Oladipo and Ayo-Ayinde: Foliar Epidermal Morphology of the Genera Chimpanzees Self-Medicate with A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approved Plant List 10/04/12
FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L -
Notes on Commelina 1. Flower Variants of C. Erecta in Northwest Puerto Rico
Notes on Commelina 1. Flower variants of C. erecta in northwest Puerto Rico José A. Mari Mut edicionesdigitales.info 2018 #1 Dans les champs de l'observation le hasard ne favorise que les esprits préparés. —Louis Pasteur! ©2018 edicionesdigitales.info. This work may be freely reproduced for educational, non-profit use. URLs- http://edicionesdigitales.info/ commelina/flowertypes.pdf, https://archive.org/details/flowertypes. Updated November 6, 2018." #2 Notes on Commelina 1. Flower variants of ! C. erecta in northwest Puerto Rico! José A. Mari Mut! Retired professor, Department of Biology, University of Puerto Rico, Mayagüez, PR 00680. [email protected]! Introduction! $During my early morning walks along roads and streets in northwest Puerto Rico, I have observed many plants referable to Commelina erecta and noted that they can be segregated into four flower types, even though only one variety of the species is included in current databases and floras of the island. The purpose of this report is to bring these types to the attention of botanists better equipped to study them and decide if they are simple variants, or if perhaps other varieties or maybe even other species have been lumped locally under C. erecta var. erecta.! $ Commelina erecta was described by Linnaeus in 1753 from specimens collected in Virginia, USA. The species has been described under other names, and varieties have been erected based mainly on pilosity and leaf shape. As currently understood, C. erecta has a very wide distribution, extending from the United States through Central America to South America and the Caribbean, it has also been reported from Africa, western Asia and Australia. -
Murdannia Keisak (Hassk.) Hand.-Maz
NEW YORK NON -NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Murdannia keisak (Hassk.) Hand.-Maz. USDA Plants Code: MUKE Common names: Marsh dewflower, wart-removing herb Native distribution: East Asia Date assessed: 10 June 2009 Assessors: Steve Glenn, Gerry Moore Reviewers: LIISMA SRC Date Approved: 19 Aug. 2009 Form version date: 3 March 2009 New York Invasiveness Rank: High (Relative Maximum Score 70.00-80.00) Distribution and Invasiveness Rank ( Obtain from PRISM invasiveness ranking form ) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Not Present High 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 ( 30 ) 24 2 Biological characteristic and dispersal ability 25 ( 25 ) 19 3 Ecological amplitude and distribution 25 ( 25 ) 18 4 Difficulty of control 10 ( 7) 7 Outcome score 100 ( 87 )b 68a † Relative maximum score 78.16 § New York Invasiveness Rank High (Relative Maximum Score 70.00-80.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places. -
The Biodiversity of African Plants
The Biodiversity of African Plants Proceedings XlVth AETFAT Congress 22 - 27 August 1994, Wageningen, The Netherlands Edited by L.J.G. van der Maesen X.M. van der Burgt J.M. van Medenbach de Rooy Department of Plant Taxonomy - Herbarium Vadense Wageningen Agricultural University The Netherlands KLUWER ACADEMIC PUBLISHERS DORDRECHT/ BOSTON / LONDON Contents Foreword ".' '" xm Sponsors XV Monographs and databases 22 August 1994, Convenors: I.M.M. Hedberg, O. Hedberg 1 Monographs, databases and biodiversity conservation 0. HEDBERG 3 Conspectus of the vascular plants of Madagascar: a taxonomic and conservation electronic database G.E. SCHATZ, P.P. LOWRY II, M. LESCOT, A.E. WOLF, S. ANDRIAMBOLOLONERA, V. RAHARIMALALA & J. RAHARIMAMPIONONA 10 Computerisation of the East African Herbarium: development of a regional plant information service T.R. PEARCE, D. FILER & E. VANDEN BERGHE 18 Posters: Plants of southern Africa database T.H. ARNOLD & M. KOEKEMOER .32 Uses, chromosome number and distribution of Solarium species in Uganda R. BUKENYA-ZIRABA 33 The plants of Pehr Forsskal's Flora Aegyptiaco-Arabica F.N. HEPPER & I. FRIIS 38 Enumeration of the flowering plants of tropical Africa J.-P. LEBRUN & A.L. STORK 40 Thunberg, Hoffmann and the Phytographische Blatter R.O. MOFFETT 42 Biodiversity of succulents and African arid regions 22 August 1994, Convenor: N. Jiirgens 47 Biodiversity of arid islands in tropical Africa: the succulents of inselbergs W. BARTHLOTT & S. POREMBSKI . 49 Patterns and characteristics of the flora of the Succulent Karoo Biome, soutiiern Africa C. HILTON-TAYLOR 58 Taxonomy and biogeography of the anomalous genus Wellstedia M. THULIN & A.N.B. JOHANSSON \ . -
Glyphosate-Tolerant Asiatic Dayflower (Commelina Communis
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems Jose Maria Gomez Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Gomez, Jose Maria, "Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems" (2012). Graduate Theses and Dissertations. 12332. https://lib.dr.iastate.edu/etd/12332 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Glyphosate-tolerant Asiatic dayflower ( Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems by José María Gómez Vargas A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Crop Production and Physiology (Weed Science) Program of Study Committee: Micheal D.K. Owen, Major Professor Lynn G. Clark Robert Hartzler Allen Knapp Iowa State University Ames, Iowa 2012 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS v THESIS ORGANIZATION vi CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Literature review 2 General description of Commelina species 2 Asiatic dayflower history and general characteristics 2 Glyphosate and glyphosate-tolerant crops 5 Weed shifts in glyphosate-tolerant crops 6 Herbicide resistance and tolerance 7 Weed seed bank and seed burial depth 8 Literature cited 11 CHAPTER 2. -
Plant Science Today (2019) 6(2): 218-231 218
Plant Science Today (2019) 6(2): 218-231 218 https://doi.org/10.14719/pst.2019.6.2.527 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Research Article Seedling Morphology of some selected members of Commelinaceae and its bearing in taxonomic studies Animesh Bose1* & Nandadulal Paria2 1 Department of Botany, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006, West Bengal, India 2 Taxonomy & Biosystematics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India Article history Abstract Received: 13 March 2019 Seedling morphology of eight species from four genera of the family Commelinaceae viz. Accepted: 09 April 2019 Commelina appendiculata C.B. Clarke, C. benghalensis L., C. caroliniana Walter, C. paludosa Published: 16 May 2019 Blume, Cyanotis axillaris (L.) D. Don ex Sweet, C. cristata (L.) D. Don, Murdannia nudiflora (L.) Brenan and Tradescantia spathacea Sw. are investigated using both light and scanning electron microscopy. The seedling morphological features explored include germination pattern, seed shape, surface and hilum, root system, cotyledon type, cotyledonary hyperphyll (apocole), cotyledonary hypophyll (cotyledonary sheath), hypocotyl, first leaf and subsequent leaves. All taxa studied had hypogeal and remote tubular cotyledons. However, differences in cotyledon structure (apocole, cotyledonary sheath), seed, hypocotyl, internodes, first leaf and subsequent leaves were observed. Variations of those characters were used to prepare an identification key for the investigated taxa. Commelina spp. and Murdannia nudiflora of the tribe Commelineae were found to differ from Cyanotis spp. and Tradescantia spathacea of tribe Tradescantieae in the petiolate first leaf with papillate margins on upper surface with 6- celled stomata and the glabrous epicotyl. -
Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume. -
Murdannia Keisak (Hasskarl) Hand.-Mazz)
Invasive Alien Plant Species of Virginia Aneilema (Murdannia keisak (Hasskarl) Hand.-Mazz) Description Tibet. In the United States, it is Murdannia keisak has no common found in all coastal states from name and is generally known as Delaware to Louisiana, and in aneilema from its former scientific Kentucky and Tennessee. It is also name, Aneilema keisak. It is a found in a freshwater tidal marsh in member of the spiderwort family the Columbia River estuary between (Commelinaceae) with weak, Washington and Oregon. Initially prostrate stems 12 to 30 inches long, thought to be restricted to the coastal rooting at the lower nodes, with plain, aneilema is increasing in the upturned tips. The alternate leaves Piedmont and Ridge and Valley taper rapidly from the sheath to a Provinces of Virginia, Tennessee, very narrow blade 1 to 2½ inches northern Alabama and northern long. In Virginia the three-petalled, Mississippi. In Virginia, it is present white to bluish-purple, perfect in all Coastal Plain counties except flowers extend from the upper axils the Eastern Shore, most of the in late August to late September. central and northern Piedmont, and in Augusta County of the Habitat Shenandoah Valley. Aneilema seeds Found in freshwater marshes and are a favored food of ducks and along the edges of ponds and other waterfowl, which may be an streams, aneilema is associated with important dispersal vector for the rice culture in East Asia. It was plant. probably first brought to South Threat Carolina or Louisiana in rice The aggressive nature of this plant imported for growth in this country. -
II. a Cladistic Analysis of Rbcl Sequences and Morphology
Systematic Botany (2003), 28(2): pp. 270±292 q Copyright 2003 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: II. A Cladistic Analysis of rbcL Sequences and Morphology TIMOTHY M. EVANS,1,3 KENNETH J. SYTSMA,1 ROBERT B. FADEN,2 and THOMAS J. GIVNISH1 1Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 2Department of Systematic Biology-Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; 3Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ([email protected]) Communicating Editor: John V. Freudenstein ABSTRACT. The chloroplast-encoded gene rbcL was sequenced in 30 genera of Commelinaceae to evaluate intergeneric relationships within the family. The Australian Cartonema was consistently placed as sister to the rest of the family. The Commelineae is monophyletic, while the monophyly of Tradescantieae is in question, due to the position of Palisota as sister to all other Tradescantieae plus Commelineae. The phylogeny supports the most recent classi®cation of the family with monophyletic tribes Tradescantieae (minus Palisota) and Commelineae, but is highly incongruent with a morphology-based phylogeny. This incongruence is attributed to convergent evolution of morphological characters associated with pollination strategies, especially those of the androecium and in¯orescence. Analysis of the combined data sets produced a phylogeny similar to the rbcL phylogeny. The combined analysis differed from the molecular one, however, in supporting the monophyly of Dichorisandrinae. The family appears to have arisen in the Old World, with one or possibly two movements to the New World in the Tradescantieae, and two (or possibly one) subsequent movements back to the Old World; the latter are required to account for the Old World distribution of Coleotrypinae and Cyanotinae, which are nested within a New World clade. -
COMMELINACEAE 鸭跖草科 Ya Zhi Cao Ke Hong Deyuan (洪德元)1; Robert A
Flora of China 24: 19–39. 2000. COMMELINACEAE 鸭跖草科 ya zhi cao ke Hong Deyuan (洪德元)1; Robert A. DeFilipps2 Herbs annual or perennial, sometimes woody at base. Stems with prominent nodes and internodes. Leaves alternate, distichous or spirally arranged, sessile or petiolate; leaf sheath prominent, open or closed; leaf blade simple, entire. Inflorescence usually of cin- cinni in panicles or solitary, sometimes shortened into heads, sometimes sessile with flowers fascicled, sometimes axillary and pene- trating enveloping leaf sheath, rarely flowers solitary and terminal or axillary. Flowers bisexual, rarely unisexual, actinomorphic or zygomorphic. Sepals 3, free or connate only at base, often boat-shaped or carinate, sometimes galeate at apex. Petals (2 or)3, free, sometimes connate and tubular at middle and free at 2 ends (Cyanotis), sometimes clawed. Stamens 6, free, all or only 2 or 3 fertile; filaments glabrous or torulose villous; anthers parallel or slightly divergent, longitudinally dehiscent, rarely dehiscent by apical pores; staminodes 1–3; antherodes 4-lobed and butterflylike, 3-sect, 2-lobed and dumbbell-shaped, or entire. Ovary 3-loculed, or reduced to 2-loculed; ovules 1 to several per locule, orthotropous. Fruit a loculicidal, 2- or 3-valved capsule, rarely baccate and indehiscent. Seeds few, large; endosperm copious; hilum orbicular or linear. About 40 genera and 650 species: mainly in tropical regions, fewer species in subtropical and temperate regions; 15 genera (two introduced) and 59 species (12 endemic, three introduced) in China. Hong Deyuan. 1997. Commelinaceae. In: Wu Kuo-fang, ed., Fl. Reipubl. Popularis Sin. 13(3): 69–133. 1a. Inflorescence penetrating leaf sheath, sessile, capitate; fertile stamens 6. -
Propagation of Tradescantia Fluminensis
PLNT 310 Project: Video Support Tradescantia fluminensis Molly Higenell Introduction A common houseplant in North America and Europe, Tradescantia fluminensis, more commonly known as Wandering Jew, was chosen for my PLNT 310 Project. This paper supplements the video tutorial under the same name. The video outlines the materials and methods followed in this experiment. Objectives The objective of this project was to determine experimentally which stem cuttings produced the greatest root formation, with concentration on five factors: hydroponic propagation, potting mix growth medium, IBA rooting hormone powder, mist frame environment, and the number of nodes per stem cutting (1 node or 3 nodes). Results The following results were taken 4 weeks after the cuttings were made. Treatment Average Root Length (cm) 3 node, IBA, hydroponic 18 3 node, no IBA, hydroponic 17 1 node, IBA, hydroponic 12 1 node, no IBA, hydroponic 13 3 node, IBA, potting mix 14 3 node, no IBA, potting mix 12 1 node, IBA, potting mix 11 1 node, no IBA, potting mix 11 Conclusion The best rooting results were from the hydroponic system for both the 3 node and the 1 node stem cuttings. Overall the 3 node cuttings in the hydroponic system produced roots of longest length. There was no significant difference between the stem cuttings treated with IBA rooting hormone powder and those that were not treated with hormone powder in the hydroponic system. The greatest difference in treatments was between the 3 node stem cuttings treated with IBA rooting hormone powder and then placed in potting mix, and the 3 node cuttings that were placed in potting mix without rooting hormone powder. -
Commelina Benghalensis L. (Commelinaceae)
Pooja A Kansagara et al /J. Pharm. Sci. & Res. Vol. 11(4), 2019, 1165-1171 A Complete Review on Medicinally Active Herbal Weed: Commelina benghalensis L. (Commelinaceae) Pooja A Kansagara*1, Devang J Pandya2 Department of Pharmacognosy1, Akshar-preet Institute of Pharmacy, Gujrat Technological University, Jamnagar, Gujrat, India. Department of Pharmacognosy2, School of Pharmacy, RK University, Rajkot, Gujrat, India. Abstract: Herbal & natural products of folk medicine have been used for centuries in every culture throughout the world. There is no doubt that plants are a reservoir of potentially useful chemical compounds which serves as drugs, which provided a newer leads and clues for modern design by synthesis. Commelina benghalensis, also known as Benghal dayflower which is a perennial medicinal plant inhabitant to tropical Asia and Africa. Commelina benghalensis is used as folkloric remedy to treat and prevent various diseases like burns, sore throats, headache, leprosy, fever, snake bite and jaundice. It shows Pharmacological activities like laxative, anti-inflammatory, anti-microbial, Anti-cancer, sedative, Analgesic, Hepatoprotective, Anti-depressant, Anti-viral, Antioxidant, Antidiarrheal, Demulcent, Emollient, Diuretic and Febrifuge. Overall, many investigation have been done on pharmacological active phytoconstituents of this plant. Still, many Pharmacological activity of this medicinal weed still need to be carrying out. This review article provides brief review & pharmacological activities of Commelina benghalensis. Key Words: