Phylogenetic Relationships in the Commelinaceae: I

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships in the Commelinaceae: I Systematic Botany (2000), 25(4): pp. 668±691 q Copyright 2000 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: I. A Cladistic Analysis of Morphological Data TIMOTHY M. EVANS1 Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 1Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ROBERT B. FADEN Department of Botany, NHB 166, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 MICHAEL G. SIMPSON Department of Biology, San Diego State University, San Diego, California 92182 KENNETH J. SYTSMA Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706 Communicating Editor: Richard Jensen ABSTRACT. The plant family Commelinaceae displays a wide range of variation in vegetative, ¯oral, and in¯orescence morphology. This high degree of variation, particularly among characters operating under strong and similar selective pressures (i.e., ¯owers), has made the assessment of homology among morpho- logical characters dif®cult, and has resulted in several discordant classi®cation schemes for the family. Phy- logenetic relationships among 40 of the 41 genera in the family were evaluated using cladistic analyses of morphological data. The resulting phylogeny shows some similarity to the most recent classi®cation, but with some notable differences. Cartonema (subfamily Cartonematoideae) was placed basal to the rest of the family. Triceratella (subfamily Cartonematoideae), however, was placed among genera within tribe Tradescantieae of subfamily Commelinoideae. Likewise, the circumscriptions of tribes Commelineae and Tradescantieae were in disagreement with the most recent classi®cation. The discordance between the phylogeny and the most recent classi®cation is attributed to a high degree of convergence in various morphological characters, par- ticularly those relating to the androecium and the in¯orescence. Anatomical characters (i.e., stomatal struc- ture), on the other hand, show promise for resolving phylogenetic relationships within the Commelinaceae, based upon their agreement with the most recent classi®cation. The Commelinaceae, a well de®ned family of 41 neae is found mainly in Africa and Asia. Only six genera and about 650 species, is characterized by genera (Aneilema, Buforrestia, Commelina, Floscopa, several features including a distinct closed leaf Murdannia, and Pollia) have indigenous species in sheath, a succulent leaf blade, and three-merous both hemispheres. ¯owers with distinct petals and sepals (Cronquist Older classi®cations of the Commelinaceae relied 1981; Faden 1985; Faden and Hunt 1991). The gen- heavily on ¯oral features (see Faden and Hunt 1991, era are largely tropical and subtropical, but several for a review). Woodson (1942) ®rst used in¯ores- extend into temperate regions. The greatest diver- cence characters for higher-level classi®cation, but sity is in Africa, where, along with Madagascar, he was largely unfamiliar with the Old World gen- nearly half the genera and about 40% of the species era. Pichon (1946) employed anatomical characters are found (Faden 1983a). to separate the genus Cartonema as the family Car- There is a natural division of taxa between the tonemataceae, but he returned to more traditional Old and the New World. The seven subtribes of characters to de®ne his ten tribes of Commelina- tribe Tradescantieae (sensu Faden and Hunt 1991) ceae. Brenan (1966) used a variety of morphological are each wholly con®ned to either the Eastern or characters to de®ne 15 informal ``groups'' of gen- Western hemisphere, whereas the tribe Commeli- era. These have served as the basis of surveys of 668 2000] EVANS ET AL.: COMMELINACEAE 669 anatomical (Tomlinson 1966, 1969) and cytological molecular and morphological studies are similar to (Jones and Jopling 1972) characters in the family, the molecular phylogenies (e.g., Chase et al. 1995; but they have little taxonomic signi®cance. Linder and Kellogg 1995). Recent work by Givnish, The most recent classi®cation, which will be used Evans, Pires, and Sytsma (Givnish et al. 1995, 1999) in this study, was put forward by Faden and Hunt generally supports these ®ndings. It also places the (1991). In their classi®cation, the Commelinaceae is Hanguanaceae as the sister family of the Comme- divided into two unequal subfamilies (Table 1). linaceae and the Xyridaceae and Eriocaulaceae in Subfamily Cartonematoideae contains the tribes the grass/sedge clade. Cartonemateae and Triceratelleae, each comprising Certain morphological characters also lend sup- a single genus. Subfamily Commelinoideae con- port to the separation of the Commelinaceae from tains the remaining 38 genera that are arranged in other families of the original Commelinales (sensu two tribes, Tradescantieae and Commelineae, the Cronquist 1981, or Dahlgren et al. 1985). As dis- former of which is divided into seven subtribes. cussed above, Dahlgren et al. (1985) separated the Evans (1995) conducted a cladistic analysis of the Commelinaceae from the other commelinoid fami- Commelinaceae using both morphological and mo- lies in part by the presence of raphides, which are lecular characters. This paper represents a modi®- absent in the Mayacaceae, Rapateaceae, Xyridaceae, cation and expansion of the morphological com- and Eriocaulaceae (Dahlgren and Clifford 1982). ponents of that study. Raphides are widespread, however, in the Ponted- Relationships of Commelinaceae to other Mono- eriaceae, Philydraceae, and Haemodoraceae (Dahl- cot Families. The family Commelinaceae is the gren et al. 1985). Additionally, whereas the Com- namesake for the order Commelinales. Cronquist melinaceae were separated from other families in (1981) de®ned the order by the presence of perfect the Commelinales by the presence of an amoeboid ¯owers that are adapted for general insect polli- tapetum, the genus Pontederia and all investigated nation, having showy petals that are differentiated members of the Haemodoraceae also have an amoe- from the sepals. He included three other families in boid tapetum (Dahlgren and Clifford 1982; Simp- this order: Xyridaceae, Rapateaceae, and Mayaca- son 1988, 1990). Finally, ¯owers in the Commeli- ceae. He separated the Commelinaceae from the naceae show a strong tendency toward zygomor- other three families by their well-de®ned and phy, whereas they are generally actinomorphic in closed leaf sheath, and the succulent blade. the other members of the Commelinales sensu Dahlgren et al. (1985) included the same families Cronquist (1981) or Dahlgren et al. (1985). Zygo- in Commelinales as Cronquist, but with the addi- morphic ¯owers are common, however, in the Pon- tion of the Eriocaulaceae. Eriocaulaceae was placed tederiaceae, Philydraceae, and Haemodoraceae. in its own order by Cronquist, who maintained that Although numerous taxonomic treatments have it was most likely derived within Xyridaceae. Dahl- been produced for the Commelinaceae, there has gren et al. (1985) distinguished the Commelinaceae been little consensus as to which characters should from the other commelinoid families by the pres- be used to de®ne relationships among the genera. ence of raphides, an amoeboid tapetum, and the The earlier systems relied heavily upon features of leaf characters used by Cronquist (closed leaf the highly variable androecium, but they ignored sheath and succulent blade). characters of the in¯orescence. The classi®cation Although cladistic analyses of morphological produced by Faden and Hunt (1991), which will be data support a monophyletic Commelinales sensu used throughout this study, incorporated a broad Dahlgren et al. (1985; Stevenson and Loconte 1995), range of information, such as characters from mor- recently published molecular data suggest other- phology, anatomy, and palynology. None of these wise. Nucleotide sequence data from the chloroplast classi®cations, however, is rooted in an evolutionary gene rbcL (Chase et al. 1993; Clark et al. 1993; Du- framework. The purpose of this study was to ex- vall et al. 1993) place the Commelinaceae near the amine the intergeneric relationships in the Com- Pontederiaceae, Philydraceae, and Haemodoraceae, melinaceae using morphological and anatomical all of which are part of a larger clade containing characters in a cladistic analysis. the families of the order Zingiberales. The Rapatea- ceae (the only other representative of Commelinales MATERIALS AND METHODS included in the previous molecular studies) is placed in a different clade that contains, among Operational Taxonomic Units (OTU's). A criti- other families, Poaceae and Cyperaceae. Combined cal step in any cladistic analysis is the selection of 670 SYSTEMATIC BOTANY [Volume 25 TABLE 1. Classi®cation of the Commelinaceae (as presented by Faden and Hunt 1991). *indicates Old World subtribe, **indicates New World subtribe. Family: Commelinaceae R. Br. Subfamily: Cartonematoideae (Pichon) Faden & D. Hunt Tribe: Cartonemateae (Pichon) Faden & D. Hunt Cartonema R. Brown Tribe: Triceratelleae Faden & D. Hunt Triceratella Brenan Subfamily: Commelinoideae (BruÈ ckner) Faden & D. Hunt Tribe: Tradescantieae (Meisner) Faden & D. Hunt Subtribe: *Palisotinae Faden & D. Hunt Palisota Reichb. Subtribe: *Streptoliriinae Faden & D. Hunt Streptolirion Edgew. Spatholirion Ridley Aetheolirion Forman Subtribe: *Cyanotinae (Pichon) Faden & D. Hunt Cyanotis D. Don (Including Amischophacelus R. Rao & Kamm.)
Recommended publications
  • 1.P77-84(Gibasis Pellucida).Indd
    林業研究季刊 36(2):77-84, 2014 77 Research paper Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Chien-Ti Chao1 Yu-Lan Huang1 Si-Qian Liu2 Yen-Hsueh Tseng1,* 【Abstract】Commelinaceae is a monocot family mainly distributed in tropical and temperate region. Several naturalized species were recorded in Taiwan these years. Recently we found a newly naturalized species-Gibasis pellucida (Martens & Galeotti) D.R. Hunt in Northern Taiwan. This species was native to Mexico, and introduced as ornamental plant in many countries. This is a newly naturalized species and genus for Flora of Taiwan. Line drawing, photos and distribution map were provided in this study. Finally, we revised naturalized species of Commelinaceae in Taiwan, the naturalization of them were related to ornamental activity, some species had set up large population already, especially the Tradescantia species. Thus we need pay more attention to these potentially invasive plants. 【Key words】Gibasis pellucida, Commelinaceae, naturalized plant, Taiwan 研究報告 臺灣產鴨跖草科一新馴化植物-細梗鴨跖草 趙建棣1 黃郁嵐1 劉思謙2 曾彥學1,3 【摘要】鴨跖草科為熱帶常見的單子葉草本植物,之前多位學者已相繼報導數種本科的馴化植物。 最近作者等又於臺灣北部發現一種新馴化植物,經查為原產於墨西哥之細梗鴨跖草。本種為一園藝 觀賞植物,無性繁殖容易且適應力強,推測是人為引進而逸出於野外。根據這幾年野外的調查發現 其野外族群數量有穩定成長,未來動態值得注意。對台灣的植物誌而言,細梗鴨跖草屬與細梗鴨跖 草均為本島的新記錄。 【關鍵詞】鴨跖草科、細梗鴨跖草、馴化植物、臺灣 1. 國立中興大學森林學系,40227臺灣台中市南區國光路250號 Department of Forestry, National Chung-Hsing University, 250 Kuokwang Rd.,40227 Taichung, Taiwan. 2. 國立中興大學生命科學系,40227臺灣台中市南區國光路250號 Department of Life Sciences, National Chung- Hsing University, 250 Kuokwang Rd., 40227 Taichung, Taiwan. 3. 通訊作者 (E-mail:[email protected]) * Corresponding author, e-mail: [email protected]. Phone number: (04)2284-0345#139 78 Gibasis pellucida (Martens & Galeotti) D.R. Hunt (Commelinaceae), A Newly Naturalized Plant in Taiwan Introduction (Jacq.) L.
    [Show full text]
  • Notes on Commelina 1. Flower Variants of C. Erecta in Northwest Puerto Rico
    Notes on Commelina 1. Flower variants of C. erecta in northwest Puerto Rico José A. Mari Mut edicionesdigitales.info 2018 #1 Dans les champs de l'observation le hasard ne favorise que les esprits préparés. —Louis Pasteur! ©2018 edicionesdigitales.info. This work may be freely reproduced for educational, non-profit use. URLs- http://edicionesdigitales.info/ commelina/flowertypes.pdf, https://archive.org/details/flowertypes. Updated November 6, 2018." #2 Notes on Commelina 1. Flower variants of ! C. erecta in northwest Puerto Rico! José A. Mari Mut! Retired professor, Department of Biology, University of Puerto Rico, Mayagüez, PR 00680. [email protected]! Introduction! $During my early morning walks along roads and streets in northwest Puerto Rico, I have observed many plants referable to Commelina erecta and noted that they can be segregated into four flower types, even though only one variety of the species is included in current databases and floras of the island. The purpose of this report is to bring these types to the attention of botanists better equipped to study them and decide if they are simple variants, or if perhaps other varieties or maybe even other species have been lumped locally under C. erecta var. erecta.! $ Commelina erecta was described by Linnaeus in 1753 from specimens collected in Virginia, USA. The species has been described under other names, and varieties have been erected based mainly on pilosity and leaf shape. As currently understood, C. erecta has a very wide distribution, extending from the United States through Central America to South America and the Caribbean, it has also been reported from Africa, western Asia and Australia.
    [Show full text]
  • Flora and Vegetation Survey of the Proposed Kwinana to Australind Gas
    __________________________________________________________________________________ FLORA AND VEGETATION SURVEY OF THE PROPOSED KWINANA TO AUSTRALIND GAS PIPELINE INFRASTRUCTURE CORRIDOR Prepared for: Bowman Bishaw Gorham and Department of Mineral and Petroleum Resources Prepared by: Mattiske Consulting Pty Ltd November 2003 MATTISKE CONSULTING PTY LTD DRD0301/039/03 __________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY............................................................................................................................................... 1 2. INTRODUCTION ..................................................................................................................................... 2 2.1 Location................................................................................................................................................. 2 2.2 Climate .................................................................................................................................................. 2 2.3 Vegetation.............................................................................................................................................. 3 2.4 Declared Rare and Priority Flora......................................................................................................... 3 2.5 Local and Regional Significance........................................................................................................... 5 2.6 Threatened
    [Show full text]
  • ALINTA DBNGP LOOPING 10 Rehabilitation Management Plan
    DBNGP (WA) Nominees Pty Ltd DBNGP LOOPING 10 Rehabilitation Management Plan ALINTA DBNGP LOOPING 10 Rehabilitation Management Plan November 2005 Ecos Consulting (Aust) Pty Ltd CONTENTS 1 INTRODUCTION ................................................................................ 1 2 REHABILITATION REVIEW............................................................ 1 2.1 REHABILITATION OBJECTIVES ............................................................... 2 3 EXISTING VEGETATION ................................................................. 2 3.1 FLORA AND VEGETATION...................................................................... 2 3.2 VEGETATION STUDIES ........................................................................... 4 3.2.1 Study Method ............................................................................... 4 3.2.2 Study Results ................................................................................ 7 3.3 OTHER ENVIRONMENTAL VALUES ...................................................... 10 4 REHABILITATION STRATEGY..................................................... 11 5 REHABILITATION METHODS ..................................................... 11 5.1 WEED MANAGEMENT.......................................................................... 11 5.2 DIEBACK (PHYTOPHTHORA CINNAMOMI) MANAGEMENT .................... 11 5.3 PRIORITY AND RARE FLORA MANAGEMENT ........................................ 12 5.4 RESOURCE MANAGEMENT ................................................................... 13 5.5
    [Show full text]
  • Commelina Communis
    Commelina communis Commelina communis Asiatic dayflower Introduction The genus Commelina has approximately 100 species worldwide, distributed primarily in tropical and temperate regions. Eight species occur in China[60][167] . Species of Commelina in China Flower of Commelina communis. (Photo pro- Scientific Name Scientific Name vided by LBJWC, Albert, F. W. Frick, Jr.) C. auriculata Bl. C. maculata Edgew. C. bengalensis L. C. paludosa Bl. roadsides [60]. C. communis L. C. suffruticosa Bl. Distribution C. diffusa Burm. f. C. undulata R. Br. C. communis is widely distributed in China, [60] but no records are reported stalk, often hirsute-ciliate marginally, Taxonomy for its distribution in Qinghai, Xinjiang, and acute apically. Cyme inflorescence [6][116][167] Family: Commelinaceae Hainan, and Tibet . has one flower near the top, with dark Genus: Commelina L. blue petals and membranous sepals 5 Economic Importance mm long. Capsules are elliptic, 5–7 Description Commelina communis has caused serious mm, and two-valved. The two seeds Commelina communis is an annual damage in the orchards of northeastern in each valve are brown-yellow, 2–3 [96] herb with numerous branched, creeping China . C. communis is used in Chinese mm long, irregularly pitted, flat-sided, [60] stems, which are minutely pubescent herbal medicine. and truncate at one end[60][167]. distally, 1 m long. Leaves are lanceolate to ovate-lanceolate, 3–9 cm long and Related Species 1.5–2 cm wide. Involucral bracts Habitat C. diffusa occurs in forests, thickets C. communis prefers moist, shady forest grow opposite the leaves. Bracts are and moist areas of southern China and edges.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Glyphosate-Tolerant Asiatic Dayflower (Commelina Communis
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems Jose Maria Gomez Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Gomez, Jose Maria, "Glyphosate-tolerant Asiatic dayflower (Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems" (2012). Graduate Theses and Dissertations. 12332. https://lib.dr.iastate.edu/etd/12332 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Glyphosate-tolerant Asiatic dayflower ( Commelina communis L.): Ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems by José María Gómez Vargas A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Crop Production and Physiology (Weed Science) Program of Study Committee: Micheal D.K. Owen, Major Professor Lynn G. Clark Robert Hartzler Allen Knapp Iowa State University Ames, Iowa 2012 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS v THESIS ORGANIZATION vi CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Literature review 2 General description of Commelina species 2 Asiatic dayflower history and general characteristics 2 Glyphosate and glyphosate-tolerant crops 5 Weed shifts in glyphosate-tolerant crops 6 Herbicide resistance and tolerance 7 Weed seed bank and seed burial depth 8 Literature cited 11 CHAPTER 2.
    [Show full text]
  • Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
    Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees.
    [Show full text]
  • The Genus Porandra (Commelinaceae) in Thailand
    THAI FOR. BULL. (BOT.) 31: 141– 148. 2003. The Genus Porandra (Commelinaceae) in Thailand THAWEESAK THITIMETHAROCH*, PRANOM CHANTARANOTHAI* & ROBERT B. FADEN** ABSTRACT. A revision of the genus Porandra D.Y. Hong in Thailand is presented. Three species are recognised, P. microphylla Y. Wan, P. ramosa D.Y. Hong and P. scandens D.Y. Hong. The first two species are newly recorded from Thailand. A key to the species is provided together with illustrations, distributions and ecological data. INTRODUCTION The genus Porandra was established by Hong (1974) based on two species, namely P. ramosa D.Y. Hong and P. scandens D.Y. Hong. Since his work a third species, P. microphylla Y. Wan has been described from China (Wan, 1986). Faden (1998) considered Porandra to be probably conspecific with Amischotolype but Hong & DeFilipps (2000) maintained the genus. All species except P. scandens were considered endemic to China. The genus was separated from Amischotolype by its climbing habit and anther cells opening by apical pores. In the course of preparing Commelinaceae treatments for the Flora of Thailand, P. ramosa and P. microphylla are newly recorded for the country. In addition, although Hong (1974) and Hong & DeFillips (2000) stated that rhizomes were absent, although we found long horizontal underground rhizomes in P. microphylla and P. scandens and they may also be present in P. ramosa. TAXONOMIC ACCOUNT PORANDRA D.Y. Hong in Acta Phytotax. Sin. 12(4): 462. 1974; Faden, Fam. Gen. Vas. Pl. 4: 120. 1998. Type species: Porandra ramosa D.Y. Hong. Perennial rhizomatous scandent herbs. Leaf blades alternate; petiole unwinged.
    [Show full text]
  • Plant Science Today (2019) 6(2): 218-231 218
    Plant Science Today (2019) 6(2): 218-231 218 https://doi.org/10.14719/pst.2019.6.2.527 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Research Article Seedling Morphology of some selected members of Commelinaceae and its bearing in taxonomic studies Animesh Bose1* & Nandadulal Paria2 1 Department of Botany, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006, West Bengal, India 2 Taxonomy & Biosystematics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India Article history Abstract Received: 13 March 2019 Seedling morphology of eight species from four genera of the family Commelinaceae viz. Accepted: 09 April 2019 Commelina appendiculata C.B. Clarke, C. benghalensis L., C. caroliniana Walter, C. paludosa Published: 16 May 2019 Blume, Cyanotis axillaris (L.) D. Don ex Sweet, C. cristata (L.) D. Don, Murdannia nudiflora (L.) Brenan and Tradescantia spathacea Sw. are investigated using both light and scanning electron microscopy. The seedling morphological features explored include germination pattern, seed shape, surface and hilum, root system, cotyledon type, cotyledonary hyperphyll (apocole), cotyledonary hypophyll (cotyledonary sheath), hypocotyl, first leaf and subsequent leaves. All taxa studied had hypogeal and remote tubular cotyledons. However, differences in cotyledon structure (apocole, cotyledonary sheath), seed, hypocotyl, internodes, first leaf and subsequent leaves were observed. Variations of those characters were used to prepare an identification key for the investigated taxa. Commelina spp. and Murdannia nudiflora of the tribe Commelineae were found to differ from Cyanotis spp. and Tradescantia spathacea of tribe Tradescantieae in the petiolate first leaf with papillate margins on upper surface with 6- celled stomata and the glabrous epicotyl.
    [Show full text]
  • January 1958 the National HORTICULTUR .·\L Magazine
    TIIE N A..TIONA..L ~GA'Z , INE 0 & JOURNAL OF THE AMERICAN HORTICULTURAL SOCIETY, INC. * January 1958 The National HORTICULTUR .·\L Magazine *** to accumulate, Increase, and disseminate horticultural information *** OFFICERS EDITOR STUART M. ARMSTRONG, PR ESIDENT B. Y. MORRISON Silver Spring, Maryland MANAGING EDITOR HENRY T. SKINNER, FIRST VICE-PRESIDENT Washington, D.C. JAM ES R . H ARLOW MRS. i'VAL TER DOUGLAS, SECON D VICE-PRESIDENT EDITORIAL COMMITTEE Chauncey, New York I/:;- Phoenix, Arizona i'VALTER H . HOD GE, Chairman EUGENE GRIFFITH, SECRETARY JOH N L. CREECH Takoma Pm'k, Maryland FREDERIC P. LEE MISS OLIVE E. WEA THERELL, TREASURER CONRAD B. LINK Olean, New York & W ashington, D.C. CURTIS IVIA Y DIRECTORS The National Horticultural Maga­ zine is the official publication of the Te?'ms Expiring 1958 American Horticultural Society and is Stuart lVI. Armstrong, Mm'yland iss ued four times a year during the John L. Creech, Maryland qu arter s commencing with J anuary, Mrs. Peggie Schulz, Min nesota April, July and October. It is devoted to the dissemination of knowledge in R. P. iJ\Thite, Dist?'ict of Columbia the sc ience and art of growing orna­ Mrs. H arry Wood, Pennsylvania mental plants, fruits, vegetables, and rela ted subjects. Original papers increasing the his· T erms Expiring 1959 torical, varietal, and cultural knowl­ Donovan S. Correll, T exas edges of plant materials of economic and aesthetic importance are wel­ Frederick VV. Coe, Mm'yland comed and will be published as early Miss Margaret C. Lancaster, MG1'yland as possible. The CHairman of the ~ di · Mrs.
    [Show full text]