations of heritage resources, contact the Fernald, M.L. 1950. Gray’s manual of Vascular Plants of Northeastern United Virginia Department of botany, eighth edition. American Book States and Adjacent Canada, copyright Conservation and Recreation’s Company, Boston. 1998, The New York Botanical Garden. 3/99 For more information, contact the Department of Conservation and Recreation or the Virginia Native Plant Society. Virginia Native Plant Society Blandy Experimental Farm Route 2, Box 214 Boyce, VA 22620 (540) 837-1600 217 Governor Street, Richmond, VA 23219 (804) 786-7951; http://www.state.va.us/~dcr/vaher.html http://www.hort.vt.edu/vnps/ Jim Gilmore, Governor • John Paul Woodley, Jr., Secretary of Natural Resources • David G. Brickley, Director, Department of Conservation and Recreation.
Recommended publications
  • Murdannia Keisak (Hassk.) Hand.-Maz
    NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Murdannia keisak (Hassk.) Hand.-Maz. USDA Plants Code: MUKE Common names: Marsh dewflower, wart-removing herb Native distribution: East Asia Date assessed: 10 June 2009 Assessors: Steve Glenn, Gerry Moore Reviewers: LIISMA SRC Date Approved: 19 Aug. 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Not Present High 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 30 ) 24 2 Biological characteristic and dispersal ability 25 ( 25 ) 19 3 Ecological amplitude and distribution 25 ( 25 ) 18 4 Difficulty of control 10 ( 7) 7 Outcome score 100 ( 87 )b 68a † Relative maximum score 78.16 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places.
    [Show full text]
  • The Biodiversity of African Plants
    The Biodiversity of African Plants Proceedings XlVth AETFAT Congress 22 - 27 August 1994, Wageningen, The Netherlands Edited by L.J.G. van der Maesen X.M. van der Burgt J.M. van Medenbach de Rooy Department of Plant Taxonomy - Herbarium Vadense Wageningen Agricultural University The Netherlands KLUWER ACADEMIC PUBLISHERS DORDRECHT/ BOSTON / LONDON Contents Foreword ".' '" xm Sponsors XV Monographs and databases 22 August 1994, Convenors: I.M.M. Hedberg, O. Hedberg 1 Monographs, databases and biodiversity conservation 0. HEDBERG 3 Conspectus of the vascular plants of Madagascar: a taxonomic and conservation electronic database G.E. SCHATZ, P.P. LOWRY II, M. LESCOT, A.E. WOLF, S. ANDRIAMBOLOLONERA, V. RAHARIMALALA & J. RAHARIMAMPIONONA 10 Computerisation of the East African Herbarium: development of a regional plant information service T.R. PEARCE, D. FILER & E. VANDEN BERGHE 18 Posters: Plants of southern Africa database T.H. ARNOLD & M. KOEKEMOER .32 Uses, chromosome number and distribution of Solarium species in Uganda R. BUKENYA-ZIRABA 33 The plants of Pehr Forsskal's Flora Aegyptiaco-Arabica F.N. HEPPER & I. FRIIS 38 Enumeration of the flowering plants of tropical Africa J.-P. LEBRUN & A.L. STORK 40 Thunberg, Hoffmann and the Phytographische Blatter R.O. MOFFETT 42 Biodiversity of succulents and African arid regions 22 August 1994, Convenor: N. Jiirgens 47 Biodiversity of arid islands in tropical Africa: the succulents of inselbergs W. BARTHLOTT & S. POREMBSKI . 49 Patterns and characteristics of the flora of the Succulent Karoo Biome, soutiiern Africa C. HILTON-TAYLOR 58 Taxonomy and biogeography of the anomalous genus Wellstedia M. THULIN & A.N.B. JOHANSSON \ .
    [Show full text]
  • Plant Science Today (2019) 6(2): 218-231 218
    Plant Science Today (2019) 6(2): 218-231 218 https://doi.org/10.14719/pst.2019.6.2.527 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Research Article Seedling Morphology of some selected members of Commelinaceae and its bearing in taxonomic studies Animesh Bose1* & Nandadulal Paria2 1 Department of Botany, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006, West Bengal, India 2 Taxonomy & Biosystematics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India Article history Abstract Received: 13 March 2019 Seedling morphology of eight species from four genera of the family Commelinaceae viz. Accepted: 09 April 2019 Commelina appendiculata C.B. Clarke, C. benghalensis L., C. caroliniana Walter, C. paludosa Published: 16 May 2019 Blume, Cyanotis axillaris (L.) D. Don ex Sweet, C. cristata (L.) D. Don, Murdannia nudiflora (L.) Brenan and Tradescantia spathacea Sw. are investigated using both light and scanning electron microscopy. The seedling morphological features explored include germination pattern, seed shape, surface and hilum, root system, cotyledon type, cotyledonary hyperphyll (apocole), cotyledonary hypophyll (cotyledonary sheath), hypocotyl, first leaf and subsequent leaves. All taxa studied had hypogeal and remote tubular cotyledons. However, differences in cotyledon structure (apocole, cotyledonary sheath), seed, hypocotyl, internodes, first leaf and subsequent leaves were observed. Variations of those characters were used to prepare an identification key for the investigated taxa. Commelina spp. and Murdannia nudiflora of the tribe Commelineae were found to differ from Cyanotis spp. and Tradescantia spathacea of tribe Tradescantieae in the petiolate first leaf with papillate margins on upper surface with 6- celled stomata and the glabrous epicotyl.
    [Show full text]
  • Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume.
    [Show full text]
  • II. a Cladistic Analysis of Rbcl Sequences and Morphology
    Systematic Botany (2003), 28(2): pp. 270±292 q Copyright 2003 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: II. A Cladistic Analysis of rbcL Sequences and Morphology TIMOTHY M. EVANS,1,3 KENNETH J. SYTSMA,1 ROBERT B. FADEN,2 and THOMAS J. GIVNISH1 1Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 2Department of Systematic Biology-Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; 3Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ([email protected]) Communicating Editor: John V. Freudenstein ABSTRACT. The chloroplast-encoded gene rbcL was sequenced in 30 genera of Commelinaceae to evaluate intergeneric relationships within the family. The Australian Cartonema was consistently placed as sister to the rest of the family. The Commelineae is monophyletic, while the monophyly of Tradescantieae is in question, due to the position of Palisota as sister to all other Tradescantieae plus Commelineae. The phylogeny supports the most recent classi®cation of the family with monophyletic tribes Tradescantieae (minus Palisota) and Commelineae, but is highly incongruent with a morphology-based phylogeny. This incongruence is attributed to convergent evolution of morphological characters associated with pollination strategies, especially those of the androecium and in¯orescence. Analysis of the combined data sets produced a phylogeny similar to the rbcL phylogeny. The combined analysis differed from the molecular one, however, in supporting the monophyly of Dichorisandrinae. The family appears to have arisen in the Old World, with one or possibly two movements to the New World in the Tradescantieae, and two (or possibly one) subsequent movements back to the Old World; the latter are required to account for the Old World distribution of Coleotrypinae and Cyanotinae, which are nested within a New World clade.
    [Show full text]
  • COMMELINACEAE 鸭跖草科 Ya Zhi Cao Ke Hong Deyuan (洪德元)1; Robert A
    Flora of China 24: 19–39. 2000. COMMELINACEAE 鸭跖草科 ya zhi cao ke Hong Deyuan (洪德元)1; Robert A. DeFilipps2 Herbs annual or perennial, sometimes woody at base. Stems with prominent nodes and internodes. Leaves alternate, distichous or spirally arranged, sessile or petiolate; leaf sheath prominent, open or closed; leaf blade simple, entire. Inflorescence usually of cin- cinni in panicles or solitary, sometimes shortened into heads, sometimes sessile with flowers fascicled, sometimes axillary and pene- trating enveloping leaf sheath, rarely flowers solitary and terminal or axillary. Flowers bisexual, rarely unisexual, actinomorphic or zygomorphic. Sepals 3, free or connate only at base, often boat-shaped or carinate, sometimes galeate at apex. Petals (2 or)3, free, sometimes connate and tubular at middle and free at 2 ends (Cyanotis), sometimes clawed. Stamens 6, free, all or only 2 or 3 fertile; filaments glabrous or torulose villous; anthers parallel or slightly divergent, longitudinally dehiscent, rarely dehiscent by apical pores; staminodes 1–3; antherodes 4-lobed and butterflylike, 3-sect, 2-lobed and dumbbell-shaped, or entire. Ovary 3-loculed, or reduced to 2-loculed; ovules 1 to several per locule, orthotropous. Fruit a loculicidal, 2- or 3-valved capsule, rarely baccate and indehiscent. Seeds few, large; endosperm copious; hilum orbicular or linear. About 40 genera and 650 species: mainly in tropical regions, fewer species in subtropical and temperate regions; 15 genera (two introduced) and 59 species (12 endemic, three introduced) in China. Hong Deyuan. 1997. Commelinaceae. In: Wu Kuo-fang, ed., Fl. Reipubl. Popularis Sin. 13(3): 69–133. 1a. Inflorescence penetrating leaf sheath, sessile, capitate; fertile stamens 6.
    [Show full text]
  • North-Central Province Biodiversity Profile and Conservation Action Plan
    . t NORTH-CENTRALPROVINCE BIODIVERSITY PROFILE AND CONSERVATION ACTION PLAN ------ -~~ - , --------- 11 ' ;" ' 'Jl '-~ ~- ; i. ~, ' 'c· P,f • ' , ,, '''"~ I ~;i.tf·, , ~1.t.t .·, e _. .,,. ~~ '.', 1ll ,. .. .... .e ,.... ~ • • . Ar.-,a. ,,.. ~' " • , -. ... E,. .... " .. "I .. ... • _,. ·••' f0 l ~-~,.t~" . '. a~· .. ,, ,, ... .········ \ ' . \ ! _:'._;:<·*'"':, ;' ·. ,- ,• ·' ...• .... ····· \ ·'I ~~ .... • .-. ........ ,..., A Publication of Biodiversity Secretariat Ministry of Environment & Natural Resources Sri Lanka The Ministry of Environment and Natural Resources acknowledge the ADB/GEF The Government of Netherlands Fm1ded Protected Area Management and Wildlife Conservation Project (Component "C") for providing financial assistance. Copyright © Ministry of Environmental Publisher Biodiversity Secretariat, Ministry of Environment and Natural Resources, Sri Lanka. Citation Sumithraarachchi, D. B. (2008) North Central Province: Biodiversity Profile and Conservation Action Plan. Prepared by D. B. Sumithraarachchi ISBN 978 - 955 0033 - 00 - 3 First Print December, 2008 Coordinated by T.M.Anuruddha Tennakoon Environment Management Officer Printed by Karunarathne & Sons (Pvt) Ltd. 67, UDA Industrial Estate, Katuwana Road, Homagama. II Message from the Hon. Minister Sri Lanka is a small island with rich biological diversity and high level of endemism. Biodiversity of the country is unique and hence it has universal value. Nevertheless, it is currently under threat from ever increasing human interferences. Due to this extraordinary endemism and also high level of threat the country is considered as one of the global biodiversity hotspots. Biodiversity Conservation is not a new phenomenon to Sri Lanka. From ancient times Sri Lankans have had close relations with flora and fauna and they were very much concerned about their conservation and protection for the benefit of future generation. As we all know the world's first recorded sanctuary, 'Mihintale' is located in Sri Lanka.
    [Show full text]
  • Biosystematic Studies on Commelinaceae (Commelinales) I
    ISSN 1346-7565 Acta Phytotax. Geobot. 68 (3): 193–198 (2017) doi: 10.18942/apg.201710 Biosystematic Studies on Commelinaceae (Commelinales) I. Phylogenetic Analysis of Commelina in Eastern and Southeastern Asia * CHUNG-KUN LEE , SHIZUKA FUSE AND MINORU N. TAMURA Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. *[email protected] (author for correspondence) Commelina, the pantropical and largest genus in Commelinaceae, consists of ca. 205 species with char- acteristic conduplicate involucral bracts. Previous phylogenetic studies of Commelina, which mainly used African and North American species, suggested that the ancestral character state of the margins of the involucral bracts of Commelina was free and that free to fused occurred only once. To test this evo- lutionary scenario, we performed parsimony and likelihood analyses with partial matK sequences using 25 individuals from 11 species of Commelina, primarily from eastern and southeastern Asia, with An- eilema and Pollia as outgroups. Results showed that Commelina comprises two major clades, one con- sisting of four species, and the other consisting of seven species. Species with free margins of the invo- lucral bracts were in both major clades: C. suffruticosa in the first clade and C. coelestis, C. communis, C. diffusa, C. purpurea and C. sikkimensis in the latter. The phylogenetic trees suggested that the number of shifts is fewer when the ancestral state was fused and that there were two parallel evolutionary trends toward free. Key words: Commelina, Commelina maculata, Commelina paludosa, Commelina suffruticosa, Com- melinaceae, involucral bracts, matK, maximum likelihood, maximum parsimony, phylogeny Commelina L., the largest genus of Com- na to be sister to a clade of Pollia Thunb., Poly- melinaceae Mirb.
    [Show full text]
  • Murdannia Spirata Var. Parviflora (Commelinaceae), a New Record for India
    Nelumbo Vol 60 (2), (130-133) 2018 ISSN (Print) : 0976-5069 DOI : 10.20324/nelumbo/v60/2018/141135 ISSN (Online) : 2455-376X Murdannia spirata var. parviflora (Commelinaceae), a new record for India Shaikh Mujaffar1, Arjun Prasad Tiwari2, Mayur Nandikar3 and Achuta Nand Shukla4 1Dept. of Botany, S.N.P.G. Govt. College, Khandwa – 450001 2,4Botanical Survey of India, Central Regional Centre, Allahabad 3Naoroji Godrej Centre for Plant Research, Satara – 412801 *Corresponding author: [email protected] eqjMkfu;k LikbjsVk izHksn ikfoZ¶yksjk ¼dksfEefyuslh½ Hkkjr ds fy;s ,d uohu vfHkys[k ’ks[k eqt¶Qj] vtqZu izlkn frokjh] e;wj uanhdj ,o avP;qrkuan ’kqDyk lkjka’k eqjMkfu;k LikbjsVk ¼fy-½ th- czdsu] izHksn ikfoZ¶yksjk QkMsu ¼dksfEefyuslh½ dk sHkkjr ls izFke ckj vfHkysf[kr fd;k x;k gSA izLrqr ‘kks/k i= esa bl tkfr dk foLr`r o.kZu ,oa lgt fu/kkZj.k ds fy, js[kkadu miyC/k djok;k x;k gSA ABSTRACT Murdannia spirata (L.) G. Brückn. var. parviflora Faden (Commelinaceae) is reported here for the first time from India. Detailed description, illustration and distribution of the taxa are provided. Keywords: India, Murdannia spirata var. parviflora, New Record INTRODUCTION Maharashtra, India and M. keisak (Hassk.) Hand.-Mazz. has been added to the Indian flora from West Bengal Murdannia Royle is one of the dominant genera in the (Chowdhury et al. 2015). family Commelinaceae. It is represented by c. 55 species Recent trips in the Balaghat and Seoni districts and distributed in the tropical and subtropical regions of Madhya Pradesh, Central India, some interesting of Asia and Africa (Govaerts & Faden, 2015).
    [Show full text]
  • Oladipo and Ayo-Ayinde: Foliar Epidermal Morphology of the Genera Chimpanzees Self-Medicate with A
    Ife Journal of Science vol. 16, no. 2 (2014) 219 FOLIAR EPIDERMAL MORPHOLOGY OF THE GENERA ANEILEMA AND COMMELINA (COMMELINACEAE) * Oladipo, O. T.1 and Ayo-Ayinde, M. A.1 1 Department of Botany, Obafemi Awolowo University Ile-Ife, Nigeria; Corresponding author: *[email protected] or [email protected] (Received: 12th May, 2014; Accepted: 15th July, 2014) ABSTRACT A Comparative study of the foliar epidermal morphology of some members of the genera Commelina and Aneilema was undertaken. The aim was to study the structure of the foliar epidermis of five species belonging to the two genera and thus provide anatomical information that will help to possibly eliminate identification problems that exist among species of the genera using diagnostic characters of the foliar epidermal morphology. Epidermal peels of both the adaxial and abaxial surfaces of members of the genera were made using standard method and photomicrographs of the surfaces were made. Qualitative and quantitative characters were observed, measured and recorded. Results show that the preponderance of hexacytic stomata is classificatory of the two genera. Rectangular to polygonal epidermal cells on the adaxial lamina is diagnostic of Aneilema aequinoctiale. Result also reveals that simple hooked bicellular and unicellular non glandular trichome is diagnostic of Commelina benghalensis and Aneilema aequinoctiale respectively. Similarities exist in foliar epidermal characters like the trichome and stomata types among other characters between the genera Commelina and Aneilema. The low level of variability in the foliar epidermal morphology of the taxa studied show that foliar epidermal characters cannot stand alone in the separation of the taxa but need to be combined with characters from other lines of evidence.
    [Show full text]
  • Biological Control Agents for Tradescantia Fluminensis November 2012
    EPA staff report Biological control agents for Tradescantia fluminensis November 2012 Advice to the decision making committee on application APP201362: – To import and release the yellow leaf spot fungus Kordyana sp. as a biological control agent for the weed tradescantia (Tradescantia fluminensis) under section 34 of the Hazardous Substances and New Organisms Act 1996 www.epa.govt.nz 2 EPA staff advice: APP201362 Executive Summary and Recommendation In September 2012, Auckland Council made an application to the Environmental Protection Authority (EPA) seeking to import and release the yellow leaf spot fungus Kordyana sp. as a biological control agent for the weed tradescantia (Tradescantia fluminensis). Host range testing shows that no native and/or taonga plants will be adversely affected by this agent, and we recommend that it be approved for release. November 2012 3 EPA staff advice: APP201362 Table of Contents Executive Summary and Recommendation ........................................................................................ 2 Table of Contents .................................................................................................................................. 3 1. The application process ............................................................................................................. 4 Purpose of this document .............................................................................................................. 4 Submission process .....................................................................................................................
    [Show full text]
  • A Comparison of Invasive and Noninvasive Commelinaceae in a Phylogentic Context Jean Burns Moriuchi
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2006 A Comparison of Invasive and Noninvasive Commelinaceae in a Phylogentic Context Jean Burns Moriuchi Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A COMPARISON OF INVASIVE AND NONINVASIVE COMMELINACEAE IN A PHYLOGENTIC CONTEXT By Jean Burns Moriuchi A dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall semester, 2006 Copyright (c), 2006 Jean Burns Moriuchi All Rights Reserved The members of the committee approve the dissertation of Jean Burns Moriuchi defended on 23 October 2006. _________________________ Thomas E. Miller Professor Directing Dissertation _________________________ William C. Parker Outside Committee Member _________________________ Scott J. Steppan Committee Member _________________________ Frances C. James Committee Member _________________________ David Houle Committee Member Approved: ___________________________________________________ Timothy S. Moerland, Chair, Department of Biological Science The office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I thank K. S. Moriuchi for constant support, editing, and help with idea development. I thank T. E. Miller, F. C. James, S. J. Steppan, D. Houle, W. Parker, A. A. Winn, C. T. Lee, D. Richardson, M. Rejmánek, S. L. Halpern, J. Hereford, C. Oakley, K. Rowe, and S. Tso and for helpful comments on the writing and idea development. Special thanks to T. E. Miller for lab support, idea development, and constant encouragement, and to S. J. Steppan for training in molecular techniques, lab support, and systematics training.
    [Show full text]