Novel Functions of Anthrax Lethal Toxin

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University

By

Yian Kim Tan Bachelor of Science University of Queensland, 1998

Director: Charles Bailey, Distinguished Professor Department of Molecular and Microbiology

Spring Semester 2009 George Mason University Fairfax, VA

Copyright 2009 Yian Kim Tan All Rights Reserved

ii

DEDICATION

This is dedicated to my loving wife Karen and my wonderful son Gabriel.

iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to the following individuals whose unwavering support and faith were critical to the completion of this research.

First, I would like to thank Dr. Charles Bailey for his valuable insights and intellectual support. Dr. Aigou Wu who provided the scientific initiatives that formed the basis of this study and is always so generous with his guidance, feedback and support. Dr. Serguei Popov who provided invaluable scientific comments and suggestions on my research. It is a honour to have them as members of my committee.

A special thank you to Dr. Ken Alibek for his mentorship and for allowing me the opportunity to tap into his expertise. I wish to acknowledge the past and present employees at AFG Biosolutions, Inc. namely, Svetlana, Darya, Hao, Caroline and Lena. As a result of their assistance, my research was able to progress smoothly.

Finally, I want to thank my family for standing by me every step of the way. To my parents who cheered me on despite the long periods of separation. To my wife, Karen, for being my best friend and critic. To my son, Gabriel, who brought immense joy and laughter to my life.

iv

TABLE OF CONTENTS

Page List of Tables………………………………………………………………………..…vii List of Figures…………………………………………………………………………viii List of Abbreviations…………………………………………………………………… x Abstract...... ………xii 1. Introduction and Literature Review...... …1 1.1. Introductory Overview ...... 1 1.1.1. Discovery of Anthrax...... 1 1.1.2. Epidemiology ...... 2 1.1.3. Anthrax as a Bioweapon ...... 4 1.2. Bacteria Pathogenesis ...... 7 1.2.1. Microbiology...... 7 1.2.2. Virulence Factors of Bacillus anthracis ...... 8 1.2.3. Translocation of Lethal Toxin and Edema Toxin into cytoplasm ...... 12 1.3. Clinical Manifestation and Diagnosis...... 15 1.4. Prophylaxis and Treatment ...... 20 1.5. Study Objectives ...... 21 2. Induction of Autophagy by Lethal Toxin ...... 23 2.1. Introduction ...... 23 2.2. Materials and Methods...... 40 2.2.1. Cells and Reagents...... 40 2.2.2. Bacterial Culture Supernatant Preparation...... 40 2.2.3. PCR Detection of Anthrax Chromosome and pXO2...... 41 2.2.4. Stable Transfection of RAW 264.7 Cells ...... 41 2.2.5. Immunoblotting...... 44 2.2.6. Fluorescence Microscopy and Punctuate Count...... 44 2.2.7. Acidic Vacuoles Staining...... 45 2.2.8. Cell Viability...... 45 2.2.9. Statistical Analysis...... 46 2.3. Results...... 46 2.3.1 Acidic Orange Staining Showed Increased Acidic Vacuoles...... 46 2.3.2. Increased GFP-LC3 Punctuate When Cells Were Treated with LT...... 48 2.3.3. Conversion of LC3-I to LC3-II...... 53 2.3.4. Sterne and Delta Ames Strain Contain other Autophagy inducing compound...... 55

v 2.2.5. Autophagy Inhibitor May Increase Cell Death...... 56 2.3.3. Discussion...... 59 3. Lethal Toxin and Reactive Oxidative Species Production ...... 64 3.1. Introduction Overview...... 64 3.2. Materials and Methods...... 67 3.2.1. Spores Preparation ...... 67 3.2.2. Cell Culture...... 67 3.2.3. Blood Isolation...... 67 3.2.4. ROS Production ...... 68 3.2.5. Apoptosis Assay...... 69 3.2.6. Murine Anthrax Model ...... 70 3.2.7. Statistical Analysis...... 71 3.3. Results...... 72 3.3.1. Induction of ROS by LT ...... 72 3.3.2. STIMAL Protection of PBMCs against Apoptosis...... 79 3.3.3. Murine Anthrax Model ...... 82 3.4. Discussion...... 86 4. Neutrophils Chemotaxis...... 91 4.1. Introduction...... 91 4.2. Materials and Methods...... 93 3.3.3. Human Cells Preparation and Activation ...... 93 3.3.3. RNA Isolation ...... 93 3.3.3. RNase Protection Assay...... 94 3.3.3. Measurement of Chemokines Secretion ...... 95 3.3.3. Neutrophils Chemotactic Assay...... 95 4.3. Results...... 96 3.3.3. Inhibition of LPS and CW-Induced Chemokine by LT...... 96 3.3.3. LT Inhibits CW and LT-Induced Transcription of Chemokines ...... 97 3.3.3. LT-Treated PBMC Does Not Induce Neutrophils Chemotaxis...... 97 4.4. Discussion...... 103 5. Concluding Remarks...... 107 List of References ...... 109

vi

LIST OF TABLES

Table Page 1.1. Cellular targets and effects of anthrax toxins ...... ……14 2.1. Description of autophagy-related genes...... 27 2.2. Induction of autophagy by bacteria, viruses and toxins...... 36 3.1. Bacillusanthracis sterne spores (34F2) were administered to DBA2 mice intraperitoneally ...... 83 3.2. Protective effect of NAC liposome in combination with ciprofloxacin in DBA2 mice infected with B.anthracis sterne spores...... 84

vii

LIST OF FIGURES

Figure Page 1.1. Geographical distribution of anthrax ...... ……3 1.2. Pathophysiology of anthrax ...... 7 1.3. Internalization of anthrax toxin ...... 13 1.4. Posteroanterior (PA) chest x-ray...... 15 1.5. Dissemination of bacteria into different organs after challenge of B anthracis Sterne spores in rabbits ...... 18 1.6. Pathological changes observed in the tested organs from expired rabbits after infection with B. anthracis Sterne spores ...... 19 2.1. Schematic representation of autophagy process ...... 25 2.2. The simplified process of autophagy in mammalian cells ...... 26 2.3. Regulatory complex for autophagy induction...... 30 2.4. Regulation of autophagy in mammalian cells ...... 32 2.5. pEGFP-LC3 plasmid as provided by Dr Tamotsu Yoshimori ...... 42 2.6. Transient transfection of RAW 264.7 cells with pEGFP-LC3 ...... 43 2.7. Supravital staining of acidic compartment with acridine orange ...... 47 2.8. RAW 264.7 cells stained with acridine orange after LT treatment ...... 48 2.9. Stably transfected RAW 264.7 cells treated with LT 15. Name...... 49 2.10 Transient vs stable transfection of RAW 264.7 cells with pEGFP-LC3...... 50 2.11. Lethal toxin induced punctuates EGFP-LC3 distribution in cells ...... 51 2.12. Lethal toxin and PA increased the number in punctuate EGFP-LC3 counts...... 52 2.13. Immunoblot analysis of endogenous LC3 II conversion in RAW 264.7 cells ...... 54 2.14. PCR detection of anthrax chromosomal and pXO1 gene in B. anthracis Sterne and delta Ames strain ...... 55 2.15. B. anthracis culture supernatant induced conversion of LC3 II ...... 56 2.16. Autophagy inhibitor (3MA) accelerated cell death in LT-treated cells...... 58 3.1. Production of ROS in RAW 264.7 cells ...... 73 3.2. Lethal toxin induces ROS production in neutrophils ...... 77 3.3. STIMAL protects RAW 264.7 from cytolysis after treatment with LeTx ...... 78 3.4. Scatter plot of PBMCs ...... 80 3.5. Protective effect of STIMAL against LT-induced apoptosis in PBMC ...... 81 3.6. Toxic effects of blank liposome on PBMC ...... 81 3.7. Survival curve for DBA2 mice infected with B. anthracis sterne spores ...... 85 3.8. Survival curve for DBA2 mice infected with B. anthracis sterne spores...... 86 4.1. Chemokine secretion measurement with cytometric bead array...... 100

viii 4.2. Chemokine gene expression in human PBMC ...... 101 4.3. Effect of LT-treated blood and plasma on neutrophils chemotaxis...... 102

ix LIST OF ABBREIVATIONS

3-MA 3-methyladenine ALO Anthrolysin O AO Acridine orange ATCC American Type Culture Collection ATG Autophagy related genes AVA Anthrax Vaccine Adsorbed AVO Acidic vacuoles BHI Heart Infusion CBA Cytometric bead array CDC Centers for Disease Control CGD Chronic granulomatous disease CMA Chaperone-mediated autophagy Cvt Cytoplasm to vacuole targeting CW Cell wall DCFDA dichlorofluorescein diacetate DCFDA Dichlorofluorescein diacetate DoD Department of Defense EBSS Earles Balanced Salt Solution EDTA Ethylenediaminetetraacetic acid EF Edema factor ET Edema toxin FACS Fluorescence-activated cell sorting FBS Fetal bovine serum FDA Food and Drug Administration FITC Fluorescein isothiocyanate fMLP formy-Methionyl-Leucyl-phenylalanine FSC forward scatter GATE16 Golgi-associated ATPase enhancer of 16 kDa GDI GDP dissociation inhibitor GFP Green fluorescent protein GI Gastronintestinal GSH glutathione GSH Glutathione HBSS Hank’s balanced salt solution HIV Human immunodeficiency virus HSV Human simplex virus x IACUC Institutional Animal Care and Use Committees IP Intraperitoneal JNK c-Jun N- kinase LAMP Lysosomal associated membrane protein LC3 Light chain 3 LF Lethal factor LPS Lipopolysaccharide LT Lethal toxin MAPKK Mitogen-activated protein kinase kinase MHC Major histocompatibility complex MRSA Methicillin-resistant S. aureus NAC N-acetylcysteine NAC N-acetyl-l-cysteine NADPH nicotinamide adenine dinucleotide phosphate PA Protective antigen PAMP Pathogen-associated molecular patterns PAS Phagophore assembly site PBMC peripheral blood mononuclear cells PBS Phosphate buffered saline PE Phosphatidylethanolamine PI propidium iodide PI3K Phosphatidylinositol 3-kinases PMA phorbol-12-myristate-13-acetate PRR Pattern recognition receptors ROS Reactive oxygen species SSC side scatter STIMAL Signal transduction methodology antioxidant liposomes TLR toll-like receptors TOR Target of rapamycin VCC Vibrio cholerae cytolysin XMEA X-linked Myopathy with Excessive Autophagy

xi

ABSTRACT

NOVEL FUNCTIONS OF ANTHRAX LETHAL TOXIN

Yian Kim Tan, PhD

George Mason University, 2009

Dissertation Director: Dr. Charles Bailey

Bacillus anthracis is a gram positive spore-forming bacterium that can cause cutaneous, gastrointestinal or inhalational anthrax in many animals and humans.

Vegetative B.anthracis generates two essential virulence factors: the anthrax lethal toxin and the poly-γ-D glutamic acid capsule. The primary virulence factor is a secreted zinc- dependent metalloprotease toxin known as lethal factor (LF), which is introduced into the cytosol by protective antigen (PA) through its receptors on the cells. LF exerts its toxic effect through the disruption of mitogen-activated protein kinase kinase (MAPKK) signaling pathway, which is essential in mounting an efficient and prompt immune response against the invading pathogen. LF also mediates the destruction of host cells through either necrotic cell death or apoptosis pathway depending upon the genetic background of the cell types.

Autophagy is an evolutionary conserved intracellular process whereby cells break down long-lived proteins and organelles. Accumulating evidences suggest increasing physiological significance of autophagy in pathogenesis of infectious diseases. In addition to the myriad of effects that LT exerts on different cell types, we describe herein a novel effect of LT-induced autophagy on mammalian cells. Several autophagy biochemical markers including LC3-II conversion, increased punctuate distribution of

GFP-LC3 and development of acidic vesicular organelles (AVO) were detected in cells treated with LT. Analysis of individual LT component revealed a moderate increase in

LC3-II conversion for protective antigen-treated cells, whereas the LC3-II level in lethal factor-treated cells remained unchanged. Moreover, our preliminary findings suggest a protective role of autophagy in LT intoxication as indicated by accelerated cell death when autophagy was inhibited. Separately, LT was also shown to induce harmful levels of reactive oxygen species (ROS) in immune cells although antioxidant appeared to have some protective effects against its damaging effects. In addition, chemotaxis analysis revealed that LT not only fail to elicit chemokines production in immune cells but also suppressed the chemokines-inducing properties of lipopolysaccharides (LPS) and bacterial cell wall (CW). The wide array of effects that LT exerts on various immune cells reflects the intricacies of the intoxication mechanisms. These findings enhance our understanding of anthrax pathogenesis and may prove to be relevant to the development of a more effective countermeasure against anthrax.

Chapter1:IntroductionandLiteratureReview 1.1 Introductoryoverview

1.1.1 Discoveryofanthrax

Anthraxisanacutezoonoticdiseasethataffectsprimarilyanimalsandtoalesser extent,humans.ThisancientdiseasewasdescribedinAthensofPlaguein430BC[1] andthereafter,episodesofoutbreaksinhumanpersistedthroughoutthecenturiesintothe middleages[2].Notably,inthe18thcentury,approximatelyhalfofthesheeppopulation inEuropewasdecimatedbythedisease[2]andinIran,almost1millionsheepwere wipedoutbythediseasein1945.Manyreportssubsequentlydescribedtheoccurrenceof anthraxinnumerouscountriesincludingSouthAfrica,Namibia,Australia,Nepal,China andIndiabetween1980sto2000[3].

Thecausativeagentwasfirstidentifiedin1876byRobertKochwhowasthefirst todemonstratethelifecycleofanthrax[4].Byinoculatinghealthyanimalswithanthrax culture and observing the progression of disease, he concluded that anthrax can be transmittedfromonehosttoanotherandtherebydevelopedtheKoch’spostulatesgerm theorybasedonthosefindings.Tofurtherdemonstratethetheoryofvaccination,Louis

Pasteur subsequently inoculated 25 cattle with attenuated live bacteria followed by challengedwithavirulentstrain[5].Allvaccinatedcattlesurvivedwhilethecattlefrom controlgroupsuccumbedtothedisease[5].ItwasthesefindingsthatPasteurprovided

1

moreconclusiveevidenceonthegermtheory.Whiletheincidenceofanthraxcaseswas highintheearly1900s,thenumberofcasesdecline dramatically during the late 20th century.Persistentdeclineofanthraxcasescontinuedintothe1980s,whichprompted

BrachmanofCentersforDiseaseControl(CDC)toprematurelyconcludein1980that anthraxis“nowprimarilyofhistoricalinterest”[6].However,recenthistorywitnessed severaleventsthatreignitetheinterestinanthraxnotonlyinareaofpublichealthbut alsoasapotentialbioweapon.

1.1.2Epidemiology

Althoughanthraxsporespersistsinmanypartsoftheworld(Figure1.1),natural casesofhumananthraxinfectionareusuallyconfinedtomillworkersandthosedealing withanimalfibersandhence,thenamewoolsorter’sdisease[6].Severalotherobsolete namesthatwereusedtodescribethediseaseinthepastincludedragpickers’disease, charbon,milzbrand,blackbrain,“tanners”disease,andSiberian(splenic).

Casesofhumananthraxstartedtodeclineintheearly20thcentury.Severalfactors may account for the reduction in anthrax cases, such as the implementation of vaccination,improvedanimalhusbandryaswellascontrolsonimportedanimalproducts

[7].Despitethesignificantdeclineinthenumberofincidences,thefirsthalfofthe20th centurysaw20,000to100,000casesinAsiaandAfricabeingrecordedannually[7]and

2,000 cases yearly during the second half. The largest anthrax epidemic occurred in

Zimbabwewithapproximately10,000casesrecordedfrom1978to1985[8].

2

Figure1.1:Geographicaldistributionofanthrax(1998)

Dependingontherouteofinfection,anthraxinfectioncanoccurin3mainforms; cutaneous,inhalationalandgastrointestinal[9].Cutaneousanthraxrepresentsthemost prevalentformofanthraxwithannualoccurrenceof2000casesreportedworldwide[10].

In the USA, 224 cases were reported from 1944 to 1994 [11] and only 1 case was reportedin2000[12].Inhalationalanthraxisthemostsevereformandoftenresultedin over90%fatalityifitisnottreatedearly[13].Inhalationalanthrax,themuchrarerform, hadonly18casesreportedintheUSAbetween1900and1978withthemajorityofthe casesassociatedwithoccupationalhazardsforthosewhoworkedwithlivestockortheir byproducts. In contrast to cutaneous anthrax, the last case of natural occurring inhalationalanthraxinUSAoccurredin1976[14].Withtherarityofinhalationalanthrax andtakingintoaccounttherecentanthraxlettercasesin2001,anynewreportedcasesof 3

inhalational anthrax should warrant an investigation by the health authorities.

Gastrointestinal anthrax is often associated with the ingestion of undercooked contaminatedmeatandoccurmostlyinAfricaandAsia[10,15].Althoughitisgenerally reportedtobelesscommonthancutaneousform[9],someresearchersbelieveitisinpart attributed to the lack of awareness in differential diagnosis in rural endemic area and thereforeresultingrossunderreporting[16].

1.1.3Anthraxasabiologicalweapon

The use of biological agents as a possible weapon was explored by several countriesinthelastcentury.DuringWorldWarI,Germany,EnglandandFrancewere allegedlyhavingprogramsthatinvolvedtheuseofbiologicalagentssuchasB.anthracis and Burkholderia pseudomallei in covert operations [1719]. Several more countries including Russia and Japan joined the list of countries that began biological warfare research programs during World War II. Among the several biological agents, anthrax remainedthemostextensivelyresearchedandused[17].DuringWorldWarII,Japanese ranacovertbiologicalweaponprogram,knownasUnit731,whichconductedbiological experiments on prisoners of war [20]. Agents tested by the Japanese include anthrax, botulism, brucellosis, cholera, dysentery, gas gangrene, meningococcal infection, and plague[20].Duringthesameperiod,Britishwereresearchingoneffectivedissemination ofanthraxandconductedareleaseonGruinardIslandnearScotland[21].Theaerosol releaseresultedinpersistentcontaminationofviablesporesontheislandforalmost40 yearstillitwasfullydecontaminatedwithparaformaldehydein1986.

4

Recenthistoryhasalsowitnessedseveralincidentsinvolvinganthrax.In1979, reportswereemerginginSverdlovsk,USSR,pertainingtoapurportedanthraxepidemic withthemajorityofthe96casesinvolvinggastrointestinalanthrax[22].Itwasonlyafter anAmericanscientistconductedajointinvestigationwiththeRussianclinicianthendid the actual cause of the was concluded to be caused by an release of anthrax aerosol from a military facility [22]. Although the aerosol release was accidental, it nonethelessdemonstratedthefeasibilityandpotencyofemployinganthraxasaweapon.

In Japan, a nonstate sponsor terrorist group Aum Shinrikyo, attempted to disseminateanthraxsporesinTokyoin1993bysprayinganthraxsporespreparationfrom a rooftop [23]. Fortunately, no one was known to be infected from that dispersal.

Subsequentanalysisofthesporesindicatedthatthegroupusedarelativelynonvirulent strainofanthraxthatcloselyresembledSterne34F2strain,whichiscommonlyusedfor animalvaccination[24].

Mostrecently,letterslacedwithanthraxsporesweresenttoseveralprominent personnelintheUSA,whichresultedinatotalof22casesofanthraxwith11casesof cutaneousand11casesofinhalationalanthrax[25].5outofthe11casesofinhalational anthraxdiedandall11casesofcutaneousanthraxsurvived.Thisanthraxepisodewhich involvedseeminglyminuteamountofsporeswasabletoinstillfearthroughoutUnited

States and eventually millions of dollars were spent on decontamination [26]. It also sparkedoffaseriesofcopycatanthraxhoaxesincountriesaroundtheworld.Whenthe firstvictimsuccumbedtothediseaseinOct2001,itmarkedthebeginningofaseriesof longinvestigationsbyFBI[27].Despitetheenormousamountofresourcescommittedto

5

theinvestigation,itwasonlyuntilrecentlyinlate2008thatthecasecametoaclosure afterFBI’sleadsuspectcommittedsuicide[28].

Severalriskassessmentstudiesestimatedthenumberofcasualtiesaswellasthe extent of damage in the event of a biological release in populated area. World Health

Organizationissuedanreportin1969estimatingthatanaircraftdisseminationof50kg of anthrax over a population of 500,000 would result in 95,000 killed and 125,000 incapacitated [17]. Another study conducted by the U.S Congressional Office of

TechnologyAssessmentrevealedsimilarfiguresofup3milliondeathwouldbeexpected if100kgofanthraxsporesisreleasedinWashington,D.C.[29].Furthermore,CDC estimatedtheeconomicimpactofsuchanattackinthesuburbanofamajorcitytobe

$26.2 billion per 100,000 persons exposed [30]. Most recently, Homeland Security releasedareportdetailingterrorismthreatstoUSAoverthenext5years[31].Ofnote, prediction by intelligence official suggests that USA will encounter a destructive biological attack within the next 5 years [31]. According to the threat assessments, terrorists will focus on targets with “massive economic losses, casualties and political turmoil”.

6

Figure1.2:Pathophysiologyofanthrax[9]

1.2Bacteriapathogenesis

1.2.1Microbiology

Bacillusanthracisisarodshaped,grampositive,sporeformingandnonmotile bacteriathatwasfirstisolatedin1850[5].TogetherwithBacilluscereusandBacillus thuringiensis,B.anthracisareclassifiedunderB.cereusgroup[32].Despitethestriking similarityamongmembersoftheB.cereusgroup,B.anthraciscanbedifferentiatedfrom otherspeciesbycolonymorphology,gammaphagesusceptibilityandcapsuleproduction. 7

It grows readily in a variety of laboratory media at 37oC as white gray colonies. In infectedbloodortissue,thevegetativebacteriamultiplyrapidlyandareoftenpresentin short chains. When growth condition becomes unfavorable, vegetative cells form endosporeswhichareresistanttodrying,heat,ultravioletlightandmanydisinfectants

[33].Thedormantsporescansurviveinsoilfordecades[34,35]anduponexposureto nutrientrichenvironment,itwillgerminatetoformlargenumbersofrapidly growing bacteria.

1.2.2VirulencefactorsofBacillus anthracis

Vegetative B. anthracis generates two essential virulence factors: the anthrax toxinandthepolyγDglutamicacidcapsule[36].pXO1encodesforProtectiveAntigen

(PA),LethalFactor(LF)andEdemaFactor(EF)whereitexertawidearrayofeffectson host cells [37, 38]. pXO2 encodes for capsule which helps to prevent the germinated bacteriafrombeingengulfedbyphagocytes[39].Strainsthatarelackingineitherofthe plasmid,forexampleSternestrain(pXO1+,pXO2)andPasteur(pXO1,pXO2+)strains aregreatlyattenuatedanddonotnormallycausediseaseinhuman[40].

Edemafactor

ET is a calmodulindependent adenylate cyclase that convert cytosolic ATP to cAMP [41]. The dramatic increase in cAMP is responsiblefortheedemaobservedin tissues from anthraxinfected animals [42]. ET was also recently reported to cause an increaseinanthraxtoxinreceptors(ANTRX)expressiononcellswhichinturnprovide

8

moresitesforPAbinding.ThepresenceofmorePAbindingsiteswouldfurtherenhance oftherateoftoxininternalizationintothecell[43].

Lethalfactor

LF exerts its toxic effect through the disruption of mitogenactivated protein kinasekinase(MAPKK)signalingpathwaywhichisessentialinmountinganefficient andpromptimmuneresponseagainsttheinvadingpathogen[4446].LFisalsoapotent inhibitoronmanyfunctionsofimmunecells.Itwasshowntoinhibitthesecretionofpro inflammatorycytokineinmacrophages[47,48]anddendriticcells[49].Ithasalsobeen foundtoslowdowntheproliferationofhumanmoncyticcelllinessuchasU937,HL60 andTHP1cellsandinhibitedphorbolmyristateacetatedinduceddifferentiationofHL

60 cells into macrophagelike cells [50]. It can also affect the neutrophil chemotaxis abilitybyblockingHsp27phosphorylation[51,52].Lethaltoxinwasreportedtoinhibit activation, proliferation and cytokine expression in T cells [5355]. Similarly through

MAPK inhibition, LT indirectly inhibits Bcell proliferation and antibody production

[56].Themultipleeffectsoflethaltoxinonvarious immune cells significantly thwart boththeinnateandadaptiveimmuneresponse.

It is wellknown that LF mediates the destruction of host cells through either necroticcelldeathorapoptosispathwaydependinguponthegeneticbackgroundofthe celltypes[57].MurinemacrophagecelllineRAW264.7wasthefirstcelllinefoundto besensitivetolethaltoxin[58].TreatmentofRAW264.7cellswithcytolyticdoseof lethaltoxincauserapidcelldeathvianecrosispathway.However,sublethaldosesof

9

lethaltoxininducecelldeaththroughprogrammedcelldeath,apoptosis[59,60].LTalso causes apoptosis in macrophage cell lines from several strain of murine and human macrophages[61].OtherstrainssuchasBalb/CmacrophagesaremoresensitivetoLT anddierapidlybynecrosis[57].Certaindifferentiatedhumanmacrophagelikecellsare also susceptible to LTinduced cell death[50]. Similarly, DC from human and mouse

C57BL/6werereportedtoundergoapoptosisaftertreatmentwithlethaltoxin[57].The differencesinsusceptibilityofmacrophagesfromdifferentmousestrainstolethaltoxin was initial reported to be dependent on kif1C gene that encodes a kinesinlike motor protein of the UNC104 subfamily [62, 63]. However, a subsequent study identified

NACHTleucine rich repeat and pyrin domain containingprotein1b(NALP1b) asthe contributinghostfactorforLTcytotoxicity[64].

The importance of lethal toxin in anthrax pathogenesis is demonstrated by a markedreductioninvirulenceupondepletionofthetoxinbearingplasmid[65,66].In addition,theeliminationofbacteriafrombodysystemwithantibioticmaynotprevent death[67].Thissuggeststhatdespitetheabsenceofviablebacteria,remainingcirculating

LTandpossiblyothersecretedcompoundmaycontinuetohaveadetrimentaleffecton thebodysystem.Togetherwiththedisablingofseveralimportantsubsetsoftheimmune system(Table1.1) and thepresenceofhighamount of LF(1115µg/ml)inserumof infectedanimal[68],lethaltoxinrepresentsanintegralpartoftheanthraxpathogenesis.

10

Germinationoperon

In addition to toxigenic genes, pXO1 also encodes a germination operon gerX whichiscriticalforsporegermination.StrainslackinggerXoperonexhibiteddiminished germination rate and thus reduced virulence [69]. GerX operon encodes 3 proteins;

GerXA,GerXBandGerXB,whichtogethermayformareceptorfordetectingspecific germinantinthehostcells[69].

Capsule

Theothervirulenceplasmid,pXO2,carry3genesthatencodesforapolygamma

Dglutamicacidcapsule[70,71].Thecapsuleisresponsibleforinhibitingphagocytosis ofthebacteriaandconsequentlyenablesthebacteriatoestablishitselfinthehostcells.

Thesimplehomopolymericstructureofcapsulealsoconferspoorimmunogenicityand thereforedonotelicitastrongimmuneresponse[72].Capsuleappearstobeanimportant virulencefactorascapsulatednontoxigenicstrainsarevirulentforcertainmicestrain[73]

Otherputativevirulencefactors

Whilelethaltoxinisgenerallyacceptedasthemainvirulencefactorofanthrax, several studies suggest that B. anthracis harbour a number of other factors that may contribute to bacteria pathogenesis. Several secreted proteolytic enzymes from B. anthracisculturewerereportedtobetoxictomiceanditwasshownthattreatmentof micewithproteaseinhibitorandantibioticsprotectedmicefromsporeschallenge[74].

Another two secreted proteases, Npr599 and InhA, were observed to significantly

11

enhance syndecan1 shedding from cultured normal murine mammary gland cells resultinginthedisruptionofepithelialorendothelialintegrity,hemorrhage,edemaand abnormal cell signalling [75]. Npr599 and InhA were also found to contribute to hemorrhageandthrombosismediatedbythedegradationofcirculatingvonWillebrand factor[76]andmaypossessotherfactorssuchasdegradationofhosttissues,theincrease ofbarrierpermeabilityandhostdefensesmodulation[77].Additionally,arecentstudy demonstrated that secreted InhA1 initiates coagulation of human blood through the activation of prothrombin and factor X [78]. In addition to Npr599 and InhA, Sterne strainalsoproduceanotherproteintermedasanthrolysinO(ALO),whichwasshownto readilylysehumanerythrocytes[79].ALOwasalsohypothesizedinpart,tomediatethe escape of B. anthracis from phagolysosome [79]. These potentially relevant but overlooked virulence or virulence enhancing factors may play a contributing role in diseasepathogenesis.

1.2.3TranslocationofLTandETintocytoplasm

PA is a 83kDa secreted protein that binds to at least 2 cell surface receptors;

ANTXR1/TEM8 and ANTXR2/CMG2 [80, 81]. Another cell surface coreceptor, lipoproteinreceptorrelatedprotein6(LRP6),isalsodeterminedtobeessentialtothe endocytosisofanthraxtoxincomplexintothecell[82].Afterbindingtothecellsurface receptors,PA83issubsequentlycleavedbyafurinlikeproteasetoreleasea20kDafrom the Nterminus [83, 84]. The truncated PA63 subunit then assemble itself into a heptamericconfigurationthatallowsthebindingofLForEFtoformatoxinreceptor

12

complex [85]. The complex is subsequently transported into the cytoplasm via a raft dependentandclarthrinmediatedendocytosis[86]whereitisacidified.Acidificationin endosomeisanessentialprocessasinhibitorsthatpreventendosomalacidificationalso preventthetranslocationofLFandEFintothecells[87].Subsequentprocessinginthe endosomesculminatesintheeventualreleaseoffreeLF/EFintothecytoplasm(Figure

1.3).

Figure 1.3: Internalization of anthrax toxin [38] PA83 binds one of two cellular receptors,TEM8/ATRorCMG2,which,inturn,associate with the LRP6 coreceptor. Upon binding, PA83 is cleaved by cellular furin proteases and the smaller fragment (PA20)isreleased.Thelargerfragment,PA63formsaringshapedheptamericprepore, whichcansimultaneouslybinduptothreemoleculesofLFand/orEF.Thetoxin/receptor complexistheninternalizedinaLRP6dependentmanner. The endocytic vesicles are 13

subsequently acidified, initiating a conformational change of the PA heptamer which convertsitfromthepreporeintoamatureporethatcanallowentryofEFand/orLF toxinenzymesintothecytoplasmoftargetcells. Table1.1Cellulartargetsandeffectsofanthraxtoxins[67]

14

1.3Clinicalmanifestationanddiagnosis Cutaneousanthraxrepresentthemostcommonformthataccountfor95%ofall anthraxinfectionintheUnitedStates[88].Whilemostcasesofcutaneousanthraxarises fromphysicalexposureofanthraxtoacutorascrapeontheskin[89],therewereseveral cases that suggest mechanical transmission by insects, presumably after feeding on infectedanimal[90,91].Theincubationperiodreportedrangesfrom12hourstoaslong as19days[92]andfollowedbytheappearanceoflocaledemaandthedevelopmentofa ringofvesicles.Itprogressestoulcerationofthecentralpapuleandsubsequentlydriesto form black eschar. Complete healing usually occurs in 1 – 2 weeks and the vesicle usuallydoesnotresultinscarring.Althoughcutaneousanthraxisusually selflimiting andlesionscanhealevenwithouttreatment[93],it can become systemic and fatal in about20%ofuntreatedcases.Treatmentreducestheriskofdeathtolessthan1%.

Fig1.4LeftPosteroanterior(PA)chestxrayofa46yr.oldmalepatientrevealed revealedbilateralpulmonaryeffusion,andawidenedmediastinum.RightCutaneous anthraxlesionontheneck.(CDC,PublicHealthImageLibrary,http://phil.cdc.gov) 15

Gastronintestinal(GI)anthraxareeitherveryrare[94]orhavenotreported[9]in theUnitedStatesbutcaseshaveoccurredinotherpartsoftheworld[7].Ingestionof anthraxsporesdoesnotappeartocausegastrointestinalanthraxasexperimentsinvolving direct gastrointestinal instillation of spores into monkeys did not cause disease [95].

Instead,ithasbeenpostulatedthatgastrointestinalanthraxrequirestheingestionoflarge numberofvegetativebacteria,asinthecaseofundercookedcontaminatedmeat[27].

Abdominalformofthediseaseistypicallycharacterizedbytheformationofulcersand escharsinthewalloftheterminalileumbutmayalsoaffectotherpartsoftheGItract such as cecum, colon, stomach and the duodenum. Initial symptoms include nausea, vomiting,anorexiaandfeverandatlaterstages,severeabdominalpain,hematemesisand bloody diarrhea which may progress to septicemia and death [96]. Gastrointestinal anthrax is easily treated if diagnosed at an early stage, however, given the early nonspecificsymptoms;diagnosisisdifficultandmayresultinhighmortality.

Inhalational anthrax describes the route of infection via the airway with the subsequentdepositioninthelungs.Aerosolsizeof1–5µmrepresentthemosteffective lung retention size [97, 98], thus enabling the spores to reach to the bronchioles and alveoli.Althoughlungsrepresenttheinitialsiteofcontact,thereisnoinfectionofthe lungsinmostinhalationalcases,[99,100].Uponentryintothehumanlungs,alveolar macrophagesandlungdendriticcellswouldengulfthesporesandgerminationoccursin the macrophages en route to the regional lymph node [101]. Proliferating vegetative would escape from macrophages [69] and multiply quickly in the lymphatic system.

Subsequently,itwouldspreadtothebloodsystem(Figure1.5&1.6)wherepatientscan

16

die from septicemia and septic [9]. Mortality rate for this form of anthrax is expectedtobehighwithabout85%asinthecaseofSverdlovskincident[22].However, therecentanthraxcasesinUnitedStatesdepicted alowermortalityrateof45%[25].

Rapid diagnosis accompanied by immediate antibiotic treatment and better health care supportmayaccountforthedifferencesinsurvival.

Initialsymptomsofinhalationalanthrax2–5daysafterexposureincludes“flu likesymptoms”ofmildfever,fatigue,malaise,myalgiaandnonproductivecough.The mild prodromal period which last about 2 days progresses to acute acute illness characterizedbyacutedyspnoea,stridor,fever,andcyanosis.Clinicalfindingsincludes tachypnoea, cyanosis, tachycardia, moist rales, and evidence of pleural effusion [96].

Chest Xray and chest CT scans is diagnostically important with findings such as widened mediastinum, massive pleural effusion, air bronchograms and necrotizing pneumoniclesion[27].Atterminalstage,thepatientbecomesdisorientedandmayslip intoafollowedbydeath[102104].Although50%ofinhalationalanthraxpatients may develop meningitis, which is characterized by the presence of blood in the cerebrospinal fluid, some patients with late stage of other forms of anthrax may also developedmeningitis[35].Often,patientswhodevelopedmeningitisfromanyformof anthraxinfectionhaveverypoorprognosis.

17

Figure 1.5: Dissemination of bacteria into different organs after challenge of B anthracis Sterne spores in rabbits. The animals were challenged with B. anthracis sporesandorganswereharvestedimmediatelyafterexpirationoftheanimal.Slideswere made with a microtone and colored with Gram stain. Pictures were taken under microscope (40 x) using Motic Imagine Plus system. A: lymph node; B: mandibular gland;C:lung;D:liver;E:ovary;F:pericardium.

18

Figure1.6:Pathologicalchangesobservedinthetestedorgansfromexpiredrabbits afterinfectionwithB. anthracisSternespores.Theorganswereharvestedimmediately afterdeathoftheanimals.SlidesweremadeandstainedwithH&E.Thecommon findingsindifferentorgansincludecongestion,degeneration,hemorrhage,andnecrosis asdescribedinthetext.A:lymphnodex10;B:thymusx10;C:lungx40;D:trachea x40;E:spleenx40;F:liverx40;G:appendixx4;H:ileumx10;I:kidneyx40.

19

1.4Prophylaxisandtreatment

There is currently one anthrax vaccine approved by the Food and Drug

Administration (FDA) in the United States. Manufactured by Bioport, the Anthrax

VaccineAdsorbed(AVA)isderivedfromaluminiumhydroxideprecipitatedpreparation of PA from B. anthracis Sterne strain [105]. Preexposure vaccination with AVA is shown to protect animals from subsequent challenge with live virulent strain of B. anthracis [106, 107]. Routinely provided to persons with higher risk of exposure to anthraxspores,AVAvaccinationisadministeredsubcutaneouslyassixinitialdosesat0,

2,and4weeksand6,12and18monthsfollowedbyanannualbooster[108].In1997, theUnitedStatesDepartmentofDefense(DoD)mandatedthatallmilitarypersonnelbe vaccinated with the AVA vaccines. Concerned about the safety of the vaccine and possible side effects, some personnel has rejected the compulsory vaccination in the

UnitedStatesArmedForcesandriskedfacingdisciplinaryactions[109,110].Duetothe inherentshortcomingsofthecurrentvaccinespreparation[27],thereisaneedfornew vaccinethatoffersimprovedefficacywithsimplerschedule.

Rapidtreatmentofanthraxinfectioniscentralto improvingprognosisofpatients, withtheadministrationofantibioticsasoneofthemostcriticalaspectoftherapy[111] and should be initiated pending confirmed diagnosis. Approved drugs for inhalational anthrax treatment includes penicillin, doxycycline and ciprofloxacin [111, 112].

Recommendations by CDC for inhalational anthrax treatment requires 60 days of ciprofloxacin treatment [27] taking into account the possibility of delayed spores germinationasobservedfromexperimentalstudiesinanimals[113]andtheSverdlovsk

20

incident [22]. In addition to antibiotics, postexposure vaccination can also be administeredtothosewhoaresuspectedforexposure[9].

1.5StudyObjectives

Despite the advances made in our understanding on anthrax pathogenesis, the prognosis for certain forms of anthrax, in particular inhalational anthrax, is extremely poor.ThereislittledoubtthatLFistheprimaryvirulencefactorforanthrax[65,66]and inviewofthis,contemporaryresearchonnewtherapieshasbeenfocusedonmitigating the harmful effect of this toxin. Indeed, several studies provide new insights into the possible use of drugs that inhibit the toxicity of LF in vivo and the corresponding protection in animal experiments [114, 115]. While it remains unclear if combination therapywillindeedimprovesurvival,itseemstobeareasonableapproachtoaugment thecurrenttreatmentmethodofantibioticsregimensandsupportivecarewithothernovel approachesthatmaycountertheactionofLF.

Inthisstudy,weidentifiednoveleffectsofLTonimmunecellsanddiscussabout its implication in anthrax pathogenesis. Our preliminary results suggest that LF may activateautophagy,anincreasinglyimportantprocessthatplaysaroleinmanycellular functions. More detailed experiments will be conducted to verify the induction of autophagy as well as to determine the role of autophagy in LF intoxication. Reactive oxygen species (ROS) is involved in many aspects of signaling transduction and its production is upregulated during exposure to LF. We seek to further investigate the effectsofROSoverproductiononcellviabilityandapoptosis.Inaddition,themitigation

21

of harmful effects of ROS production in both in vitro and in vivomodelwithanew formulaofantioxidantliposomewillalsobeevaluated.Thelastportionofthisworkwill focus on the influence of LF on the functions of neutrophils by way of mediating chemokinesproduction.

22

Chapter2:LethalToxinandAutophagy

2.1Introduction

Maintaining proper homeostasis involves interaction between biosynthesis and degradationofcellularconstituents.Intracellulardegradationofdamagingorunnecessary constituentscanbedividedintotwomainmechanisms.Incells,shortlivedproteinsare degraded by nonlysosomal ubiquitinproteasome system[116].Theproteinsdestined for proteolysis are first labeled with ubiquitin followed by 26S proteasome complex catalyseddegradation[117].Ontheotherhand,theintracellularbreakdownoflonglived proteinsandorganellesismediatedbyautophagyandismorphologically characterized by the formation of many large autophagic vacuoles in cytoplasm [118]. This evolutionary process is conserved across all eukaryotic cells and is fundamentally important in normal and pathological cell physiology and development [119, 120].

Autophagyoccursconstitutivelyatabasallevelinquiescentcellsbuttheprocessmaybe upregulated during periods of starvation [121]andinresponsetootherstressstimuli

[122124].Thiscatabolicpathwayishighlyregulatedanditsdysfunctionisassociated withmanyvariousdiseasestates.Manyrecentstudiessuggestthatautophagyoccurrence is more common than previously thought. Indeed, it has been implicated in many physiological and pathological conditions such as neurodegeneration, death of cancer cells,tissueandorganformation,neonataldevelopment,hostcellresponsetobacterial

23

and viral infection as well as toxin intoxication [122124]. New discoveries are continuouslyaddedtothegrowinglistofautophagyfunctions[125].

Typesofautophagy

Several various types of autophagy exist in mammalian cells which includes microautophagy, macroautophagy, chaperonemediated autophagy, micro and macropexophagy, piecemeal microautophagy of the nucleus, and the cytoplasm to vacuole targeting (Cvt) pathway [126, 127] (Figure 2.1). During microautophagy, vacuolarmembranesequesterscytosoliccomponentdirectlyintolysosomallumen[128] without vesicular intermediates [129]. Various cellular components including vacuolar membrane can be degraded via this form of microautophagy. Chaperonemediated autophagy (CMA) involves the transportation of selective proteins directly into lysosomes through a protein translocation pathway [130]. Several proteins including

LAMP2atransporter[131],HSC70cytosolicchaperones[132]andHSC73lysosomal lumen[133]areessentialforCMAprocess.Formacroautophagy, the process begins withtheformationofisolationmembraneorphagophorefollowedbysequestrationof organelles or part of the cytoplasm to form autophagosome. The doublemembrane autophagosomesubsequentlyfuseswithlysosometoformautolysosomewheretheinner autophagosomalmembraneanditscontentaredegradedandreleasedintothecytoplasm

(Figure2.2)[134,135].Thisstudy willonlyfocusonmacroautophagy whichwillbe referredtoasautophagyhereafter.

24

Figure2.1:Schematicrepresentationofautophagyprocess.Cytoplasmiccomponents maybedegradedviachaperonemediatedautophagy,macroautophagy,microautophagy, macropexophagy,micropexophagyandthecytoplasmtovacuole(Cvt)pathway[136].

25

Autophagyrelatedgenes

Atotalof31autophagyrelatedgeneswereidentifiedandclassifiedtodate(Table

2.1) [135, 137]. Several important autophagy related genes (ATG) that are critical for autophagosome formation have been identified recently [137, 138]. Microtubule associatedprotein1lightchain3(LC3)isthemammalianorthologueofyeastAtg8that isrequiredforautophagosomeformation[139].Duringautophagy,cytosolicformofLC3

IisprocessedintoalipidatedLC3IIwhichistightly associated with autophagosome membranes [140142]. In addition, Atg8 was also identified to be involved in the expansionofisolationmembrane[143].Theotherproteincomplexthatisessentialfor elongationoftheisolationmembraneisAtg5Atg12complex[144,145].Manyofthese autophagygenesarealsorequiredfortheCvtpathway[146].

Figure2.2:Thesimplifiedprocessofautophagyinmammaliancells.Asmallvolume ofcytoplasmisenclosedbytheautophagicisolationmembrane,whicheventuallyresults intheformationofanautophagosome.Theoutermembraneoftheautophagosomethen fuseswiththelysosomewherethecytoplasmderivedmaterialsaredegraded[147].

26

Table2.1:Descriptionofautophagyrelatedgenes.[137]

27

Autophagyprocess

For ease of illustration, the dynamic autophagy process can be divided into 7 staticphases;(1)induction,(2)cargoselectionandpackaging,(3)vesiclenucleation,(4) vesicleexpansionandcompletion,(5)retrieval,(6)targeting,dockingandfusionofthe vesicle with the lysosome/vacuole, and (7) breakdown of the vesicle and its contents

[148].

Asmentionedearlier,manyconditionscaninduceautophagyandseveralofthis stimulusactivateautophagyviamodulationofTor[149].Inductionofautophagyupon

Tor inactivation can occur either through direct binding or through other indirect inactivationmechanisms.Secondly,cargoselectionandpackingprocess,whichislargely forselectiveautophagy,includestheCvtpathway[150],pexophagy[151]andmitophagy

[152]witheachhavingtheirrespectivecomponentforselectivedegradation.

The third step involves vesicle nucleation, which is proposed to initiate at phagophore assembly site (PAS) [153]. As autophagy progresses, many autophagy relatedproteinsarerecruitedtoPASwheretheintracellularmembranebeginsexpansion tosurroundthesequesteredcargountilthecompleteenclosureofthecargo.Essentialto this elongation process are 2 ubiquitinlike conjugation process, the Atg8 phosphatidylethanolamine(PE)andAtg12Atg5[154].Atg8PEactsasascaffoldprotein forthedockingandexpansionofmembranewhereasAtg12Atg5conjugatepromotesthe lipidationofAtg8toPE[154].Similartomanyproteintargetingpathways,Atgproteins are also retrieved for multiple rounds of substrate delivery. As only Atg8 and Atg19

28

remainedincompletedautophagosomes,itissuggestedthatallotherAtgproteinsthat were involved in previous vesicle forming process, including Atg2, Atg9 and Atg19

[155],weredisassembledfromthematureautophagosomebeforeitscompletion[156,

157].

The next step in autophagy involves the targeting, docking and fusion of autophagosomeswithlysosomes.Uponmaturationofautophagosomes, fusionproteins facilitatethebindingprocessinwhichtheoutermembraneofautophagosomefuseswith thelysosomalmembranesandreleasingtheinnervesicleintothelysosomallumen.Some of the proteins required for fusion include SNARE proteins, NSF, soluble NSF attachment protein, GDP dissociation inhibitor (GDI) homologs, Rab proteins and the classCVps/HOPScomplex[138].ThisfusionprocessisregulatedbyAAAATPase

SKD1, the small GTP binding protein Rab7, and possibly also the Alzheimerlinked presenilin1[158].Inthefinalstepofautophagy,theinnermembraneoftheautophagy vesicleisdegraded[159]alongwiththereleaseofitscargointothelysosomelumenfor degradationbyvacuolarhydrolases[160].

Autophagyregulation

Autophagy is regulated by several mechanisms (Figure2.3)andamongstthem, targetofrapamycin(Tor)kinaserepresentsthebestcharacterizedregulatorycomponent todate[149].TorisahighlyconservedSer/Thrkinasethatcontrolscellgrowththrough regulatingaseriesofanabolicandcatabolicprocess[161].Itregulatesautophagythrough interaction with an autophagy mediator protein complex that consists of several Atg

29

proteins including Atg17, Atg11, Atg20, Atg24 and Vac8 [162, 163]. The protein complexcompositionisregulatedbythephosphorylationstateofAtg1andAtg13[162].

Under nutrientrich conditions, Tor maintains Atg13 in a highly phosphorylated state which reduces its binding affinity for Atg1. Consequently, the lack of Atg13Atg1 complexreducesAtg1activityandtherebyinhibitsautophagy.Conversely,inactivation ofTorbyrapamycintreatmentorstarvationresultsindephosphorylationofAtg13and therebyincreasesitsaffinitytoAtg1.ThecorrespondingincreaseinAtg1kinaseactivity promotesautophagyviathecontrolofthedynamicproteincomplex[162].Althoughcells innutrientrichconditiondonotpromoteautophagy,differentaminoacidshavevarying effectofinhibitingautophagy.Amongthe20typesofaminoacids,Leu,Phe,Tyr,Trp,

HisandGlnweredeterminedtobestronginhibitorofautophagy[164]withLeubeing themostpotentinhibitoramongalltheaminoacids[165,166].

Figure2.3:Regulatorycomplexforautophagyinduction.Torkinaseregulatesthe inductionofautophagyuponsensingtheconditions.Atg1kinase,whichisessentialfor

30

both autophagy and the Cvt pathway, forms a complex with several proteins that are characterized as being preferentially involved in theCvtpathway(inwhitecircles)or autophagy(indarkgraycircle).Undernutrientrichconditions,Torkinaseisactive,and Atg13ishyperphosphorylated.ThishighlyphosphorylatedAtg13hasaloweraffinityfor Atg1 and Atg17, and autophagy is downregulated. Dephosphorylated Atg13 interacts withAtg1andAtg17withahigheraffinity.Theenhancementoftheformationofthe Atrg1Atg13Atg17 complex mediates the induction of autophagy. The Atg20Atg24 complex,Atg11andVac8mightalsobelongtothiscomplex[129].

Inadditiontoaminoacids,autophagycanalsobemodulatedbycertainhormones.

It was demonstrated that glucagon rapidly promotes autophagy in liver cells whereas insulinhasbeenshowntomarkedlyinhibitautophagy[167,168].Theseobservationsare in agreement with the role of autophagic response towards metabolic requirements.

Glucagonistypicallyupregulatedduringperiodsofstarvationtoconvertstoredglycogen into glucose. Autophagic breakdown of proteins synergistically provides additional nutrients for cellular metabolism and functions. Conversely, it is apparent that high glucose condition necessitates the conversion back to glycogen by way of insulin modulation,thusrenderingrecyclingofnutrientsviaautophagyredundant.

ApartfromTor,autophagyisalsoreportedtoberegulatedbyotherproteinkinase includingRas/PKAsignalingprocess[169],SNF1kinase[170]andGCN2kinase[171].

Recently, Osuna described another novel mTorindependent autophagy regulatory pathwayasinducedbytrehalose[172].Activationofautophagybytrehalosenotonly enhances the clearing of aggregate proteins that are responsible for Huntington’s and

Parkinson’s disease, it also protects cells against apoptotic effects elicited via mitochondrial cell death pathway in Huntington’s disease [172]. How these various complexpathwaysinteracttomediateautophagyiscurrentlynotcompletelyunderstood.

31

Figure 2.4: Regulation of autophagy in mammalian cells. In the figure, the green circles represent components that stimulate autophagy, whereas the purple boxes correspond to inhibitory factors. 3methyladenine (3MA) and wortmannin (Wm) also inhibit class I phosphatidylinositol 3kinases (PI3K), but the overall effect of these compounds is a block in autophagy (because they inhibit the downstream class III enzymethatproducesphosphatidylinositol3phosphate(PtdIns(3)P),whichisneededfor autophagy). The regulation of autophagy is complex and far from understood. Historically,TOR(targetofrapamycin)hasbeenconsideredtobethecentralregulatorof autophagy,becauseTORinhibitionwithrapamycin(Rap)inducesautophagy.However, it is now clear that there are also TORindependent types of regulation. For example, beclin1andAtg4mightberegulatedbythecJunNterminalkinase(JNK)andreactive oxygenspecies(ROS),respectively[135].

32

Autophagyfunctions

Autophagyandhomeostasis

Initiallydiscoveredasaresponsetonutrientsdeprivationinthe1960s[173],itis nowapparentthatautophagyplaysaroleinamyriadofphysiologicalconditions[123,

124]aswellasotherstressconditions.

Incancer,autophagyprobablyhasdualroleinpromotingandpreventingcellular growth. Autophagy functions as a suppressor of early cancer growth [174, 175] but promotessurvivalofcancercellsinunfavorablenutrientlimitingconditionsduringlate stageoftumorgrowth[124].Furthermore,autophagymayimprovecellssurvivalfrom radiation treatment, possibly by clearing of damaged mitochondria in an attempt to preventapoptosis[176].

Several neurodegeneration disorders associated with proteins misfold and aggregatessuchasParkinson’s,Huntington’s,Alzheimer’sdiseases,amyotrophiclateral sclerosis or transmissible spongiform encephalopathies display accumulation of autophagic vesicles [177, 178]. Accumulations of abnormal configuration of proteins prompt cells to response by activating chaperone system for protein refolding and cytosolicproteasesforproteinremoval.Withtheincreasinglevelofmisfoldedproteins, the accumulation enables the progression of abnormal proteins into aggregates. Being resistant to protease degradation, the aggregates can therefore only be removed by autophagy[179].Autophagythusplaysarolebyremovingproteinaggregatesduringthe earlystageofthediseaseandtriggerscelldeathforirreversiblydamagedcellsduringthe latestage.

33

Muscular disorder is frequently linked to deregulation of autophagy [180].

Diagnosisofvacuolarmyopathy,aformofmusculardisorder,istypicallyestablishedby the presence of elevated accumulation of autophagic vesicles [180] . Several other muscular disorders related disease, including Danon disease and Pompe disease, are causedbyadefectinautophagyarisefromadefectinLAMP2gene[181].Ontheother hand,excessiveprominentautophagyplaysaroleinXlinkedMyopathywithExcessive

Autophagy(XMEA)whichleadstoprogressivemuscleweakness[181].

Autophagyandimmunity

Apartfrommaintaininghomeostasis,autophagyalsoparticipatesinhostdefense against pathogens. In recent years, rapidly growing number of microorganisms were shown to induce autophagy (Table 2.1). Typically, autophagy attempts to clear intracellularpathogensbysequestrationintoautophagosomeandsubsequentdeliveryto the lysosome for degradation. However, certain microbes can subvert or exploit the autophagyprocessfortheirsurvivalandreplication.Tuberculosisisahighlyinfectious diseasethatinfectedmanypeoplearoundtheworld.Thecausativeagent,Mycobacterium tuberculosis,evadestheimmunesystembyarrestingthematurationofM.tuberculosis containing phagosome with lysosome, thus establishing the vacuoles as a site for replication[182].Gutierrezreportedthatphysiologicalandpharmacologicalinductionof autophagy abrogated the mycobacteriainduced blockage of phagosome and lysosome fusion and also suppressed intracellular survival of mycobacteria [183]. In a similar fashion, autophagy was found to effectively eliminate Staphylococcus aureus by

34

sequestration of bacteria into autophagosome [184]. However, the nosocomial variant, methicillinresistantS.aureus(MRSA)strain,displayedahigherlevelofresistance to autophagydegradationemployinganescapemechanismintothecytoplasm[184].

Autophagyalsoplaysaroleinviralinfection.ForHIVinfection,autophagywas markedlydownregulatedfollowinginfectionofhumanperipheralbloodCD4(+)Tcells withHIV[185,186].Thisantagonismofautophagyfacilitatesreplicationofvirusesthat donotutilizetheautophagosomalmembraneasreplicationsites,suchasHumanSimplex

Virus(HSV1)[187].

Paradoxically, autophagy mechanism can also be manipulated by certain pathogensforreplication.Denguevirus,avectorbornedisease,inducesautophagyupon infecting mammalian cells [188]. The induction of autophagy enhances viral pathogenesisasevidencedbytheincreasedinextracellular and intracellular viral titer.

Autophagy is also critical for polio virus infection as RNA replication occurs on autophagosomal membrane [189] following the impediment of autophagosome and lysosomefusion.

Recently,autophagywasevenimplicatedasplayingamajorroleintransmissible spongiform encephalopathies, also known as prion disease [190]. Double membrane autophagic vacuoles of varying sizes were observed in a large area of cytoplasm in neuron cells and ultrastructural analysis suggest that autophagy may participate in the spongiformchangeincells[190].

In adaptive immunity, autophagy unexpectedly also contributes in antigen presentation.Conventionally,majorhistocompatibilitycomplex(MHC)classIIpresents

35

antigenlargelyfromextracellularsources.However,itwasshownthatautophagosomes fuse with multivesicular MHC class IIloading compartments, leading to antigen presentation in MHC class IIpositive cells [191]. Paludan et al demonstrated that

EpsteinBarrvirusantigen,EBNA1isprocessedintracellularly via autophagy pathway forMHCclassIIpresentationtoCD4+Tcells[192].Inaddition,targetingofinfluenza

MP1 to autophagosomes also greatly enhances MHC class IIpresentationtoCD4+T cells[191].Thesestudiesunderscorethefunctionalsignificanceofautophagyinadaptive immunity.

Table2.2:Inductionofautophagybybacteria,virusesandtoxins

Autophagybeneficialtocell Autophagydetrimentaltocell Bacteria Mycobacteriumtuberculosis[183] Brucellaabortus[193] Staphylococcusaureus&MRSA[184] Legionellapneumophila[194] GroupAStreptococcus[184] Coxiellaburnetii[195] Listeriamoncytogenes[196] Porphyromonasgingivalis[197] Burkholderiapseudomallei[198] Virus Humanimmunodeficiencyvirus(HIV) Denguevirus[188] [185] Poliovirus[189] Coxsackievirus[199] Mousehepatitiscoronavirus[200] Toxin Vibriocholeraecytolysin[122] Ricin[201] Diphtheriatoxin[201,202] Prion Prion[190]

36

Autophagy and Cell Death

Whileautophagyisgenerallyrecognizedasaprotectivemechanismagainststress stimuli, the association of its involvement in cell death is however still controversial.

Manystudiesdescribedthepresenceofautophagosomesindyingcells[118,155]andit isdebatablewhetherautophagicactivitycauses deathorsimplyoccursinparallelwith other mechanisms of cell death. Autophagic cell death is also known as type II programmedcelldeathanddistinctfromtypeIprogrammedcelldeath,apoptosis[118].

Several studies that presented evidence of autophagic cell death in fact only provided correlative evidence [155]. In an in vitro study of autophagic cell death, a inAtg1geneonlyinhibitedvacuolizationbutnotcelldeathinaslimemold model [203]. Another study that detailed the observation of autophagic cell death in

Drosophilasaliveryglandsshowedthatcelldemisecanbepreventedwithmutationsin nonautophagygenes,thuscastingdoubtsastothecausativeroleofautophagyincell death[204].

On the other hand, other studies demonstrated the requirement of functional autophagy for the initiation of cell death. In mouse L929 cells treated with caspase inhibitor zVAD, knockdown of 2 essential autophagy gene, Atg7 and beclin 1 gene, preventedcelldeath[205].Inaddition,theknockdownofAtg5andbeclin1inhibitedcell death in murine embryonic fibroblasts (MEF) treated with staurosporine or etoposide

[206]. However, as these studies do not have intact apoptotic machinery, it cannot conclusively ascertain that autophagy plays a major cell death pathway in cells with functionalapoptosis.

37

Autophagy and toxin

Severaltoxinsfrommicrobialandbotanicalorigins,suchas,ricin,abrin,shiga toxin [201], diphtheria [201, 202] Vibrio cholerae cytolysin (VCC) [122] have been reported to induce autophagy in cells. Gram positive bacteria Corynebacterium diphtheriae produces diphtheria toxin which inhibits protein synthesis by catalysing

ADPribosylationelongationfactor2.Ithasbeenshownthatdiphtheriatoxininducescell death through autophagy and inhibition of the autophagy process protects cell against diphtheria toxicity [201, 202]. Cholerae is a disease that usually affects mainly developingcountrieswherewatertreatmentsystemandsanitationsystemarenotwidely availableandischaracterizedbyprofusewaterydiarrhea[207].Inadditiontoproducing cholerae toxin [207], certain Vibrio cholerae strains secrete a poreforming Vibrio cholerae cytolysin toxin that causes vacuolization or cell lysis and necrosis in certain cells. Autophagy was rapidly induced in VCCtreated cells [122]. In contrast to diphtheria toxin, autophagy was found to have a protective effect against V. cholerae cytolysintoxin[122].

38

SpecificAims

Although the function of LF has been extensively researched and well characterized, its ability to induce autophagy in mammalian cells has not been documented. As autophagy is commonly activated to enhance clearing of undesirable intracellularcompoundsincludingintracellularpathogensandtoxins,itisspeculatedthat cellsmaypossiblyattempttoriditselfofLFviathesamemechanism.Inthischapter,I presentevidencethatLFinducesautophagyinRAW264.7murinemacrophagecellsand discussthepossibleroleofautophagyinLFintoxicationinmammaliancells.

39

2.2.MaterialsandMethods

2.2.1CellsandReagents

RAW 264.7 murine macrophage cells (ATCC) were maintained in DMEM supplemented with 10% heatinactivated fetal bovine serum (FBS) and penicillin streptomycin(Cellgro,VA).EarlesBalancedSaltSolution(EBSS)waspurchasedfrom

Cellgro, (Herndon, VA). HL60 human promyelocytic leukemia cells (ATCC) were culturedinIMDMcontaining20%FBS.Lethalfactor(LF)andProtectiveantigen(PA) were obtained from Lists Biological (Campbell, CA). Rabbit polyclonal antiLC3 was purchased from MBL (Wood Hole, MA). HRP goat anti rabbit IgG (Fc) was from

Serotec(Germany).Antiactinantibodies,E64d,PepstatinA,3methyladenine(3MA), and RIPA lysis buffer were from Sigma (St Louis, MO), Rapamycin was from

Calbiochem (Gibbstown, NJ), NuPage 12% Bis Tris gel, MOPS running buffer, nitrocellulose membrane, G418 Geneticin and acridine orange (AO) were from

Invitrogen(Carlsbad,CA).ProteaseinhibitorwasfromRoche(Switzerland).

2.2.2Bacteriaculturesupernatantpreparation

B.anthracisSterneanddeltaAmesstrainwereroutinelyculturedonBrainHeart

Infusion(BHI)agarplateat37oC.Forbrothculture,asinglecolonyfromagarplatewas inoculatedintoBHIbrothfor12hoursincubationat37oC.Followingwhich,theculture media was clarified by centrifugation at 4oC.Thepelletwasdiscardedandtheculture supernatantwassterilefilteredwith0.2µmsuporlowproteinbindingmembrane.Filtered supernatantwerekeptoniceuntilreadyforuse.

40

2.2.3PCRdetectionofanthraxchromosomalandpXO2gene

B.anthracisSterneanddeltaAmesstrainwereusedinthisstudy.Theabsenceof pXO1geneindeltaAmesstrainwasverifiedwithPCRatthebeginningofthestudy

[208,209].SpecificprimersBA813amplifyachromosomaltargetonallB.anthracis strainsandlefencodesforlethalfactorthatresidesonpXO1.BA813R1:TTAATT

CACTTGCAACTGATGGG;BA813R2:CGATAGCTCCTACATTTGGAG;

Lef3:CTTTTGCATATTATATCGAGC;Lef4:GAATCACGAATATCAATT

TGT AGC. Amplification cycle entails an initial denaturation at 94°C for 5 mins, followedby30cyclesofdenaturationat94°Cfor30s,annealingat58°Cfor30s,and extensionat72°Cfor30s.

2.2.4StableTransfectionofRAW264.7cells

EGFPLC3plasmid(agiftfromDrTamotsuYoshimori,OsakaUniversity,Japan) wasrecoveredfrompapersubstratebysoakingin50µlofTEbufferat4oCfor5hours.

30ngofplasmidwasaddedinto50µlofsingleusealiquotGC5E.colicompetentcells

(Genechoice, Frederick, MD) and incubated on ice for 30 mins. The tube was subsequentlyheatedto42oCfor45secondsfollowedbyrapidcoolinginice.200µlof

SOC medium (Sigma, MO) was added into mixture and the tube was incubated in shaking incubator at 37oC for 30 mins. Single colonies were selected on LB agar containing20µg/mlkanamycinandinoculatedinLBbrothwith20µg/mlkanamycin.The

41

plasmid was purified using Midiprep (Carlsbad, CA) according to manufacturer’s instructions,aliquotedintosmallerquantitiesandstoredat20oC.

BglII LC3 EcoRI

Figure 2.5: pEGFPLC3 plasmid as provided by Dr. Tamotsu Yoshimori (Osaka University).TheLC3geneisinsertedintothemultipleclonesite(MCS)betweenBglII andEcoRI.CloningvectorfromClontech,pEGFPC1,GenBankAccession#:U55763 Transfection of adherent cells such as RAW 264.7 cells with lipidbased transfection agent often resulted in low transfection efficiency [210]. Furthermore, transient transfection of cells with pEGFPLC3 exhibited autophagyindependent punctuate formation. Therefore, stable transfected cells were selected for subsequent experimentstoovercometheabovementionedlimitations.

42

Fortransfection,RAW264.7cellswereseededin12 well plate the day before transfectionincompletemedium.Thefollowingday,themediumwasreplacedwith2ml of complete medium. 1.2µg of pEGFPLC3 was diluted into 160µl of OPTIMEM reducedserummediumfollowedbyadditionof1.5µlofPLUSreagent.Themixturewas incubatedfor10minsatroomtemperature.Next,4µlofLipofectamineLTXwasadded to the mixture and incubated at room temperature for 30 mins for DNA lipofectamine complex formation. After which, 160µl of the complex was added to each well and incubatedat37oC.Following2daysofincubation,themediawaschangedtoselection mediumcontaining400µg/mlofGeneticin(Invitrogen).Singleclonesstablyexpressing

EGFPLC3wereselectedandmaintainedinselectionmediumcontaining400µg/mlof

Geneticin.

Figure2.6:TransienttransfectionofRAW264.7cellswithpEGFPLC3.RAW264.7 cellsweretransfectedwithpEGFPLC3usinglipofectamine2000 andobservedunder fluorescence microscope. (A) Non transfected control cells (B) cells transfected with pEGFPLC3.

43

2.2.5Immunoblotting

2 x 106 RAW 264.7 cells were seeded in 6 well plate in DMEM medium supplementedwith10%FBS.Afterovernightculture,themediumwasrefreshedandthe cellsweretreatedwithlethaltoxin(LT).ThecellswerewashedtwicewithcoldPBSand subsequentlytreatedwith100µlofcoldRIPAlysisbuffercontainingproteaseinhibitorin eachwell.Proteinswereseparatedbyusing12%NuPageBisTrisgelwithMOPSbuffer andblottedontonitrocellulosemembrane.Themembranewasblockedwith5%nonfat milkinPBSTfor1houratroomtemperatureandprobedwith1:1000dilutionsofanti

LC3and1:5000HRPconjugatedantirabbitIgGFcantibodies.Bandswerevisualized with HRP substrate and scanned for densitometry analysis with Image J according to instructionprovidedbythesoftwaredeveloper(NIH).

2.2.6Fluorescencemicroscopyandpunctuatecounting

Stably transfected RAW 264.7 cells expressing EGFPLC3 were seeded on coverslipsataconcentrationof1x106cells/mlforovernightcultureat37oC.Cellswere treatedwithvariouscombinationsofprotectiveantigen(PA)withorwithoutlethalfactor

(LF). Rapamycin and EBSS were introduced into the culture for 2 hours as positive controls.ThecellswerewashedwithPBSandfluorescence was observed with Nikon

Eclipse E600 microscope (Nikon, Japan) mounted with Nikon YFLEpiFluorescence attachmentandequippedwith100Wmercurylamp,excitationfilter465495nm,dichroic mirror 505nm and barrier filter 515555nm. Images were obtained by Nikon E500

44

camera.Thenumberofpunctuateformedpercellwasquantifiedunderthefluorescence microscope.

2.2.7Acidicvacuolesstaining

RAW 264.7 cells were treated with various concentration of LT for 3 hours followedbyremovalfromplatebytrypsinEDTA.Cellswerestainedwith1µg/mlAOin phenolredfreemediafor15mins,washedandanalysedbyFACS(BD,SanJose,CA).

DotplotswereanalyzedbyCellQuestandmeanratioofred:greenfluorescentintensity wasdeterminedbyFlowJo(Ashland,OR).

2.2.8Cellviability

Cellviability wasdeterminedbyCellTiter96AqueousCellProliferationAssay

(MTS) according to manufacturer’s instructions (Promega). It measures dehydrogenase enzymeactivityincellsandisproportionaltothenumberoflivingcellsintheculture.

Briefly,4x104cellswereplatedin96wellin100µlofcompletemediumforovernight cultureat37oC.Cellswerepretreatedwith3MAfollowedbyintroductionofPAandLF for3hours.20µlofMTSsolutionwassubsequentlyaddedtoeachwellandincubatedfor another23hoursat37oC.Absorbancereadingat490nmwasmeasuredwithELX808IU

Biotekplatereader(Winooski,VT).

45

2.2.9Statisticalanalysis

Statisticalsignificancebetweengroupswasassessedbystudentttest.Pvalues<

0.05wereconsideredsignificant.

2.3Results

2.3.1Acridineorangestainingshowedincreasedacidicvacuoles(AVO)

Increased in AVO formation is a typical feature observed in cells undergoing autophagy[211,212].Hence,weexaminedtheeffectofLTonAVOformationinRAW

264.7cellsbyusinglysosomotropicagentacridineorange(AO).Acridineorangeisan acidic probe that moves freely across membrane to stain acidic compartment red and cytoplasm green when observed under fluorescence light [213]. Therefore, the measurement of the mean ratio of red:green fluorescenceintensityofAOstainedcells wouldindicatethedegreeofAVOformationincells.RAW264.7cellstreatedwithLT displayedadosedependentincreaseinAVOformationasindicatedbythehighermean ratio of red:green fluorescent intensity (Figure 2.7). Similarly, positive control starved cells also showed an increase in mean ratio of red:green fluorescence although the increasewaslesspronouncedthantheLTtreatedcells.

46

2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 Mean ratio FL3:FL1 0.2 0 Control Starved LeTx LeTx LeTx LeTx 32ng/ml 16ng/ml 8ng/ml 4ng/ml

Figure2.7:Supravitalstainingofacidiccompartmentwithacridineorange.RAW 264.7cellsweretreatedwithvariousconcentrationsoftoxinsfor3hoursandremoved from plate by trypsinEDTA. The cells were stained with 1µg/ml AO in phenol free mediumfor15mins,washedandanalysedbyflowcytometer.Dotplotswereanalyzedby CellQuestandmeanratioofred:greenfluorescentintensitywasdeterminedbyFlowJo. Correspondingly,thedegreeofAOstainingofcellscanalsobevisualizedwith fluorescencemicroscope[214].Consistentwithfigure2.7,treatmentofRAW264.7cells with PA 100µg/ml and LF 30µg/ml for 4 hours displayed a more pronounced AO staining as compared to control, suggesting the increase in the acidic vacuoles of the cytoplasm(Figure2.8).

47

Untreated LethalToxintreated Figure2.8:RAW264.7cellsstainedwithacridineorangeafterLTtreatment.Cells were cultured to 80% confluence and treated with PAconcentrationof100µg/mland 30µg/mlofLFfor4hours.Cellswerestainedwith1µg/mlofacridineorangefor15mins atroomtemperature.Stainedcellswereobservedwithexcitation485nmandemission 515nmlongpass. 2.3.2IncreasedGFPLC3punctuatewhencellsweretreatedwithLT

Atg8 is an ubiquitinlike protein that undergoes conjugation process during autophagy and is determined tobe an essential component for autophagy [215]. Atg8 relatedproteinsexistinmammaliancellsasmicrotubuleassociatedprotein1lightchain

3(LC3),GolgiassociatedATPaseenhancerof16kDa(GATE16),andgaminobutyric acidtypeA (GABAA)receptorassociated protein (GABARAP) [142]. Among the 3 different families, LC3 is the most well studied and widely used protein for autophagic organelles. LC3, a 30kDa protein, is cleaved at C terminus of Gly120 to produceLC3Iimmediatelyaftersynthesis[140].Duringautophagy,cytosolicLC3Iis linkedtophosphatidylethanolamine(PE)toformLC3II[142]andremainstightlybound to the autophagosomal membranes [140]. This process can be indirectly monitored

48

throughtheuseofreporterproteinGFPconjugatedtoLC3[147].Inordertodetermineif

LTinducesautophagy,weoverexpressedGFPLC3incellsandobservedforfluorescent punctuatedistributionofGFPLC3,whichrepresentsautophagosomeformation.

2.5

2

1.5

1 MTS - OD 490 OD - MTS

0.5

0 Control PA LF LT100 LT 50 LT 25 LT 12.5

Figure2.9:StablytransfectedRAW264.7cellstreatedwithLT.Cellsweretestedfor LT susceptibility after selection with G418 in DMEM. PA was added to a final concentrationof500ng/mlinPAandallLTgroups.ViabilitywasdeterminedwithMTS asdescribedinmaterialsandmethods.

Transfection of cells with GFPLC3 for fluorescence microscopy analysis is commonly used to detect autophagosome. However, transient transfection may cause protein aggregates formation that is independent of autophagy and it is difficult to distinguishtheseproteinaggregatesfrombonafideautophagosomeunderfluorescence microscope(Figure2.10)[216].Hence,stablecellsexpressingGFPLC3wereusedfor allourstudies.

49

A B Figure2.10:TransientvsstabletransfectionofRAW264.7cellswithpEGFPLC3. A) Transient transfection cells exhibited GFPLC3 dot structure which may be independentofautophagy.B)StableRAW264.7cellsexpressingGFPLC3. OverexpressionofGFPLC3alsoappearstohavenoeffectonbasalautophagyin cells[141].StableGFPLC3expressingRAW264.7cellsweretreatedwithanthraxLT for2hoursandexhibitedincreasedGFPLC3punctuatesdistribution,whereasuntreated cellsdisplayedadiffuseGFPLC3appearance(Figure2.11).Thesepunctuatefluorescent dotsindicateautophagosomesformation.Mostofthese fluorescent dots were probably autophagosomes as autolysosomes had weaker or no fluorescence signals due to the presenceoflowerLC3IIproteins[140].ThereducedLC3IIlevelinautolysosomemay possibly be due to degradation or recycling back to cytosolic LC3I [140]. Further incubationofcellswithlethaltoxinfor3hourscausedmassivecellslysisasobserved under light microscope (data not shown), which indicates that the stably transfected

RAW264.7cellswerestillsusceptibletoLTlysis.ThepunctuatedistributionofGFP

LC3 in LT treated cells was similar to those treated with rapamycin positive control.

Rapamycin binds to and inhibitsmammalian target of rapamycin (mTOR), a negative regulator of autophagy [123]. Nutrients starvation can also trigger autophagy.

Accordingly, cells incubated in nutrientfree salt solutions,EBSS,for2 hoursshowed

50

punctuatedistributionofGFPLC3.Autophagyinducedbynutrientsstarvationproduced morepronouncedfluorescencepunctuatesascomparedtorapamycinorLTtreatedcells

(Fig2.11).

Figure 2.11: Lethal toxin induced punctuates EGFPLC3 distribution in cells. StablytransfectedRAW264.7cellsexpressingEGFPLC3weretreatedfor2hourswith (A)PBS,(B)500ng/mlPA+50ng/mlLF,(C)EBSS,(D)4µMrapamycin.PBS,PA,LF andrapamycinwereaddeddirectlyintomediumandEBSStreatedcellswerewashed3 timeswithPBSbeforeincubationinEBSS. Images (40x) were taken from specimens underfluorescencemicroscopeandarerepresentativeof3experiments.

51

The number of punctuates per cell was counted for quantitative assessment of autophagicactivityintransfectedRAW264.7cells.Thismethodisreportedtobemore accurate than counting fraction of LC3 II positive cells [139]. Cells treated with LT showedupto2.7foldincreaseinthenumberofpunctuatespercellversusuntreatedcell

(Figure2.12).Interestingly,cellstreatedwithonlyPAalsoshowedasignificantincrease inpunctuatecounts(p<0.05),albeitatalevellowerthantheLTtreatedcells.Induction ofautophagybyPAalonecanoccurbecausePAentryintocytosolisnotdependenton

LF[83].Moderateinductionofautophagycouldbeattributedtotherapiddegradationof

PA upon entry into the cytoplasm [86]. Treatment with LF alone produced similar punctuatecountascontrolcells.

350 * 300 * * 250

200 *

150

100

50

% punctuate %per cell control vs punctuate 0 control PA LF LT Rapa

Figure2.12:LethaltoxinandPAincreasedthenumber in punctuate EGFPLC3 counts.RAW264.7cellsstablyexpressingEGFPLC3weretreatedwith500ng/mlPA, 25ng/mlLF,500ng/mlPA+25ng/mlLFor4µMrapamycin(Rapa)for2hours.Cells wereobservedimmediatelyunderfluorescencemicroscopeasdescribedinmaterialsand methods.Datarepresentthemeanof3independentexperiments;errorbarsrepresentthe standarddeviation.*indicatesthatthevaluesaresignificantlydifferentfromcontrolwith notreatment,p<0.05. 52

2.3.3ConversionofLC3ItoLC3II

During autophagy, processing of cytosolic LC3I to LC3II permits autophagosomalmembranerecruitmentthroughanautophagicspecificconjugation.As the amount of LCII correlates with the extent of autophagosome formation [140], immunoblotting of LC3II can be used to determine autophagy induction. To further corroborate that the GFPLC3 punctuate observed was indeed autophagy induction by

LT,wethereforeexaminedtheendogenousLC3IIlevelsinLTtreatedcells.

ThelipidconjugatedLC3IImigratesfasterthanLC3Iandshowedasa16kDa bandonwesternblot.InLC3immunoblotting,antibodiesoftenhavehigheraffinityfor

LC3IIthanLC3IandthereforeitismoremeaningfultocompareLC3IIamountwitha loadingcontrolprotein,suchasactin,ratherthanLC3I[142].

RAW264.7cellswerepretreatedwith10µg/mlE64dand10µg/mlpepstatinA for1hourtoinhibitlysosomalproteasesfollowed byincubationwithLTfor1and3 hours.Atbothtimepoints,increaseofLC3IIlevel for LT treated cells was detected, although the ratio differs from 1 to 3 hours after incubation (Figure 2.13A). It is not unusualtoobservefluctuationofLC3IIlevelacrossvarioustimepointduringautophagy induction[217].

We further determined if LT components could also induce autophagy individually.TreatmentofcellswithPAaloneshowedmoderateincreaseofLC3IIwhile

LFaloneproducedsimilarratioofLC3II/actinascontrolcells(Figure2.13B).RAW

53

264.7cellstreatedwithLTfor1hourshowedelevatedamountofendogenousLC3II

(Figure 2.13B). These observations are generally consistent with the fluorescent punctuatecountinGFPLC3transfectedRAW264.7cellsasindicatedinfigure2.12.It mayappearobviousthatLFdidnotinduceautophagysimplybecauseitisnotableto crosscellmembraneintheabsenceofPA,althoughitwasreportedthatasmallfragment ofLFcanenterintothecellcytoplasmwithouttheassistancefromPA[218].Apparently, this mechanism of PAindependent insertion of LF into cytosol did not have an observableeffectonautophagyinductionattheconcentrationtested.

Figure2.13:ImmunoblotanalysisofendogenousLC3IIconversioninRAW264.7 cells.(A)Cellswerepretreatedwith10µg/mlE64dand10µg/mlPepstatinAfor1hour followedbyincubationwithLT(PA500µg/ml+LF100µg/ml)for1and3hours.Cells treatedwith4µMrapamycinwereusedaspositivecontrolforautophagyinduction.(B) RAW264.7cellswerepretreatedwithE64d10µg/ml andPepstatinA10µg/mlfor1

54

hourfollowedbyincubationwith500ng/mlPA,50ng/mlLFandLT(PA500ng/ml+LF 50µg/ml)foranother1hour.Cellswerelysedandtotalproteinswereanalysedbyusing antiLC3andantiactinantibodies.RatioofLC3II/actinisshownundertheblot. 2.3.4SterneanddeltaAmesstraincontainotherautophagyinducingcompound

In V. cholerae, cytolysinwasdeterminedtobetheonlysecreted compound in culturesupernatantthatinducesautophagyinmammalianculture[122].Therefore,we examinedfurtherifB.anthracissecretesothercompoundsthatmayinduceautophagyin additiontoLT.B.anthracisdeltaAmeswasusedforthisstudyasitlackspXO1which encodesforlethalfactor,edemafactorandprotectiveantigen.

12345

Lef (385bp)

BA813 (152bp)

Figure2.14:PCRdetectionofanthraxchromosomalandpXO1geneinB. anthracis SterneanddeltaAmesstrain.Lane1–Sternestrainchromosomalgene;lane2–delta Ameschromosomalgene,lane3–blank,lane4–SterneLef,lane5–deltaAmesLef.

55

Filtered culture supernatant from both Sterne and delta Ames were shown to induceLC3IIconversioninRAW264.7cellsafter2and3hourstreatmentrelativeto controlBHIbroth(Figure2.15).SupernatantfromnontoxigenicdeltaAmesappearsto provokeahigherconversionofLC3IIthantoxinproducingSternestrainsupernatant.

This observation suggests that in addition to LT, B. anthracis indeed produces other autophagyinducing compounds. However, the effect of autophagy induction by the unknowncompoundsinthesupernatantonbacteriapathogenesisisnotknown.

NT δAmesSterneBHIδAmesSterne BHI 2hr 3hr

LC3I LC3II Actin RLC3II/actin(NT) 1 1.771.240.87 1.78 1.34 0.78 RLC3II/actin(BHI) 2.041.431 2.27 1.71 1 Figure2.15:B. anthracisculturesupernatantinducedconversionofLC3II.Bacteria were cultured in BHI broth for 12 hours and the culture were sterile filtered. Sterile filteredculturesupernatantsweredilutedtoafinalconcentrationof10%inmediumand addedtoRAW264.7cells.Cellswerelysedandsubjecttowesternblotasdescribedin materialsandmethods.RLC3II/actin(NT)andRLC3 II/ actin(BHI)refertonormalizationof LC3II/actinratiotonontreatedcellsandcontrolBHIbrothasbaselinerespectively. 2.3.5Autophagyinhibitormayincreasecelldeath Inhibitionofautophagyprocesscanbeusedtoinvestigatetheroleofautophagy incellularresponsetotoxins,bacteriaorvirus. Depending on the interaction between

56

autophagy mechanism and stimulus, the induction of autophagy may sometimes be beneficialordetrimentaltothecells.Autophagyprotects cells against Vibriocholerae cytolysin intoxication [122] but has opposite effect when autophagy is activated in responsetodiphtheriatoxintreatment[201,202].Hence,weattempttostudytheeffect ofautophagyonLTintoxication.

RAW264.7cellsweretreatedwith10mM3MAfor1hourtoinhibitautophagy followedby2and3hoursofincubationwithLT.CellsviabilityasdeterminedbyMTS assayshowednodifferencesin3MAtreatedanduntreatedcells(datanotshown).This could be attributed to rapid lysis of RAW 264.7 cells when subject to LT treatment.

Hence,wedecidedtouseanothercelllinethatis alsosusceptibleto LTinduced cell deathbutataslowerlysisratethanRAW264.7.LTdoesnotappeartocausecelldeath inmonocyticcelllineHL60butiscytotoxicwhenHL60 cells are differentiated into macrophagelikecellswithPMA[50].DifferentiatedHL60cellswerepretreatedwith

3MA for 1 hour followed by LT treatment. Cells pretreated with 3MA showed acceleratedcelldeathcomparedtocontrolcellsatallthetimepointstested(Figure2.16).

This suggests that autophagy may function as a defense mechanism against LT intoxication.Although3MAisoftenusedasaspecificinhibitorofautophagy[122,219,

220],italsohaseffectsonvariousaspectsofmetabolismthatisunrelatedtoautophagy

[221].Morestudieshavetobeconductedtofurtherunderstandtheroleofautophagyin

LTintoxication.

57

120 No 3MA

100 + 3MA

80

60

Percent of control Percent of 40

20 MTS AssayDensity (570nm)MTS Optical -

0 12hrs 24hrs 36hrs 48hrs Figure2.16:Autophagyinhibitor(3MA)acceleratedcelldeathinLTtreatedcells. HL60cellsweredifferentiatedbyPMAin96wellplatefor24hours.Cellswerepre treatedwith10mM3MAfor1hourfollowedbytheadditionof LT(500ng/mlPA+ 30ng/ml LF) for the time indicated. Viability was determined by MTS according to manufacturer’sinstruction.

58

2.4Discussion

LT is recognized as a critical virulence factor in B. anthracis pathogenesis.

Havingbeenextensivelyresearchedfornumerousyears,LTpleiotropicactionsonmany cellular mechanisms have been described. Autophagy is activated during periods of physiologicalstresssuchasstarvationasameanstosustaincellviabilityinanutrient limiting environment [121]. In addition, autophagy is also implicated as a protective cellular response for the elimination of infectious agents [122, 222, 223]. However, certainpathogensareabletomanipulateautophagybyalteringcertainprocessesforits survival and proliferation [188, 224]. Recently, autophagy became a rapidly growing biomedicalmarkerasmorestudiesunraveltheroleofautophagyinmanyphysiological and pathological processes [135]. In this study, we demonstrate the induction of autophagyasanoveleffectofLTintoxicationinmammaliancells.

During autophagy, isolation membranes or phagophores elongate to sequester cytoplasmic components and become enclosed to form a double membrane autophagosome. Herein, we report LT induced autophagosome formation in cells as demonstrated by the punctuate GFPLC3 distribution in the cytoplasm and the correspondingincreaseinthepunctuatecounts(Figure2.11&2.12).Anotherfrequently usedmethodasanindicatorofautophagyisthemonitoringofLC3IIconversion.LC3II protein associates tightly to autophagosome and was determined to be correlated with autophagosome in cells [140]. Indeed, LTtreated cells displayed enhanced LC3II conversion,whichisatypicalrepresentativeofautophagosomeformation.Asexpected,

PAwasdeterminedtobeacriticalcomponentforautophagyinduction.Byitself,PA 59

causedamoderateincreaseinLC3IIlevelscomparedwithnontreatedcontrols(Figure

2.12B). This could be due to a selfprotection response of the host cells upon PA exposure.However,cellstreatedwithLT(PA+LF)causedadramaticincreaseinLC3

IIlevels(Figure2.12B).Thiscouldbemainlytheresultofcellularstressanditsdefence mechanismagainsttherapidtoxiceffectofLT.EffectofLTisbelievedtopersistlonger inthecellsthanPAalone,asindicatedbyitscontinuousenzymaticcleavageofsubstrate inthecellsfor45days[86,225].TheprolongedpresenceofactiveLFinthecytoplasm maypossiblyplayacontributingroleforthedramaticincreaseofautophagy.

V.choleraecytolysininducedautophagyincellsandthetoxinwasfoundtobe localized in autophagic vacuoles [122]. If LTmediated autophagy also resulted in the presence of LF in autophagosome, it may occur through two possible mechanisms.

DuringthetranslocationofLTintocellcytoplasm,PAbindstocellsurfacereceptors;

ANTXR1/TEM8andANTXR2/CMG2[80,81]andissubsequentlycleavedtorelease a20kDafromtheNterminus[83,84].TheremaininglargerPA63subunitthenassembles itselfintoaheptamericconfiguration.FollowingthebindingofLForEFtoformatoxin receptorcomplex[85],thecomplexissubsequentlytransportedintothecytoplasmviaa raftdependent and clarthrinmediated endocytosis [86] where it is further processed in the endosomes. The first plausible mechanism of LF trafficking into autophagosome may occur from the direct binding of LFcontaining endosomes with autophagosome

(Figure2.17)[135].ThealternatemechanismcouldbethedirectsequestrationoffreeLF inthecytoplasmbyisolationmembranefollowingitsreleasefromtheendosomes.The formermechanismappearstobemorephysiologicallyfavourabletocellsasLFwillbe

60

eliminatedbeforeitcanevenbereleasedintocytoplasmtoexertitseffect.Consequently, physiological intervention that can modulate the fusion of endosome that contains LT with autophagosome followed by lysosome may potentially contribute in reducing cellularexposuretoLTintoxication.

Figure 2.17: Autophagy visualized by freezefracture electron microscopy. The fusionofanautophagosome,withitstypicalsmoothlimitingmembranethatisdevoidof transmembraneproteins,andanendosomewithaparticlestuddedlimitingmembranein arathepatocyte.Theresultingstructureisanamphisome[135]. Autophagymayfunctionasadefensivemechanismagainstinvadingpathogens but at other times, it may be exploited by microbes for survival/replication or even leadingtohostcelldeath.Inourpreliminaryexperiment,autophagywasdeterminedto bebeneficialtodifferentiatedhumanpromyelocyticleukemiaHL60cellsexposedtoLT ascellsblockedfromautophagyexpressedacceleratedcelldeath(Figure2.16).Probably similartothecellularresponsetoV.choleraecytolysinintoxication[122],autophagywas presumably activated to enhance LT clearance from cytoplasm by diverting them to 61

autophagosome and eventually eliminated by lysosomal degradation. As this study involvedtheuseofcelllines,itisintegralthatthedefensiveroleofautophagybefurther determinedonhumanprimarymacrophagesorotherimmunecells.Othermorespecific autophagygeneknockdownorknockoutstudiescanbecarriedouttoconfirmtheresults obtainedfromthecommonlyusedautophagyinhibitor3MA.

Meanwhile,circumstantialevidencefromothernonautophagyrelatedLTstudies alsosuggestsapossiblelinkbetweenlethaltoxinandautophagy[226,227].Asdescribed earlier, autophagy proceeds from nascent vacuoles to become degradative autophagosomes by acquiring lysosomal proteins, including lysosome associated membrane protein (LAMP)1 [228]. The maturation culminates with the subsequent fusionoftheautophagosomewithlysosometoformautolysosomewhereitthendegrades andreleasesitscontentsintothecytoplasm.LAMP1proteinisalsoamajorcomponent oflysosomes[229].Kuhnetalanalysedtheproteomic profile of macrophages treated with LT and reported that LAMP1 protein was one of the highly upregulated protein

[226], conceivably to increase lysosome capacity for fusingwithautophagosomesand bindingtolateautophagosomes.Inaseparatestudy,severalcompoundsweretestedfor its ability to modulate LTinduced cell death in macrophages [227]. Interestingly, the presenceofrapamycin,anautophagyinducer,protectedmacrophagesfromLTinduced celldeath.Incontrast,macrophagescotreatedwithautophagyinhibitors,wortmanninor

LY294002,exhibitedacceleratedcelldeathupontreatmentwithLT.Althoughautophagy was not part of their experimental design [227], it is worthy to note that the only compound tested in that study that protected macrophage from LT death in that

62

experimentisawellknownautophagyinducer,rapamycin.Theresultsfromthesestudies are in agreement with our current findings that LTactivateautophagyanditmayalso functionasacellulardefensemechanismagainstLTintoxication.

Takentogether,thisstudyprovidesnewinsightsintoahithertoundescribedeffect of LT on cells, the induction of autophagic responseincellsbyPAand LT,andthe plausible role of autophagy in B. anthracis infection. Looking beyond, modulation of autophagymaypotentiallycounterthedetrimentaleffectsofLTexposureincellsand remainsasubjectforfurtherinvestigation.

63

Chapter3:LethaltoxinandROSproduction

3.1.Introduction

Macrophages produce reactive oxygen species (ROS) as part of a coordinated efforttoeffectivelycombatagainstinvadingpathogens[230].Reactiveoxygenspecies aregeneratedbynicotinamideadeninedinucleotidephosphate(NADPH)oxidase[231] anditsproductioncanbeinitiatedbystimulussuchasmicrobialproducts,IFNg,IL8or by IgGbinding to Fcreceptor [232]. In addition to its direct antimicrobial properties, there are other evidences that suggest ROS is central to several innate and adaptive immunityfunctions,suchasregulationofcytokineresponse,regulationofapoptosisand several immunological relevant signaling pathways [232]. For instance, mutation of genesthatencodeNADPHoxidasesubunitsinphagocytesisknowntonegatetheability of the phagocytes to produce ROS and is clinically linked to chronic granulomatous disease(CGD)[233].CGDischaracterizedbyphagocyte’sinabilitytoneutralizecertain pathogensduetodefectiveROSproductionandmayresultinrecurrentinfectionswith microorganisms[231,234].WhiletheproductionofROSisessentialforprotectingcells againstpathogens,itsregulationmustalsobetightlycontrolledasoverproductionmay resultinitsowndeath.Essentially,whenthehighlyreactiveROSaccumulatesbeyonda certain threshold, it can inflict a wide range of molecular damage including lipids,

64

proteins and DNA. Subsequently, the molecular damage can lead to mitochondrial dysfunction,ionbalancederegulation,lossofmembraneintegrity,andcelldeath.

Induction of cell death by excessive ROS production can occur via several mechanismincludingnecrosis,apoptosisandautophagy[235,236].Progressionofcell demise via necrosis is usually triggeredby toxic insults and severe trauma conditions which can result in rapid cell lysis and releasing of cytoplasmic contents into extracellularspaces.Consequently,thereleasedlysosomalenzymesmay furtherinflict damagetothesurroundingtissuesandinitiateadjacentcellstodie.

In contrast to necrosis which elicited an inflammatory response, apoptosis describesacontrolledmannerofcellterminationknownasprogrammedcelldeath.Itis characterizedbycellshrinkageandblebbing,nucleusfragments,chromatincondensed,

DNAdegradation,exteriorizationofphosphatidylserineandactivationofcaspases[237].

Additionally, the exteriorization of phosphatidylserine also functions as signaling mechanism to phagocytes for disposal of dying cells in an organized manner without elicitinganyinflammatoryresponse.

LethaltoxinwasreportedtoinducetheproductionofROSinmacrophageswhich ultimately resulted in cell death [238, 239]. Macrophages which were incapable of producingROSduetomutationwerenotsusceptibletolethaltoxininducedcelldeath furthersupportedthenotionthatROSisimplicatedeitherdirectlyorindirectlyinthecell demise.ThischapterseekstofurtherinvestigatetheeffectsofROSoverproductionon cell viability and apoptosis. In addition, the mitigation of harmful effects of ROS

65

productioninbothinvitroandinvivomodelwithanewformulaofantioxidantliposome willalsobediscussed.

66

3.2MaterialsandMethods

3.2.1Sporespreparation

B.anthracis Sterne strain 34F2 (pXO1+, pXO2) was obtained from Colorado

Serum (Denver, CO). Spores were inoculated in brainheartinfusion(BHI)brothand incubatedovernightinashakerat37oC.Subsequently,theovernightculturewasplated onBHIagarandincubatedat37oCtillsporulationreachedtomorethan99%.Theextent ofsporulationwasconfirmedbyphasecontrastmicroscopyormalachitegreenstaining.

Thesporeswereharvestedandheatshockedat70oCfor30minutesfollowedbythree roundsofwashing.Thefinalsporepreparationwasstoredindistilledwaterat4°Cuntil thetimeofinfection.Theconcentrationofthestockwasdeterminedfromtheaverageof triplicateCFUresults.Appropriatedilutionsofthestockweresubsequentlymadeprior tochallenge.

3.2.2Cellculture

RAW 264.7 murine macrophage cells (ATCC) were maintained in DMEM supplemented with 10% heatinactivated fetal bovine serum (FBS) and penicillin streptomycin(Cellgro,VA),androutinelysubculturedwithcellscrapper.

3.2.3Bloodisolation

HumanbloodpurchasedfromSeracareDiagnosticswasshippedandstoredat4oC and blood components were isolated within 2 days after collection. Human peripheral

67

bloodmononuclearcells(PBMCs),monocytes,andneutrophilswereisolatedbeforeuse inassay.

PBMCswereisolatedbymixingeach10mlofblood with 20 mls of DPBS, followedbytheadditionof10mlofFico/LiteLymphoH(AtlantaBiologicals,GA)tothe bottomofthetube.Thesuspensionswerecentrifugedat900gfor30minutesandthe buffycoatcontainingPMBCwerecollectedandresuspendedinDMEM+10%FBSfor subsequentexperiments.MonocyteswerepurifiedfromPBMCusingadherencemethod whichinvolvedincubatinginserumfreemediafor1hrandtwowasheswithDPBSto remove any unattached cells. Neutrophils were purified from the pellet obtained after ficolldensitygradientseparation.ThepelletwasresuspendedwithequalamountofPBS and3%dextran,followedby30minincubationatroomtemperature.Theneutrophilrich plasma suspension was removed and centrifuged at 300g for 5 minutes at room temperature.Residualredbloodcellswereremovedbyhypotoniclysiswith0.2%cold

NaClfor30secfollowedbyadditionof1.6%NaCltoresumeosmoticpressurebalance.

CellssuspensionwaswashedtwicewithDPBSandresuspendinmedia+10%FBS.

3.2.4ROSproduction

The amount of LTinduced reactive oxidant intermediates (ROIs) produced by human monocytes and neutrophils were measured by cell permeable DCFHdiacetate reagent. Briefly, monocytes or neutrophils were resuspended to final concentration of

106cells/ml in Hank’s balanced salt solution (HBSS) containing 10mM HEPES. Cells were then incubated with LT (PA500ng/ml + LF 100ng/ml) for 30min, 60min, or

68

120min. After centrifugation at 125g for 5min, the cells were resuspended in Krebs

Hensleitbuffersupplementedwith12.5mMHEPESand5uMDCFHdiacetate.Thecells wereincubatedat37oCfor15min,andthenanalyzedbyflowcytometer.

For detection of ROS production in RAW 264.7, cells were seeded in 6 well plates at a concentration of 1 x 106 cells/well and incubated for 23 hours to allow attachment to the plate. The cells were washed twice with PBS and treated with 500 ng/mlPA+100ng/mlLFor2µMPMAasapositivecontrolfor60,75,90,105and120 minutes.Beforeharvesting,thecellswereloadedwith5µMofcarboxyDCFDAfor30 minutes. Cells were dislodged from the plate and immediately analyzed by flow cytometry. The cells were gated by forward scatter (FSC) and side scatter (SSC) and fluorescence intensity monitored by FL1 channel. A minimum of 10,000 events were collectedinordertoachievestatisticalsignificance.

3.2.5Apoptosisassay

Whole blood was collected in sodium citrate and subsequently used for the isolationofPBMCsusingtheFicoll gradientmethod.Briefly,10mlsofwholeblood weremixedwith20mlsofDPBSandfollowedbyadditionof10mlsofFicolltothe bottomofthetube.Thetubeswerecentrifugedat2000rpmfor30minutesandthebuffy coat interphase was transferred to new tube. The cells were further washed twice with mediaandseededin6wellplatesataconcentrationof1X106cellsperwell.Cellswere activatedwith100U/mlofIFNγfor2448hourspriortotreatment.Lethaltoxinwas addedatafinalconcentrationof500µg/mlPAand 100µg/mlLFfor24hours.After

69

which,cellsweredetachedfromtheplate,washedandresuspendedto1x106cells/ml.

100µlofthesuspensionweretransferredtoaFACStubeand5µlofeachAnnexinV

FITCand5µlofpropidiumiodide(PI)wereaddedtothetubeandincubatedforanother

20minutesinthedark.400µlofFACSbindingbufferwereaddedtotheFACStubeand analysedbyFACSwithin30minutes.

3.2.6Murineanthraxmodel

Eight to nine weeks old female DBA/2 mice weighing 2024 grams were purchasedfromHarlan(BarHarbor,NE).Theanimalswerequarantinedforoneweek beforecommencementofexperiment.Theanimalswerechallengedwith1x107spores permouseinPBSviaintraperitoneal(I.P.)injectionandtreatmentregimewasinitiated

24hoursafterthechallengewith50mg/kgciprofloxacin(cipro)aloneorincombination with different dosages of Nacetyllcysteine (NAC)liposome (40mg/kg, 70mg/kg,

100mg/kg)in200µlinjectionvolume.Ciproflocaxin was prepared in sterile water and storedat20oCandfreshtubewasthawedeachtimebeforeuse.

FreshlysynthesizedNACliposomewerereceivedfromUniversityofTennessee thedaybeforeexperimentbeginsandstoredat4oC.TheliposomewasdilutedinPBSand prepared each time before use. NACliposome was administered in the morning, and ciprofloxacin was administered in the evening starting from day 2 to day 10. NAC liposome was administered simultaneously with ciprofloxacin on day 1 (24 hour post sporechallenge).

70

Allmiceweremonitoredtwicedailyfor24daysandremainingsurvivinganimals wereeuthanizedusingcarbondioxideinhalation.Sickanimalsthatappearedmoribund

(exhibitingaseverelyreducedorabsentactivityorlocomotionlevel,anunresponsiveness toexternalstimuli,aninabilitytoobtainreadilyavailablefoodorwater;alongwithany ofthefollowingaccompanyingsigns:aruffledhaircoat,ahunchedposture,aninability tomaintainnormalbodytemperatureorsignsofhypothermia,respiratorydistress,orany other severely debilitating condition) were euthanized on the same day. All animal experimentalprocedureswerereviewedandapprovedbyInstitutionalAnimalCareand

UseCommittees(IACUC).

3.2.7Statisticalanalysis

StatisticalanalysesofsurvivaldatausingKaplanMeiermethodwereperformed withPrism4.0software(GraphPad,SanDiego,California)

71

3.3Results

3.3.1InductionofROSproductionbylethaltoxin

Dichlorofluoresceindiacetate(DCFDA)isacommonlyusedreagenttoprobefor cellularROS.CellsareusuallyloadedwithDCFDAwhichdiffusesintothecytoplasm anddeacetylatedbyesterasetoDCFH.ThenonfluorescentDCFHisconvertedtohighly fluorescent DCH by ROS. An improved version of DCFDA, carboxyDCFDA, has enhancedretentionincellsbecauseofadditionalnegativechargesonthecompoundand providedbettersignalwhenusedasaprobeforROSmeasurement.

ToexaminetheeffectofLTonROSproduction,RAW264.7cellsweretreated withLTfollowedbyROSmeasurementusingfluorescentprobesandFACS.Figure3.1

A shows an increase in ROS production when RAW 264.7 cells were treated with commercialrecombinantLT,asindicatedbytheincreaseinthefluorescenceintensity whenprobedwithcarboxyDCFDA.Amongallthevarioustimepointtested,onlycells treatedwithlethaltoxinfor120minutes(Figure3.1A)showedanincreaseintheFL1 intensity. This time point coincides with toxininduced cell death as observed by microscopebeforecellharvesting.

InanattempttodetermineiftheproductionofROSincellsisdetrimentaltoits survival,RAW264.7cellsweretreatedwithlethaltoxininthepresenceandabsenceof various amount of antioxidant liposome. Glutathione (GSH) is an antioxidant that is commonlyfoundinthecellsandNacetyllcysteine(NAC)isaprecursoraminoacidfor

GSHproduction.Incubationofcellswithexogenousantioxidantcanhelptoincreasethe intracellularantioxidantbyseveralfolds.Whencellswerecotreatedwitheither

72

A

B 50 45 40 35 30 25 20 % viable % 15 10 5 0 Control GSH 3mM GSH 7.5mM NAC 3mM NAC 7.5mM

Figure 3.1: Production of ROS in RAW 264.7 cells A) Reactive oxidative species (ROS)producedbyRAW264.7cellsafterchallengedwithLTfor120minutes(control shadedpurple;LTgreenline;PMAdottedredline).PMAtreatmentservesaspositive control.ThehighlyfluorescentDCHwasmeasuredbyflowcytometer.B)Protectionof lethaltoxintreatedRAW264.7cellswithantioxidant.RAW264.7cellswereseededin 96wellplateandincubatedfor16hours.Lethaltoxin(PA500µg/ml+LF100µg/ml)and various concentration of antioxidant were added simultaneously to the wells and cells viability was determined after 3 hours with MTS (Promega). Results are presented as percentage over untreated cells. Control–blank liposome, GSH–glutathione lipsome, NACNacetyllcysteineliposome.

73

exogenousGSHorNACandlethaltoxin,itprovidedupto35%protectionrelativeto lethaltoxintreatedcellsinadosedependentmanner(Figure3.1B).Thissuggeststhat theinductionofROSmaybeoneofthemechanismsforlethaltoxininducedcytotoxicity inmacrophagescellline.

TheinductionofROSbylethaltoxinandthesubsequentprotectionofantioxidant liposomewerefurtherassessedinotherimmunecells.Inneutrophils,ROSproduction wasupregulatedinLTtreatedcellsat30minutespostchallengedbutnotat60or120 minutesafterchallenge(Figure3.2).TreatmentwithNACliposomeorGSHliposomeat

7.5 mM reduced the amount of ROS produced by neutrophils at all the time points.

Oddly,blankliposomeappearedtoenhancetheproductionofROIsbyneutrophilsat30 minutes post treatment. However, ROS enhancing effects were not observed in cells treatedfor60and120minutes.AlthoughtheoptimalinductionofROSisdifferentfrom

RAW 264.7 and neutrophils, these results suggest that LT indeed induces ROS production in both cells lines and human neutrophils, and possibly through similar activationmechanism.

74

A.

Human neutrophils treated with LeTx - 30mins

Key Name Parameter Gate 30 mins -ve control .001 FL1-H G1

30 mins LPS.002 FL1-H G1

Key Name Parameter Gate 30 mins -ve control .001 FL1-H G1 30 mins LeTx.003 FL1-H G1

Key Name Parameter Gate 30 mins -ve control .001 FL1-H G1 30 mins LeTx + blank.004 FL1-H G1

30 mins LeTx + GSH.005 FL1-H G1 30 mins LeTx + NAC.006 FL1-H G1

75

B.

Human neutrophils treated with LeTx - 60mins

Key Name Parameter Gate 60 mins -ve control.007 FL1-H G1

60 mins LPS.008 FL1-H G1

Key Name Parameter Gate 60 mins -ve control.007 FL1-H G1

60 mins LeTx .009 FL1-H G1

Key Name Parameter Gate 60 mins -ve control.007 FL1-H G1

60 mins LeTx + Blank.010 FL1-H G1

60 mins LeTx + GSH.011 FL1-H G1

60 mins LeTx + NAC.012 FL1-H G1

76

C.

Human neutrophils treated with LeTx - 120mins

Key Name Parameter Gate 120 mins -ve control.013 FL1-H G1 120 mins LPS.014 FL1-H G1

Key Name Parameter Gate 120 mins -ve control.013 FL1-H G1 120 mins LeTx.015 FL1-H G1

Key Name Parameter Gate 120 mins -ve control.013 FL1-H G1 120 mins LeTx + blank.016 FL1-H G1 120 mins LeTx + GSH.017 FL1-H G1 120 mins LeTx + NAC.018 FL1-H G1

Figure 3.2: Lethal toxin induces ROS production in neutrophils. A) Lethal toxin treatedhumanneutrophilsdisplayedahigheramountofROSproductionthanuntreated cells.1x106neutrophilswereincubatedinthepresenceandabsenceoflethaltoxinfor2 hours.DCFDAwereadded30minutesbeforecellcollection.Cellswerewashedtwice withPBSandimmediatelyanalyzedwithflowcytometry.Controlcells–shadedblue, Lethaltoxintreatedcells–greenline.Reactiveoxidantintermediates(ROIS)produced byneutrophilsafterchallengedwithLTandtreatedwithantioxidantliposomes(7.5mM NACliposomeor7.5mMGSHliposome).LPStreatmentservesaspositivecontrol.The highlyfluorescent2’,7’dichlorofluoresceinwasmeasuredpostchallengeat30min(A), 60min(B),and120min(C)byflowcytometer.

77

Stimal pretreatment (20h) in RAW264.7 challenged with LeTx

40.00

35.00 No lipo Blnk lipo 25mM 30.00 NAC 25mM 25.00 GSH 25mM Blnk lipo 12.5mM 20.00 NAC 12.5mM 15.00 GSH 12.5mM

Percent ofcontrol Blnk lipo 6.25mM 10.00 NAC 6.25mM GSH 6.25mM 5.00

0.00 PA500:LF100 PA250:LF50

3.5

3 No Lipo Blnk lipo 25mM NAC 25mM 2.5 GSH 25mM Blnk lipo 12.5mM NAC 12.5mM 2 GSH 12.5mM

Fold protection Fold Blnk lipo 6.25mM NAC 6.25mM 1.5 GSH 6.25mM

1 PA500:LF100 PA250:LF50 Figure3.3:STIMALprotectsRAW264.7fromcytolysisaftertreatmentwithLT. Antioxidantliposomesat25mM,12.5mM,or6.25mMwerepreincubatedwithcellsfor 20hoursbeforeLTchallenge.BeforeLTtreatment,antioxidantliposomeswereremoved andwashedtoremoveanyresidualliposomes.LTatPA500ng/ml:LF100ng/mlorPA 250ng/ml:LF50ng/mlwerethenaddedtothewell.Afterthreehours,cellcytotoxicity was determined by CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega).

78

3.3.2STIMALprotectionofPBMCsagainstApoptosis

To investigate the effect of Signal Transduction Methodology Antioxidant

Liposomes(STIMAL)treatmentonlethaltoxininducedapoptosis,anapoptosisdetection kitcontainingAnnexinVFITCwasemployed.AnnexinVFITCassayisbasedonthe specificaffinityofAnnexinVtotheexposedphosphatidylserinethatisexternalizedto theoutsideofthecellsurfacewhenapoptosisisactivated[240].PBMCthatweretreated withlethaltoxinshowedan810%increaseofapoptoticcellsafter24hoursasobserved bythehighernumberofcellswithAnnexinV+,PI–(Figure3.4).Thiseffectcouldbe attributed to the mixedpopulation of PBMC and the susceptibility of the various cell typestoLT.

Pretreatment of PBMC with STIMAL for 24 hours followed by LT treatment werefoundtoreducetheratioofapoptoticcellsbyupto13%ascomparedtojustLT

(Figure 3.5). NAC liposome appears to provide a slightly better protection against apoptosis as compared to GSH liposome at 12.5mM. Both GSH and NAC liposomes confer protection in a dosedependent fashion. However, blank liposome controls containingthesameconcentrationofliposomewasfoundtobehighlytoxictothecells with more than 90% death (Figure 3.6). This observation is in contrast with those obtainedwithRAW264.7cellsasnotoxicitywasobservedforcellstreatedwithblank liposomefor24hours.Thistoxiceffectoftheblankliposomemayalsoberelevantin interpretingthesubsequentinvivoexperiments.

79

(A) (B)

0 4.91 0 3.67

62.79 33.50 70.38 24.71

Figure 3.4: Scatter plot of PBMCs treated with (A) lethal toxin 500µg/ml PA + 100µg/mlLFfor24hoursand(B)PBScontrol.Livecells(PI,Annexin),apoptotic cells(PI,Annexin+),deadcells(PI+,Annexin+)

80

18

16

14

12

10

8

6 vs LT treated cells LTvs treated 4

% reduction of apoptotic cells 2

0 GSH 6.25 mM GSH 12.5mM NAC 6.25mM NAC 12.5mM Figure 3.5: Protective effect of STIMAL against LTinduced apoptosis in PBMC. Errorbarrepresentstandarderror.

Figure 3.6: Toxic effects of blank liposome on PBMC. PBMC were treated with 12.5mM and 6.25mM blank liposome for 24 hours and subject to Annexin V stainingassay.Graphshownisrepresentativeof12.5mM.PBMCtreatedwith6.25mM showedsimilarprofiles(datanotshown).Livecells(PI,Annexin),apoptoticcells(PI ,Annexin+),deadcells(PI+,Annexin+)

81

3.3.3Murineanthraxmodel

TitrationstudywasinitiallyconductedtodeterminetheLD50ofanewbatchofB. anthracisSternestraininmurineanthraxmodel.Deathcurveweregeneratedandfound tobecomparabletopreviousstudies(Table3.1).Subsequently,ciprofloxacintitration studywasperformedanddetermined1x107cfu/mouseastheappropriatechallengedose fortheanimalmodel.

The protective effect of NAC liposome in combination with ciprofloxacin was assessed. Following challenge with B. anthracis 34F2 spores per mouse by intraperitoneal injection, the mice were treated after 24 hours with 50 mg/kg ciprofloxacinaloneorincombinationwithdifferentdosagesofNACliposome(40,70 and100mg/kg)throughintraperitonealinjection.

AllmiceincludingNACliposometreatedstartedtoshowsignsofhemorrhages andaccumulationoffluidwithintheperitonealcavity(ascites)onday2afterchallenge.

Allanimalshadruffledfurbyday3.Micesurvivalcountwasrecorded(Table3.2)and survivalcurvewasgraphed(Figure3.7).WeobservedadelayeddeathinNACliposome treatedgroupespeciallyin100mg/kggroup(Figure3.7).Hazardratio,whichistheslope ofthesurvivalcurveorameasureofhowrapidlysubjectsaredying,wascalculated.The hazardratiowas2.5,whichmeansthattheciprofloxacinonlygroupdies2.5xfasterthan

100mg/kgNACliposomegroup.Therewere60%survivorsin100mg/kgNACliposome treatedgroupascomparedto30%survivorsinciprofloxacinonlygroup.Allmiceinthe untreatedgroupexpiredbyday7.

82

Similar to previous results pertaining to the effect of blank liposomeinduced toxicityonneutrophils(Figure3.6),theanimalmodelalsoshowedalowersurvivalcount for animals treated with blank liposome than NAC liposome. Both concentration of

40mg/mland100mg/mlofblankliposomeonlyprovided30%survivalascomparedto

60%survivalfor100mg/mlNACliposome.Differenceingeneticmakeupmayaccount forthedisparityintheapparenttoxiceffectofblankliposomebetweenhumanimmune cellsandRAW264.7

However,basedonanalysisusingGraphPadPrism4,pvaluewas0.1202(>0.05) and the survival curves between ciprofloxacin aloneandNACliposome 100mg/kg+ ciprofloxacin were not significantly different. This could be attributed to the small numberofsamplesizeineachgroup.Ontheotherhand,iftheanimalnumberhadbeen increasedto20micepergroup,andassumingsimilardeathcurve,pvaluewillimprove to0.02.

Table3.1:Bacillus anthracissternespores(34F2)wereadministeredtoDBA2mice intraperitoneally.Theanimalsweremonitoredeverydayfor10daysformortality.Ten micewereusedineachdosegroup MiceSurviving(n=10) Group (cfu/mouse) Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Day10 4.0x10^7 10 10 7 3 0 0 0 0 0 0 2.0x10^7 10 10 8 5 0 0 0 0 0 0 1.0x10^7 10 10 8 7 2 0 0 0 0 0 5.0x10^6 10 10 9 8 5 3 1 1 0 0 2.5x10^6 10 10 10 10 5 2 1 1 1 1 1.25x10^6 10 10 10 10 9 8 8 8 6 5 6.25x10^5 10 10 10 10 10 7 4 1 1 1 3.13x10^5 10 10 10 10 10 7 6 6 6 6 1.56x10^5 10 10 10 10 10 10 8 8 8 7 83

Table3.2:ProtectiveeffectofACliposomeincombinationwithciprofloxacinin DBA2miceinfectedwithB. anthracissternespores.Thetreatmentswereadministered for10daysandobservedformortalityupto24days.NACliposomewasadministeredin themorning,andciprofloxacinwasadministeredintheeveningstartingfromday2to day10.NACliposomewasadministeredsimulatenouslywithciprofloxacinonday1(24 hourpostsporechallenge). Mice surviving (n=10) Group* Day 0 Day 1 Day 2** Day 3*** Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Control-Non treated 10 10 7 2 1 1 1 0 0 0 0 Cipro alone 10 10 10 10 9 8 7 6 6 4 4 Blank liposome 40mg/kg + cipro 10 9 9 9 9 7 5 4 4 3 3 Blank liposome 100mg/kg + cipro 10 10 10 10 10 10 9 7 6 5 4 NAC-liposome 40mg/kg + cipro 10 10 10 10 10 9 8 7 7 7 7 NAC-liposome 70mg/kg + cipro 10 10 10 10 10 8 6 5 5 5 5 NAC-liposome 100mg/kg + cipro 10 10 10 10 10 10 10 10 9 7 6 Mice surviving (n=10) Group* Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 18 Day 20 Day 22 Day 24 Control-Non treated 0 0 0 0 0 0 0 0 0 0 Cipro alone 4 4 4 4 3 3 3 3 3 3 Blank liposome 40mg/kg + cipro 3 3 3 3 3 3 3 3 3 3 Blank liposome 100mg/kg + cipro 4 4 4 4 3 3 3 3 3 3 NAC-liposome 40mg/kg + cipro 7 7 7 7 6 6 6 6 6 6 NAC-liposome 70mg/kg + cipro 5 5 5 5 5 5 5 5 5 5 NAC-liposome 100mg/kg + cipro 6 6 6 6 6 6 6 6 6 6

*All mice were challenged with 1x10^7 cfu/mouse B. anthracis 34F2 spores ** Signs of hemorrhages and ascites in almost all animals ***Ruffled fur

84

Pilot Efficacy Study of STIMAL (NAC) VS 34F2 Sterne in Cipro Treated Mice 110 100 Control (Non-treated) 90 Ciprofloxacin (50mg/kg) 80 Blank Liposome (40mg/kg)+Cipro 70 Blank Liposome (100m/kg)+Cipro 60 50 NAC STIMAL (40mg/kg)+Cipro 40 NAC STIMAL (70mg/kg)+Cipro 30 NAC STIMAL (100mg/kg)+Cipro Percent Percent survival 20 10 0 0 5 10 15 20 25 30 Days After Infection Figure3.7:SurvivalcurveforDBA2miceinfectedwithB.anthracissternesporesand treatedwithciprofloxacinaloneorincombinationwithvariousdosagesofNAC liposomeorblankliposome. Cipro VS NAC STIMAL (100mg/kg):Survival proportions 100 Ciprofloxacin (50mg/kg) 80 NAC STIMAL (100mg/kg)+Cipro

60

40

Percent Percent survival 20

0 0 5 10 15 20 Time Chi square 2.415 df 1 P value 0.1202 P value summary ns Are the survival curves sig different? No Figure3.8:SurvivalcurveforDBA2miceinfectedwithB.anthracissternesporesand treatedwithciprofloxacinaloneorincombinationwith100mg/kgNACliposome

85

3.4Discussion

ROSisimplicatedinmanycellularfunctionsandplayimportantrolesinsignal transduction. Although moderate amount of ROS is key to maintaining homeostasis, excessiveamountcanalsocausedeleteriouseffectstocellsincludingprogrammedcell death [241243]. In innate and adaptive immunity, ROS contributes to the control of pathogenbymediatingseveralantimicrobialpathways[244].Forinstance,ROSconfers cytoprotection to cells by elimination of intracellular pathogens or acts as signal transducersthatareessentialforimmunefunctions[232].Dependingonthevarioustypes and intensity of stimilus, ROS can be produced through several sources in the cells.

Endogenous ROS are derived in moderate amount from membrane localized NADPH oxidase(Nox)enzymes[245],peroxisomes[246],cytochromep450system[247]while themajorsourceisusuallyproducedviamitochondrialelectrontransportchain(ETC)

[248].

Inthisstudy,itwasdemonstratedthatROSproductionwasupregulatedinRAW

264.7cellsandhumanneutrophilsuponexposuretoLT(Figure3.1&3.2).Apparently,

LTinducedROSproductionwasshowntohaveharmfuleffectsoncellsasantioxidant liposometreated cells resulted in diminished cell death. This observation is consistent withearlierstudyonLTeffectsonROSproductioninseveralcelltypes[238].SinceLT hasbeenshowntoinduceapoptosisincells[59],the protective effects of antioxidant liposome on PBMC were also investigated. In agreement with previous studies [249],

PBMC treated with LT displayed characteristic of apoptosis[237]asindicatedbythe bindingofannexinVtoexternalcellsurfacephosphatidylserine(Figure3.4and3.5).The

86

inductionofapoptosisbyLTwaspartiallyabolishedwhencellsweretreatedwithNAC andGSHantioxidantliposome,suggestingthatROSmayberesponsiblefortriggering apoptosisinLTtreated cells. Indeed,highlevelofROScanmediatetheinductionof apoptosisbyinitiatingtheopeningofthemitochondrialpermeabilitytransition(PT)pore

[236], a prerequisite process for apoptosis progression via the intrinsic pathway.

Consequently, it results in the rupture of mitochondrial membrane and the release of apoptotic proteins [237]. The targeting of immune cells for elimination prevents the secretionofchemokinesandcytokinesthatcanattractotherimmunecellstothepresence ofpathogeninthebodysystem.Thisrepresentsaneffectivestrategyundertakenbythe bacteria to circumvent the immune system and evidently plays a major role in pathogenicity.

Ithasbeenpreviouslyreportedthatadministrationofantioxidantincreasedthe resistanceofmicetoanthraxLTintoxication[238].Notably,ourinvivomurinemodel also demonstrated similar protective roles of antioxidant liposome in mice that were challengedwithanthraxspores(Figure3.7).Theprotectivemodeofactionofliposomeis presumablybroughtaboutbyscavengingtheexcessiveRObeforeitcanaccumulateto inflictdamageonvariousmolecularcomponents.Thesefindingsareinagreementwith resultsobtainedfrominvitroexperimentwithcelllines(Figure3.3)andisolatedimmune cells (Figure 3.5). This suggests that LTinduced ROS production, conceivably in cytotoxicconcentration,representaneffectivemethodemployedbythebacteriatoevade theimmunesystem.

87

Severalotherstudiesalsoprovidedcompellingevidencesuggestingtheinduction ofROSasacellularresponsetoLTintoxication.ProteomicsstudyofRAW264.7and

J774.1A cells treated with cytotoxic concentration of LT revealed considerable upregulationofROSrelatedproteins[250].Asupregulationoftheseproteinsweremore profoundinJ774.1AthanRAW264.7,itmaypartiallyexplainthehighersusceptibility ofJ774.1AtoLTascomparedwithRAW264.7cells.Inaddition,RAW264.7cellsalso upregulatedtheproductionofthioredoxin,aproteinwhichcanfunctionasantioxidant.

This results in RAW 264.7 cells having a higher degree of protection from harmful effects of ROS as compared to J774.1A. Another proteomic study also observed the downregulationofamitochondrialsuperoxidedismutase,akeyantioxidantinprotecting mitochondria. This reduces cellular ability to neutralize the onslaught of LTmediated

ROSproduction[226]whichmayleadtomitochondriadysfunctionandsubsequently apoptosis induction. From these observations, it is reasonable to speculate that ROS upregulationmediatesmitochondriadependentapoptosis[236].

Inadditiontoapoptosis,ROSinducedbyLTmaybeassociatedwithautophagy induction.Asdescribed inChapter2,autophagyin RAW264.7wasupregulatedasa response to LT intoxication. While the autophagy activation mechanism by LT is currentlynotyetidentified,ROSproducedfromLTintoxicationcouldpossiblyplaya contributingroleinautophagyactivationthroughapathwaythatissimilartostarvation inducedcells[251].Duringstarvation,mitochondriaupregulatesROSproductionwhich in turn inhibits cysteine protease Atg4 catalytic function. Atg4 has dual function of conjugating and deconjugating Atg8, another essential protein for autophagosome

88

formation. Almost immediately after synthesis, Atg8 is cleaved by Atg4 into a form permitting the conjugation with phosphatidylethanolamine (PE) [140]. Subsequent processes necessitate the inactivation of Atg4 to allow the binding of Atg8PE onto autophagosomalmembrane.ItwaspostulatedthatitisatthisstagewhichROSregulate autophagy by targeting a conserved cysteine residue near the Atg4 active site for oxidation.TheresultantinactivationofAtg4therebyleadingtoenhancementofAtg8PE binding and autophagosome development. However, as autophagy progresses with the fusion of autophagosome with lysosome, catalytic activity of Atg4 is subsequently required to delipidate and recycle Atg8. Given the existent of the various autophagy activationpathways,thepossibilityofROSinvolvementinmediatingautophagythrough

Atg4redoxcannotberuledoutatthispoint.

InadditiontotheworkdonebyScherzShouvaletal[251],severalotherstudies alsopointtoROSaspossiblesignalingmoleculestoautophagyinduction[252].For instance, it was demonstrated that mitochondrial oxidation which involves ROS production is critical to the induction of autophagy [253]. In another study, ROS dependentautophagywasshowedtobeessentialininducing caspaseindependent cell death [211]. Separately, superoxides were reportedtomediateautophagiccelldeathin selenitetreatedgliomacells[254].Takentogether,thesestudiessuggestthatROSmay indeedplayacontributingroleinautophagyinduction.

AlthoughexcessROSmaybeharmfultocells,complete abrogation of cellular

ROSisphysiologicallynotdesirableasitsuppressestheproperfunctioningofimmune cells, whose presence is essential to combat infections. Thus, it is crucial that proper

89

balancingofROSconcentrationincellsmustbetakenintoconsiderationifantioxidant administration is subsequently deemed to be a suitable method of treatment without suppressing other ROSdependent protective functions against pathogens. Given the pleotropiceffectsofLT,ROSproductionismostlikelyapartofthecoordinatedeffortof anthraxpathogencityinthwartingtheimmunesystem.

90

Chapter4:eutrophilschemotaxis

4.1Introduction

Neutrophil is an important subset of innate immunity and is involved in phagocytosis and other modes of bacterial killing. During infection, neutrophils are mobilized fromthe bone marrow, where they are produced,tothebloodstreamfrom where they can promptly migrate to the infection sites [255, 256]. In the case of cutaneousanthraxinfection,neutrophilsappeartoplayanessentialroleincombatingthe bacterial spreading. Accordingly, neutrophils wereshowntoengulfanthraxsporesand efficiently kill the vegetative cells through a ROSindependent mechanism following germination[257].Inaddition,dermalneutrophils werefoundinlargenumbersatthe infectionsiteinresistantmicethatwereepicutaneouslyinoculatedwithanthraxspores.

Incontrast,micethatweresusceptibletocutaneousanthraxinfectiondidnotexhibitany accumulationofneutrophilaroundinfectionsite[258].

ItiswidelyrecognizedthatLThasadeleteriouseffectonmanyimmunecellsby suppressingessentialfunctionsorbyinducingcelldeath[259].Severalstudiessuggest thatthecertainaspectsofneutrophilsimmunefunctionswereimpairedduringanthrax infection.Forinstance,pathologicalstudiesindicatedalackofneutrophilsinfiltrationin theinfectedtissuesharvestedfromanthraxvictims[257].Inaddition,the10inhalational anthrax patients who were admitted to hospital during the anthrax attack in 2001

91

displayednormaloronlyslightlyelevatedpolymorphonuclearneutrophil(PMN)count

[25,260].

Chemotaxisdescribesthemobilizationofcellstotheinfectionsiteandisakey elementforneutrophilstoeffectivelymountanimmuneresponseduringaninfection.It is launched by several mechanisms such as the assembly of actin filaments for cell motility[261]andtheproductionofchemotacticstimulus[262].Neutrophilmovement can either be positive or negative, which means that cells may move towards an increasing concentration gradient of chemotactic factors or in the opposite direction.

Chemotactic factors can be categorized into exogenous and endogenous factors.

ExogenouschemotaxinsincludebacterialoligopeptidesoftheformyMethionylLeucyl phenylalanine (FMLP) type, lectins, denutured proteins, certain lipids and lipopolysaccharideswhereasendogenouschemotaxinsareproducedbythehostorganism andcanbefurthersubdividedintohumoralorcellulartype.

Neutrophilmigrationispoweredbyactincytoskeletonreorganization.LTdirectly paralyzesneutrophilschemotaxisbyimpairingactinassemblyinthecells[52].However, theeffectofLTontheproductionofchemokineshasnotbeeninvestigated.Duetothe absenceofneutrophilsatthesiteofinfection,wepostulatethatanthraxLTmightinhibit the production of endogenous chemotactic compounds such as chemokines and complement factors. This could result in the absence of a gradient elevation of chemotacticfactorsthatwouldpreventneutrophilinfiltrationtothesitesofinjuryand thereforeenablingthebacteriatomultiplyrapidly.

92

TheobjectiveofthisworkistostudytheeffectsofLTanditscomponentsonthe production of chemokines by human peripheral blood cells (PBMCs) and to compare their effects with cell wall (CW) components of B. anthracis. Here, we show that protectiveantigen(PA)andbacterialCWcomponentsinducechemokineproductionand thiseffectisnegatedwhenlethalfactor(LF)wasintroduced.Thechemotacticfunctionof neutrophilswasseverelydamagedwhenLTisformed.

4.2Materialsandmethods

4.2.1Humancellspreparationandactivation

PBMCs were isolated by mixing each 10 ml of blood with 20 ml of PBS, followedbyadditionof10mlofFico/LiteLymphoH(AtlantaBiologicals,GA)tothe bottomofthetube.Thesuspensionswerecentrifugedat900gfor30minutesandthe buffycoatcontainingPMBCwerecollectedandresuspendedinDMEM+10%FBSfor subsequentexperiments.Cellsweretreatedwith500ng/mlPA,100ng/mlLFand1µg/ml

CWfor24hoursat37oC.Supernatantswereharvestedfordeterminationofchemokines.

4.2.2RAisolation

PBMCweretreatedwithdifferentstimulifor2,4and24hours.TotalRNAwas isolated with Trizol (Invitrogen, CA). Briefly, PBMC cells were pelleted by centrifugation and lysed in Trizol reagent by repetitive pipetting. The homogenized suspensionwasincubatedfor5minsatroomtemperaturefollowedbyadditionof0.2ml of chloroform per 1 ml of Trizol reagent. The tubes were shaken vigorously for 15

93

secondsbyhandandincubatefor23minatroomtemperatureandcentrifugedat12,000 xgfor15minat4oC.Theupperaqueousphasewastransferredtoafreshtubeand0.5ml ofisopropylalcoholper1mlofTrizolreagent.Samplewasvortexedandincubatedat roomtemperaturefor10min.Followingcentrifugingat12,000xgfor10minat4oC,the supernatantwasremovedandtheRNApelletwaswashedwith75%ethanol,brieflyair driedandredissolvedinRNasefreewater.

4.2.2RAseprotectionassay

ForRNaseprotectionassay,2µgofisolatedRNAwassolubilizedwith8µlof hybridization buffer by vortexing for 34 minutes. The probe was diluted with hybrizationbuffertoappropriateconcentrationaccordingtothetechnicaldatasheetand2

µlofdilutedprobewasaddedtotheRNAsample.Afteraddingadropofmineraloilto eachtube,thesampleswereplacedinaheatblockprewarmedto90oCandallowedthe temperature to ramp down slowly to 56oC. Following a 12–16 hour incubation, the sampleswereremovedfromtheheatblockandplacedatroomtemperaturefor15min.

100µlofRNasecocktailwaspipettedunderneaththeoilintotheaqueouslayerandthe tubes were centrifuged for 10 sec followed by 45 minincubationat30oC.TheRNase digestsweretransferredtoeppendorftubescontaining18µlofProteinaseKcocktailand incubated for 15 min at 37oC. Subsequently, 65µl Trissaturated phenol and 65µl of chloroform:isoamylalcohol(50:1)wereaddedtothetube,vortexandcentrifugedfor5 minatroomtemperature.Theaqueousphasewastransferredtoanewtubeand120µlof

4Mammoniumacetateand650µloficecold100%ethanolwereaddedtothetube.The

94

solutionwasmixedandincubatedfor30minat70oCandcentrifugedfor20minutesat

4oC.Thesupernatantwasdiscardedand100µloficecold90%ethanolwasaddedand centrifugedfor10minat4oC.Thesupernatantwasremoved,airdried,andresuspended in 1X loading buffer. Protected probes were separated in polyacrylamide gel and the bandswerecapturedandquantified.

4.2.3Measurementofchemokinesecretion

The BD PharMingen cytometric bead array (CBA) was used to simultaneously assayforthechemokinesIP10,MCP1,MIG,Ranter andIL8.Thisflowcytometry basedmeasurementquantifysolubleanalytesinaparticlebasedimmunoassayandwas carriedoutaccordingtothemanufacturer’sinstruction.Thelowestlimitofdetectionfor allcytokinesinthisassaywas20pg/ml.

4.2.4eutrophilchemotacticassay

NeutrophilmigrationwasdeterminedusingTranswellchamber.Neutrophilswere resuspendedat1x107cells/mland100µlofthesuspensionwereaddedtothetranswell filterinsertwiththebottomwellcontainingchemoattractantdilutions.Afterincubation, the filter inserts was removed and tapped against the edge of the well to remove any additional buffer. Following the pipetting of 10,000 Dynospheres bead (Bangs

Laboratories) into each, the mixtures were mixed thoroughly and the number of cells migratedwerecountedusingtheFACS.

95

Results

4.3.1InhibitionofLPSandCWinducedchemokineproductionbyLT

Chemokinesproductionistypicallyupregulatedduringinfectiontorecruitother immunecellstospecificsites.TodetermineifLTcaninfluencechemokinesproduction, cellsweretreatedwithLTandstrongchemokineinducersuchasLPSandB.anthracis cell wall (CW) component and supernatant were analyzedbyCBA.Figure4.1shows bothLPSandCWarestrongproducersofallchemokinestestedwhenincubatedwith

PMBC for 2 hrs. Among the various chemokines, MCP1 represents the highest stimulationofupto50and68foldincrementsforCWandLPStreatmentrespectivelyas comparedtountreatedcontrol.However,thepresenceofLTapparentlyabolishedall chemokineinducingpropertiesofCWandLPSinallthevarioustypesofchemokinesto levelssimilartountreatedcontrol.Next,individualcomponentofLTweretestedfortheir effects on chemokine productions. Surprisingly, PA showed a high induction of chemokineproductioninIP10andMIG,andmoderateinductionforMCP1andRantes.

PAalonehasnoimpactonIL8productioninPMBCcells.SimilartoLPSandCW,the chemokineinducing properties of PA were evidently suppressed when LF was introducedintothecellculture.IncontrasttoPA,theexposureofLFalonetoPMBChas no observable changes in cellular chemokine production except for a slight 2 fold increaseinMIG.ThedifferencesobservedbetweenPA and LF effects onchemokines productionmaybeattributedtothebindingofPAtocellsurfacereceptorsANTRX1and

ANTRX2[80,81]whichmaytriggersignaltransductionforchemokinesproduction.On

96

theotherhand,LFisnotknowntobindtocellsurface receptors and requires PA for translocationtothecellcytoplasm.

4.3.2LTinhibitsCWandLTinducedtranscriptionofchemokines

To corroborate the findings of LT suppression of LPSinduced chemokine production in PMBC, the highly sensitive RNase protection assay was employed for detectingmRNAlevelincells.ThechemokinegeneexpressionprofileofRantes,Mip

1α,Mip1β,GroandIL8ofPBMCtreatedwithvariousstimulusweredeterminedafter

2,4and24hoursofincubation.SimilartoresultsobtainedfromCBAanalysis,bothCW and LPS upregulated the expression of Mip 1α, Mip 1β, and IL8 within 2 hours of exposure with the peak expression at 4 hours and eventually tapered off at 24 hours

(Figure4.2).MCP1upregulationbyCWandLPSonlyoccurredat4hoursandpeaked at24hourswhereasGrowasonlydetectableat24hoursinLPStreatedPBMC(Figure

4.2).ThelevelofallchemokinesexpressionforLTtreatedPBMCremainedunchanged ascomparedtountreatedcontrolforalltimepointstested.

4.3.3LTtreatedPMBCdoesnotinduceneutrophilschemotaxis

TheinductionofchemokinesasobservedinCBA and RNase protection assay wasverifiedbyneutrophilchemotaxisassay. Blood was treated with LT, B.anthracis

Sterne and Staphylococcus aureus for 4 and 6 hr and chemotaxis was subsequently assessed.UsingTranswellsystem,neutrophilsthatmigrateacrossamembranefilterin response to the presence of chemotactic factors were enumerated. As shown in Figure

97

4.3,bothbloodandplasmathatweretreatedwithLTfor4and6hoursdidnotpromote neutrophils migration across the transwell membrane filter. The apparent lack of enhancedneutrophilsmigrationindicatestheabsenceofchemokinessecretionbyPBMC in both blood and plasma following LT treatment. Although LT failed to enhance chemokinesproductioninPBMC,italsodidnotreducetheneutrophilmigrationinboth thebloodandplasma,thusimplyingthatLThasnoeffectonthechemotacticactivityof thechemokinesthatarealreadypresentintheplasma.

Incontrast,thebloodandplasmasampletreatedwithS.aureus,agramnegative bacterium containing LPS, showed a considerable increase in neutrophils movement acrossthemembrane.ConsistentwiththeLPSandCWinducedchemokinesproduction as determined by CBA and mRNA expression profile in figure 4.1 and figure 4.2 respectively,theincreaseinneutrophilschemotaxisdemonstratedthatthePBMCinthe blood indeed produced chemokines in response to S. aureus infection. Interestingly, treatmentofbloodwithB.anthracisSternestrainwhichproducesbothPAandLFalso displayedincreaseinneutrophilschemotaxis(figure4.3),presumablyduetotheeffectof

CWfromthevegetativecells.However,earlierexperimentonchemokinesdetectionwith

CBAdemonstratedthatLTwasabletoobviateCWmediatedchemokinesproductionto almostthatoftheuntreatedcontrol(figure4.1).Althoughbothexperimentsinvolvedthe useofCW,thereweresomerelevantexperimentalvariationsthatmayaccountforthe apparentdifferencesintheresultsobtained.Inneutrophilschemotaxisassay,culturingB. anthracisSternestraininvolvedacertainlagtimebeforeitcanbeginproducingPAand

LFintheculturewhereasLTwasimmediatelypresentintheCBAexperimenttoexertits

98

chemokines suppression effect. The other probable reason could be attributed to the lower LT concentration present in the B. anthracis culture from the relatively short incubationtimeof46hourascomparedtotheCBAexperimentwherepurifiedPAand

LFwereaddeddirectlyintothemedia.Nevertheless,thesuppressionofchemokinesby

LTisstillaclinicallyrelevantfindingasevidencedbythenormalorslightlyelevated

PMNcountsininhalationalanthraxpatients[25,260].

A 800 700 600 500 400 300

200

Concentration (ng/ml) Concentration 100 0 l PA LF PS Tx ro CW L e nt LeTx LeTx o + +L C S CW LP B 18000 16000 14000 12000 10000 8000 6000 4000 Concentration (ng/ml) Concentration 2000 0

W x PA LF T rol C LPS LeTx ont +Le C W C LPS+LeTx

99

C 450 400 350 300 250 200 150 100 Concentration (ng/ml) Concentration 50 0 l A F x S x P L T Tx P CW e e L ntro L o +LeT C S CW+L LP 8000 D 7000 6000 5000 4000 3000

2000

(ng/ml) Concentration 1000 0

A S ol P LF Tx P Tx CW L e LeTx Le ontr C CW+ LPS+L 25000 E 20000

15000 10000

(ng/ml) Concentration 5000 0 l A x o P LF T CW e LPS LeTx ontr C CW+L LPS+LeTx Figure4.1:Chemokinesecretionmeasurementwithcytometricbeadarray. AIP10,BMCP1,C–MIG,D–Rantes,E–IL8 100

Rantes

1Ctl2h Mip1β 2CW 3PG Gr 4LPS og 5LT Mip1α 6Ctl4h 7CW 8PG MCP1 9LPS 10LT IL8 11Ctl24h 12CW 13PG 14LPS 15LT

L32 2 GAPDH

123456789101112131415 Donor33

Figure4.2:ChemokinegeneexpressioninhumanPBMCaftertreatmentwithLT, CW,peptidoglycan(PG),andLPSfor2,4,and24hours.TotalRNAwaspurifiedand thegeneexpressionwasdetectedusingRNAseprotectionassay.

101

A

350

300

250

200 4 hr 150 6 hr

100 Number of Number of Migrated Cells 50

0 Control Sterne LT S. aureus

B

400

350

300

250 4 hr 200 6 hr 150

100 Number Number of Migrated Cells 50

0 Control Sterne LT S. aureus

Figure4.3:EffectofLTtreatedbloodandplasmaonneutrophilschemotaxis.A) BloodwastreatedwithLT,B.anthracisSterneandS.aureusfor4and6hrand subsequentlyusedforchemotaxisanalysisusingtranswellaccordingtomanufacturer’s instruction.B)PlasmawasderivedfromthebloodtreatedinthesamewayasAandused forchemotaxisanalysis 102

4.4Discussion

Chemokinesrepresentthelargestfamilyofcytokinesandinmostcases,defined byfourconservedcysteineresidues[263,264].Itplaysanimportantroleinbothinnate andadaptiveimmunityandconsequently,theimpairmentofchemokineproductioncan lead to various disease states [265]. The role of the chemokines is to promote accumulationoftheimmunecellsattheplacewheretheyareproducedinresponseto certain stimulus such as infection or injury. Simulation of chemokine production by infectiousorganismcanbemediatedbydirectinteractionbetweenmicrobialpathogen associated molecular patterns (PAMP) and pattern recognitionreceptors(PRR)inhost cells.Thisincludestolllikereceptors(TLR)[266],orthenucleotidebindingsiteleucine richrepeatproteinsNOD1andNOD2[267].Inaddition,endogenousmoleculeswhen stimulatedbyinjuryorinfectionsuchasfibrinogen,elastase,anddefensinsandmany major inflammatory and immunomodulatory cytokines can also induce chemokines production[268].

InresponsetotreatmentwithLPSandbacteriaCW,certaincelltypesstimulate productionofchemokinestoattractotherimmunecellstositesofinfectionwherethey exert antibacterial activity [269]. IP10 interacts with Gproteincoupled receptor

CXCR3 expressed on Th1 lymphocytes and participates in various immune and inflammatory responses [270]. MCP1 functions as a chemoattractant for recruiting monocytes,Tcellsanddendriticcellstositesofinjuryandinfections[271,272].Both

MIGandRantesareinvolvedinTcellstrafficking[273]andinaddition,Rantescanalso attract eosinophils and basophils [274]. The primary function of IL8 is to induce

103

chemotaxisinneutrophilsaswellasexocytosisandrespiratoryburst[275].Inthisstudy,

LPSandbacteriaCWgreatlyenhancedtheproductionofchemokinesinPBMCincluding

IP10,MCP1,MIG,RantesandIL8(Figure4.1).However,treatmentwithLTalmost completelyabrogatedthechemokineinducingeffectsofLPSandCW.Duetothewide rangingeffectsofchemokinesonmanydifferenttypesofimmunecells,theinhibitionof chemokineproductioninPBMCresultsintheinabilitytorecruitotherimmunecellsand thereforeprovidingopportunityforthepathogentoestablishitselfinthehostsystem.

Some of these chemokines not only play a role in immune response against bacteriainfection,butalsoexhibitantiviralproperties.ItwasdemonstratedthatRantes,

Mip1αandMip1βalsofunctionsasmajorHIVandsimian immunodeficiency virus

(SIV) suppressive factors by binding and downregulating the viral coreceptor CCR5

[276].Indeed,itwasobservedthattheabilitytomaintainanadequatebetachemokine productionisanimportantparameterforpreventingHIVpatientfrom developingfull blownAIDSaswellasforcontrollingthenaturalcourseofHIVinfectioninuninfected persons[277].

GeneexpressionstudiessuggestthattheupregulationofchemokinesbyLPSand

CWisinpartregulatedatthetranscriptionallevelasindicatedbytheincreaseinmRNA levelsusingRNaseprotectionassay.Expectedly,thepresenceofLTdidnotcauseany upregulationofmRNAlevelsforRantes,Mip1α,Mip1β,GroandIL8inPBMC.The findings from this highly sensitive method of determining chemokine gene expression profileareconsistentwiththechemokinelevelsthatwerereleasedintothesupernatantby

104

PBMC.ThisindicatesthatLTnotonlyfailtoelicitchemokineproductioninPBMCbut alsosuppressesthechemokineinducingpropertiesofLPSandCW.

Inadditiontotheinhibitionofchemokineproduction that prevents neutrophils accumulation at the site of infection, LT also directly affects neutrophils chemotaxis functionbyimpairingactinassemblyinthecells[52].Collectively,theconcertedeffects of both inhibiting chemokine production and impairing neutrophils actin cytoskeleton rearrangementhaveaprofoundimpactonthefunctionalabilityofneutrophilsinanthrax infection.

ItisbelievedthatLTinducesoverwhelmingproinflammatorycytokineswhich are speculated to be responsible in part for sepsis and ultimately contributes to death

[278,279].Correspondingly,itwasalsoobservedthattheoccurrenceofsepsisisoften associatedwiththefailureofneutrophilsmigrationtothesiteofinfection[280282].

However,itisnotcompletelyunderstoodhowneutrophilscontributetosepsisbeyondits lackofparticipationtocombatthepathogenattheinfectionsites.

RecentstudiesdescribetheinhibitionofPAasanadjunctmethodtocomplement antibiotic treatment appears to be promising for the treatment of anthrax infection.

AntibodiesagainstPAhaveshowntobeeffectiveinpreventingtoxinentryintothecells inbothinvitroandinvivomodel[283286].OthertypesofPAdirectedtherapyincludes mutantformsofPAthatgeneratedysfunctionalheptamerwithwildtypePA[287,288], cyclodextrinthatmaysuppressPAporeformation[289,290]andcisplatinthatmodify

PA configuration [291]. As the presence of a functional PA is a prerequisite for translocation of LF into cells, it is reasonable to speculate that effective PAdirected

105

therapies may conceivably block the downstream effect of LT intoxication which includes, among others, suppression of chemotaxis production and impairment of neutrophilmigration.

106

Chapter5:ConcludingRemarks

Thecurrenttreatmentmethod for anthrax infection is essentially based on the administration of antibiotic and supportive therapy. However, it has shown to be insufficient as evidenced by the poor prognosis in inhalational anthrax. Inhalational anthraxoccuredin2001hadasurvivalrateofonly55%despiteintensivemedicalcare andearlyadministrationofantibiotics.Recentstudies showed that several PAdirected therapiesprovidedprotectioninmicethatwerechallengedwithanthraxspores[292]and it is likely that future treatment for anthrax may possibly consists of lethal toxin inhibitorycompoundsinconjunctionwithantibiotictreatments.

TheinductionofautophagybyanthraxLTrepresentsanoveleffectamongstthe manyothersthathavebeendescribedintheliterature.Althoughautophagywasinitially discovered as a response to starvation, it has sincebeenknowntobeassociatedwith manyphysiologicalanddevelopmentalprocesses.Inthescenarioofinfection,autophagy hasbeenshowntobeinvolvedintoxin,bacteria,virusesaswellasprionsinteractions withthehostcells.RecentstudiesalsosuggesttheinvolvementofautophagyinMHC classIIpresentationofintracellularantigens[191].Theresultspresentedhereareonly the initial findings on the possible implication of autophagy in anthrax pathogenesis.

Giventhedefensiveroleofautophagy,itispossiblethatLTmaybeinpartdegradedin the cytoplasm via autophagy pathway. A fuller understanding of the implication of autophagyinLTwhichmayinturnopenupnewoptionsforcombatingagainstanthrax

107

infection. For instance, autophagy has been showed to rescue cells from death by promptly removing damaged mitochondria [293]. Similarly, it would be useful to determineiftheinductionofautophagycaneliminateLTmediatedmitochondriadamage beforetheleakingofitsconstituentsintothecytoplasmwhichcaninitiateapoptosis.In addition,possiblefuturestudiesshouldalsoinvestigatetheeffectofautophagyonspores germination,bacteriagrowthandtoxindegradation.

Several recent studies have geared towards the direction of PA or LFdirected therapies.Thisseemstobeapromisingapproachastoxininhibitionwereshowntobe beneficialevenwhenadministeredlaterinthediseasethusallowingabroaderwindowof opportunity for treatment. Effective inhibition of PA or LF would also address other concernssuchastheoverproductionofROSthatmayresultindeathandthesuppression ofchemotaxisbyinhibitingchemokinesproduction

With the discovery of more physiological effects of LT on host cells and the advancement of our understanding on anthrax pathogenesis, it is likely that the next approvedtreatmentmethodwould gobeyondjustantibiotic treatment. In essence, the findingsinthisstudycontributetotheelucidationoftheconvolutednatureofanthrax pathogenesisandprovidenewinsightsintothefunctionsofanthraxtoxin.Thenextphase would be to determine how best to apply these new knowledge in combination with conventionaltreatmentsforanthraxtreatment.

108

LISTOFREFERENCES

109

LISTOFREFERENCES

1. McSherryJ,KilpatrickR:TheplagueofAthens.JRSocMed1992,85(11):713.

2. DirckxJH:Virgilonanthrax.AmJDermatopathol1981,3(2):191195.

3. Edwards KA, Clancy HA, Baeumner AJ: Bacillus anthracis: toxicology, epidemiologyandcurrentrapiddetectionmethods.AnalBioanalChem2006, 384(1):7384.

4. Carter KC: TheKochPasteurdisputeonestablishingthecause of anthrax. BullHistMed1988,62(1):4257.

5. SternbachG:Thehistoryofanthrax.JEmergMed2003,24(4):463467.

6. BrachmanPS:Inhalationanthrax.AnnYAcadSci1980,353:8393.

7. Brachman PS: Bioterrorism: an update with a focus on anthrax. Am J Epidemiol2002,155(11):981987.

8. Glassman HN: Worldincidenceofanthraxinman. PublicHealthRep1958, 73(1):2224.

9. DixonTC,MeselsonM,GuilleminJ,HannaPC:Anthrax.EnglJMed1999, 341(11):815826.

10. Brachman P, Friedlander A: Anthrax. In: Vaccines. Edited by Plotkin SA, OrensteinW,3rdedn.Philadelphia,PA:WBSaundersCo;1999:629637.

110

11. Summary of notifiable diseases, United States 1994. MMWR Morb Mortal WklyRep1994,43(53):180.

12. HumananthraxassociatedwithanepizooticamonglivestockorthDakota, 2000.MMWRMorbMortalWklyRep2001,50(32):677680.

13. ValerianovT,ToshkovA,PopovaA,HongFongL:[eguvonasstimulatorof viralreproductionandplaqueformationofphageslysingBacillusanthracis]. ActaMicrobiolVirolImmunol(Sofiia)1976,4:9297.

14. Suffin SC, Carnes WH, Kaufmann AF: Inhalation anthrax in a home craftsman.HumPathol1978,9(5):594597.

15. FriedlanderA:Anthrax.In:TextbookofMilitaryMedicine:MedicalAspectsof Chemical and Biological Warfare. Edited by Zajtchuk R, Bellamy RJ. Washington,DC:OfficeoftheSurgeonGeneral,USDeptofArmy;1997:467 478.

16. SirisanthanaT,BrownAE:Anthraxofthegastrointestinaltract.EmergInfect Dis2002,8(7):649651.

17. RiedelS:Biologicalwarfareandbioterrorism:ahistoricalreview.Proc(Bayl UnivMedCent)2004,17(4):400406.

18. HughJones M: Wickham Steed and German biological warfare research. IntelligenceandationalSecurity1992,7:379402.

19. StockholmInternationalPeaceResearchInstitute.:Theproblemofchemicaland biological warfare; a study of the historical, technical, military, legal and politicalaspectsofCBW,andpossibledisarmamentmeasures.Stockholm, NewYork,:Almqvist&Wiksell;HumanitiesPress;1971. 20. EitzenE,TakafujiET:HistoricalOverviewofBiologicalWarfare.In:Textbook ofMilitaryMedicine.OfficeoftheSurgeonGeneral,USArmy,USA;1997:170.

111

21. Manchee RJ, Broster MG, Anderson IS, Henstridge RM, Melling J: Decontamination of Bacillus anthracis on Gruinard Island? ature 1983, 303(5914):239240.

22. MeselsonM,GuilleminJ,HughJonesM,LangmuirA,PopovaI,ShelokovA, Yampolskaya O: The Sverdlovsk anthrax outbreak of 1979. Science 1994, 266(5188):12021208.

23. SugishimaM:AumShinrikyoandtheJapaneselawonbioterrorism.Prehosp DisasterMed2003,18(3):179183.

24. KeimP,SmithKL,KeysC,TakahashiH,KurataT, Kaufmann A: Molecular investigation of the Aum Shinrikyo anthrax release in Kameido, Japan. J ClinMicrobiol2001,39(12):45664567.

25. Jernigan JA, Stephens DS, Ashford DA, Omenaca C,TopielMS,GalbraithM, TapperM,FiskTL,ZakiS,PopovicTetal:Bioterrorismrelatedinhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001,7(6):933944.

26. Canter DA, Gunning D, Rodgers P, O'Connor L, Traunero C, Kempter CJ: RemediationofBacillusanthraciscontaminationintheU.S.Departmentof Justicemailfacility.BiosecurBioterror2005,3(2):119127.

27. Inglesby TV, O'Toole T, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, FriedlanderAM,GerberdingJ,HauerJ,HughesJetal:Anthraxasabiological weapon, 2002: updated recommendations for management. JAMA 2002, 287(17):22362252.

28. BhattacharjeeY,EnserinkM:Anthraxinvestigation.FBIdiscussesmicrobial forensicsbut key questions remain unanswered. Science 2008, 321(5892):10261027.

29. Fowler RA, Sanders GD, Bravata DM, Nouri B, Gastwirth JM, Peterson D, Broker AG, Garber AM, Owens DK: Costeffectiveness of defending against bioterrorism:acomparisonofvaccinationandantibioticprophylaxisagainst anthrax.AnnInternMed2005,142(8):601610.

112

30. KaufmannAF,MeltzerMI,SchmidGP:Theeconomicimpactofabioterrorist attack: are prevention and postattack intervention programs justifiable? EmergInfectDis1997,3(2):8394.

31. BolcomeRE,3rd,SullivanSE,ZellerR,BarkerAP,CollierRJ,ChanJ:Anthrax lethal toxin induces cell deathindependent permeability in zebrafish vasculature.ProcatlAcadSciUSA2008,105(7):24392444.

32. HelgasonE,OkstadOA,CaugantDA,JohansenHA,FouetA,MockM,HegnaI, Kolsto AB: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis one species on the basis of genetic evidence. Appl Environ Microbiol 2000, 66(6):26272630.

33. WatsonA,KeirD: Informationonwhichto baseassessmentsof riskfrom environments contaminated with anthrax spores. Epidemiol Infect 1994, 113(3):479490.

34. Manchee RJ, Broster MG, Stagg AJ, Hibbs SE: Formaldehyde Solution EffectivelyInactivatesSporesofBacillusanthracisontheScottishIslandof Gruinard.ApplEnvironMicrobiol1994,60(11):41674171.

35. Friedlander AM: Anthrax: clinical features, pathogenesis, and potential biologicalwarfarethreat.CurrClinTopInfectDis2000,20:335349.

36. Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ: Arabidopsis homologuesoftheautophagyproteinAtg8areanovelfamilyofmicrotubule bindingproteins.FEBSLett2004,567(23):302306.

37. MikesellP,IvinsBE,RistrophJD,DreierTM:Evidenceforplasmidmediated toxinproductioninBacillusanthracis.InfectImmun1983,39(1):371376.

38. XuL,FruchtDM:Bacillusanthracis:amultifacetedroleforanthraxlethal toxin in thwarting host immune defenses. Int J Biochem Cell Biol 2007, 39(1):2024.

113

39. Newburger PE, Speier C, Stock JL, Perrine SP, Greenberger JS: Chediak Higashisyndrome:studiesinlongtermbonemarrowculture.Experimental hematology1985,13(2):117122.

40. Ivins BE, Ezzell JW, Jr., Jemski J, Hedlund KW, Ristroph JD, Leppla SH: Immunization studies with attenuated strains of Bacillus anthracis. Infect Immun1986,52(2):454458.

41. LepplaSH: Anthrax toxin edema factor: a bacterial adenylate cyclase that increasescyclicAMPconcentrationsofeukaryoticcells.ProcatlAcadSciU SA1982,79(10):31623166.

42. FirovedAM,MillerGF,MoayeriM,KakkarR,Shen Y,Wiggins JF,McNally EM, Tang WJ, Leppla SH: Bacillus anthracis edema toxin causes extensive tissuelesionsandrapidlethalityinmice.AmJPathol2005,167(5):13091320.

43. MaldonadoArochoFJ,FulcherJA,LeeB,BradleyKA:Anthraxoedematoxin induces anthrax toxin receptor expression in monocytederived cells. Mol Microbiol2006,61(2):324337.

44. BodartJF,ChopraA, LiangX, Duesbery N:Anthrax,MEKandcancer.Cell Cycle2002,1(1):1015.

45. ChangL,KarinM:MammalianMAPkinasesignallingcascades.ature2001, 410(6824):3740.

46. SchaefferHJ,WeberMJ:Mitogenactivatedproteinkinases:specificmessages fromubiquitousmessengers.MolCellBiol1999,19(4):24352444.

47. RibotWJ,PanchalRG,BrittinghamKC,RuthelG,KennyTA,LaneD,CurryB, Hoover TA, Friedlander AM, Bavari S: Anthrax lethal toxin impairs innate immunefunctionsofalveolarmacrophagesandfacilitatesBacillusanthracis survival.InfectImmun2006,74(9):50295034.

48. TournierJN,QuesnelHellmannA,MathieuJ,Montecucco C, Tang WJ, Mock M,VidalDR,GoossensPL:Anthraxedematoxincooperateswithlethaltoxin

114

to impair cytokine secretion during infection of dendritic cells. J Immunol 2005,174(8):49344941.

49. AgrawalA,LingappaJ,LepplaSH,AgrawalS,JabbarA,QuinnC,PulendranB: Impairmentofdendriticcellsandadaptiveimmunitybyanthraxlethaltoxin. ature2003,424(6946):329334.

50. KassamA,DerSD,MogridgeJ:Differentiationofhumanmonocyticcelllines conferssusceptibilitytoBacillusanthracislethaltoxin.CellMicrobiol2005, 7(2):281292.

51. DuringRL,GibsonBG,LiW,BishaiEA,SidhuGS,LandryJ,SouthwickFS: Anthrax lethal toxin paralyzes actinbased motility by blocking Hsp27 phosphorylation.EMBOJ2007,26(9):22402250.

52. DuringRL,LiW,HaoB,KoenigJM,StephensDS,QuinnCP,SouthwickFS: Anthrax lethal toxin paralyzes neutrophil actinbased motility. J Infect Dis 2005,192(5):837845.

53. PaccaniSR,TonelloF,GhittoniR,NataleM,MuraroL,D'EliosMM,TangWJ, MontecuccoC,BaldariCT:AnthraxtoxinssuppressTlymphocyteactivation bydisruptingantigenreceptorsignaling.JExpMed2005,201(3):325331.

54. FangH,CordobaRodriguezR,LankfordCS,FruchtDM:Anthraxlethaltoxin blocksMAPKkinasedependentIL2productioninCD4+Tcells.JImmunol 2005,174(8):49664971.

55. Comer JE, Chopra AK, Peterson JW, Konig R: Direct inhibition of T lymphocyte activation by anthrax toxins in vivo. Infect Immun 2005, 73(12):82758281.

56. FangH,XuL,ChenTY,CyrJM,FruchtDM:Anthraxlethaltoxinhasdirect and potent inhibitory effects on B cell proliferation and immunoglobulin production.JImmunol2006,176(10):61556161.

115

57. Alileche A, Serfass ER, Muehlbauer SM, Porcelli SA, Brojatsch J: Anthrax lethaltoxinmediatedkillingofhumanandmurinedendriticcellsimpairsthe adaptiveimmuneresponse.PLoSPathog2005,1(2):e19.

58. Friedlander AM: Macrophagesaresensitivetoanthraxlethaltoxinthrough anaciddependentprocess.JBiolChem1986,261(16):71237126.

59. PopovSG,VillasmilR,BernardiJ,GreneE,CardwellJ,WuA,AlibekD,Bailey C, Alibek K: Lethal toxin of Bacillus anthracis causes apoptosis of macrophages.BiochemBiophysResCommun2002,293(1):349355.

60. ParkJM,GretenFR,LiZW,KarinM:Macrophageapoptosisbyanthraxlethal factor through p38 MAP kinase inhibition. Science 2002, 297(5589):2048 2051.

61. MuehlbauerSM,EveringTH,BonuccelliG,SquiresRC,AshtonAW,Porcelli SA, Lisanti MP, Brojatsch J: Anthrax lethal toxin kills macrophages in a strainspecific manner by apoptosis or caspase1mediated necrosis. Cell Cycle2007,6(6):758766.

62. DornerF,McDonelJL:Bacterialtoxinvaccines.Vaccine1985,3(2):94102.

63. Watters JW, Dewar K, Lehoczky J, Boyartchuk V, Dietrich WF: Kif1C, a kinesinlike motor protein, mediates mouse macrophage resistance to anthraxlethalfactor.CurrBiol2001,11(19):15031511.

64. BoydenED,DietrichWF:alp1bcontrolsmousemacrophagesusceptibilityto anthraxlethaltoxin.atGenet2006,38(2):240244.

65. PezardC,BercheP,MockM:Contributionofindividualtoxincomponentsto virulenceofBacillusanthracis.InfectImmun1991,59(10):34723477.

66. WelkosSL: Plasmidassociated virulence factors of nontoxigenic (pX01) Bacillusanthracis.MicrobPathog1991,10(3):183198.

116

67. BanksDJ,WardSC,BradleyKA:ewinsightsintothefunctionsofanthrax toxin.ExpertRevMolMed2006,8(7):118.

68. MabryR,BraskyK,GeigerR,CarrionR,Jr.,HubbardGB,LepplaS,Patterson JL, Georgiou G, Iverson BL: Detection of anthrax toxin in the serum of animalsinfectedwithBacillusanthracisbyusingengineeredimmunoassays. ClinVaccineImmunol2006,13(6):671677.

69. GuidiRontani C, WeberLevy M, Labruyere E, Mock M: Germination of Bacillusanthracissporeswithinalveolarmacrophages.MolMicrobiol1999, 31(1):917.

70. Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M: Molecular characterizationandproteinanalysisofthecapregion,whichisessentialfor encapsulationinBacillusanthracis.JBacteriol1989,171(2):722730.

71. GreenBD,BattistiL,KoehlerTM,ThorneCB,Ivins BE:Demonstrationofa capsuleplasmidinBacillusanthracis.InfectImmun1985,49(2):291297.

72. GoodmanJW,NiteckiDE:Studiesontherelationofapriorimmuneresponse toimmunogenicity.Immunology1967,13(6):577583.

73. WelkosSL,KeenerTJ,GibbsPH:Differencesinsusceptibilityofinbredmice toBacillusanthracis.InfectImmun1986,51(3):795800.

74. Popov SG, Popova TG, Hopkins S, Weinstein RS, MacAfee R, Fryxell KJ, ChandhokeV,BaileyC,AlibekK:Effectiveantiproteaseantibiotictreatment ofexperimentalanthrax.BMCInfectDis2005,5(1):25.

75. PopovaTG,MillisB,BradburneC,NazarenkoS,BaileyC,ChandhokeV,Popov SG:Accelerationofepithelialcellsyndecan1sheddingbyanthraxhemolytic virulencefactors.BMCMicrobiol2006,6:8.

76. ChungMC,PopovaTG,JorgensenSC,DongL,ChandhokeV,BaileyCL,Popov SG: Degradation of circulating von Willebrand factor and its regulator ADAMTS13 implicates secreted Bacillus anthracis metalloproteases in anthraxconsumptivecoagulopathy.JBiolChem2008,283(15):95319542.

117

77. ChungMC,PopovaTG,MillisBA,MukherjeeDV,ZhouW,LiottaLA,Petricoin EF,ChandhokeV,BaileyC,PopovSG:Secretedneutralmetalloproteasesof Bacillus anthracis as candidate pathogenic factors. J Biol Chem 2006, 281(42):3140831418.

78. KastrupCJ,BoedickerJQ,PomerantsevAP,MoayeriM,BianY,PompanoRR, KlineTR,SylvestreP,ShenF,LepplaSHetal:Spatiallocalizationofbacteria controlscoagulationofhumanbloodby'quorumacting'.atChemBiol2008, 4(12):742750.

79. ShannonJG,RossCL,KoehlerTM,RestRF:Characterizationofanthrolysin O,theBacillusanthracischolesteroldependentcytolysin.InfectImmun2003, 71(6):31833189.

80. Scobie HM, Rainey GJ, Bradley KA, Young JA: Human capillary morphogenesisprotein2functionsasananthraxtoxin receptor. Proc atl AcadSciUSA2003,100(9):51705174.

81. BradleyKA,MogridgeJ,MourezM,CollierRJ,YoungJA:Identificationofthe cellularreceptorforanthraxtoxin.ature2001,414(6860):225229.

82. WeiW,LuQ,ChaudryGJ,LepplaSH,CohenSN:TheLDLreceptorrelated protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 2006,124(6):11411154.

83. Beauregard KE, Collier RJ, SwansonJA: Proteolytic activation of receptor bound anthrax protective antigen on macrophages promotes its internalization.CellMicrobiol2000,2(3):251258.

84. Klimpel KR, Molloy SS, Thomas G, Leppla SH: Anthrax toxin protective antigenisactivatedbyacellsurfaceproteasewith the sequence specificity andcatalyticpropertiesoffurin.ProcatlAcadSciUSA1992,89(21):10277 10281.

85. Mogridge J, Cunningham K, Collier RJ: Stoichiometry of anthrax toxin complexes.Biochemistry2002,41(3):10791082.

118

86. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG: Anthrax toxin triggers endocytosis of its receptor via a lipid raftmediated clathrin dependentprocess.JCellBiol2003,160(3):321328.

87. LepplaS:Anthraxtoxins.In:BacterialToxinsandVirulenceFactorsinDisease. EditedbyMossJ,IglewskiB,VaughanM,TuA:NewYork/HongKong:Basel; 1995:8:543–572.

88. Human cutaneous anthraxorth Carolina, 1987. Arch Dermatol 1988, 124(9):1324.

89. Tutrone WD, Scheinfeld NS, Weinberg JM: Cutaneous anthrax: a concise review.Cutis2002,69(1):2733.

90. Bradaric N, PundaPolic V: Cutaneous anthrax due to penicillinresistant Bacillusanthracistransmittedbyaninsectbite.Lancet1992,340(8814):306 307.

91. TurellMJ,KnudsonGB: Mechanical transmission of Bacillus anthracis by stableflies(Stomoxyscalcitrans)andmosquitoes(AedesaegyptiandAedes taeniorhynchus).InfectImmun1987,55(8):18591861.

92. AbdenourD,LarouzeB,DalichaoucheM,AouatiM: Familial occurrence of anthraxinEasternAlgeria.JInfectDis1987,155(5):10831084.

93. TurnerM:AnthraxinhumansinZimbabwe.CentAfrJMed1980,26(7):160 161.

94. Beatty ME, Ashford DA, Griffin PM, Tauxe RV, Sobel J: Gastrointestinal anthrax:reviewoftheliterature.ArchInternMed2003,163(20):25272531.

95. Lincoln RE, Hodges DR, Klein F, Mahlandt BG, Jones WI, Jr., Haines BW, RhianMA,WalkerJS:Roleofthelymphaticsinthepathogenesisofanthrax.J InfectDis1965,115(5):481494.

96. SpencerRC:Bacillusanthracis.JClinPathol2003,56(3):182187.

119

97. Druett HA, Henderson DW, Packman L, Peacock S: Studies on respiratory infection. I. The influence of particle size on respiratory infection with anthraxspores.JHyg(Lond)1953,51(3):359371.

98. HatchTF: Distribution and deposition of inhaled particles in respiratory tract.BacteriolRev1961,25:237240.

99. Abramova FA, Grinberg LM, Yampolskaya OV, Walker DH: Pathology of inhalationalanthraxin42casesfromtheSverdlovskoutbreakof1979.Proc atlAcadSciUSA1993,90(6):22912294.

100. AlbrinkWS:Pathogenesisofinhalationanthrax.BacteriolRev1961,25:268 273.

101. CleretA,QuesnelHellmannA,VallonEberhardA,VerrierB,JungS,VidalD, MathieuJ,TournierJN: Lungdendriticcellsrapidlymediateanthraxspore entrythroughthepulmonaryroute.JImmunol2007,178(12):79948001.

102. AlbrinkWS,BrooksSM,BironRE,KopelM: Humaninhalationanthrax.A reportofthreefatalcases.AmJPathol1960,36:457471.

103. PlotkinSA,BrachmanPS,UtellM,BumfordFH,AtchisonMM:Anepidemicof inhalationanthrax,thefirstinthetwentiethcentury.I.Clinicalfeatures.Am JMed1960,29:9921001.

104. EnticknapJB,GalbraithNS,TomlinsonAJ,EliasJonesTF:Pulmonaryanthrax causedbycontaminatedsacks.BrJIndMed1968,25(1):7274.

105. LepplaSH,RobbinsJB,SchneersonR,ShiloachJ:Developmentofanimproved vaccineforanthrax.JClinInvest2002,110(2):141144.

106. PittML,LittleS,IvinsBE,FellowsP,BolesJ,BarthJ,HewetsonJ,Friedlander AM: In vitro correlate of immunity in an animal model of inhalational anthrax.JApplMicrobiol1999,87(2):304.

120

107. FellowsPF,LinscottMK,IvinsBE,PittML,RossiCA,GibbsPH,Friedlander AM:Efficacyofahumananthraxvaccineinguineapigs,rabbits,andrhesus macaques against challenge by Bacillus anthracis isolates of diverse geographicalorigin.Vaccine2001,19(2324):32413247.

108. BreyRN:Molecularbasisforimprovedanthraxvaccines.AdvDrugDelivRev 2005,57(9):12661292.

109. CharatanF:FearsoveranthraxvaccinationdrivingawayUSreservists.BMJ 2000,321(7267):980.

110. MorrisK:USmilitaryfacepunishmentforrefusinganthraxvaccine.Lancet 1999,353(9147):130.

111. LincolnRE,KleinF,WalkerJS,HainesBW,JonesWI,MahlandtBG,Friedman RH: Successful Treatment of Rhesus Monkeys for Septicemia Anthrax. AntimicrobAgentsChemother(Bethesda)1964,10:759763.

112. Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, Pavlin JA, Christopher GW, Eitzen EM, Jr.: Clinical recognition and management of patients exposed to biological warfare agents. JAMA 1997, 278(5):399411.

113. FriedlanderAM,WelkosSL,PittML,EzzellJW,WorshamPL,RoseKJ,Ivins BE, Lowe JR, Howe GB, Mikesell Petal: Postexposure prophylaxisagainst experimentalinhalationanthrax.JInfectDis1993,167(5):12391243.

114. Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR, WhitesidesGM,CollierRJ:Designingapolyvalentinhibitorofanthraxtoxin. atBiotechnol2001,19(10):958961.

115. SanchezAM,ThomasD,GillespieEJ,DamoiseauxR,RogersJ,SaxeJP,Huang J,ManchesterM,BradleyKA:Amiodaroneandbepridilinhibitanthraxtoxin entryintohostcells.AntimicrobAgentsChemother2007,51(7):24032411.

121

116. HenellF,BerkenstamA,AhlbergJ,GlaumannH: Degradation of short and longlived proteins in perfused liver and in isolated autophagic vacuoles lysosomes.ExpMolPathol1987,46(1):114.

117. Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 1998, 67:425479.

118. LockshinRA,ZakeriZ:Apoptosis,autophagy,andmore.IntJBiochemCell Biol2004,36(12):24052419.

119. GalenJE,ZhaoL,ChinchillaM,WangJY,PasettiMF,GreenJ,LevineMM: Adaptation of the endogenous Salmonella enterica serovar Typhi clyA encoded hemolysin for antigen export enhances the immunogenicity of anthraxprotectiveantigendomain4expressedbytheattenuatedlivevector vaccinestrainCVD908htrA.Infectionandimmunity2004,72(12):70967106.

120. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N: Autophagyisessentialforpreimplantationdevelopmentofmouseembryos. Science2008,321(5885):117120.

121. Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM: In situ detection of starvationinduced autophagy. J Histochem Cytochem 2006, 54(1):8596.

122. Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T, Bocco JL, ColomboMI:ProtectiveroleofautophagyagainstVibriocholeraecytolysin, a poreforming toxin from V. cholerae. Proc atl Acad Sci U S A 2007, 104(6):18291834.

123. ShintaniT,KlionskyDJ: Autophagy in health and disease: a doubleedged sword.Science2004,306(5698):990995.

124. CuervoAM: Autophagy: in sickness and in health. Trends Cell Biol 2004, 14(2):7077.

125. Eskelinen EL: ew insights into the mechanisms of macroautophagy in mammaliancells.IntRevCellMolBiol2008,266:207247.

122

126. Klionsky DJ: Autophagy. Georgetown, Tex.Austin, Tex.: Landes Bioscience ;Eurekah.com;2004. 127. DereticV:Autophagyinimmunityandinfection:anovelimmuneeffector. Weinheim:WileyVCH;2006.

128. KunzJB,SchwarzH,MayerA:Determinationoffoursequentialstagesduring microautophagyinvitro.JBiolChem2004,279(11):99879996.

129. YorimitsuT,KlionskyDJ:Atg11linkscargotothevesicleformingmachinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 2005, 16(4):15931605.

130. DiceJF:Chaperonemediatedautophagy.Autophagy2007,3(4):295299.

131. CuervoAM,DiceJF:Regulationoflamp2alevelsinthelysosomalmembrane. Traffic2000,1(7):570583.

132. Agarraberes FA, Terlecky SR, Dice JF: Anintralysosomalhsp70isrequired foraselectivepathwayoflysosomalprotein degradation. JCellBiol 1997, 137(4):825834.

133. ChiangHL,TerleckySR,PlantCP,DiceJF: Arolefora70kilodaltonheat shock protein in lysosomal degradation of intracellular proteins. Science 1989,246(4928):382385.

134. KelekarA:Autophagy.AnnYAcadSci2005,1066:259271.

135. KlionskyDJ: Autophagy: from phenomenology to molecular understanding inlessthanadecade.atRevMolCellBiol2007,8(11):931937.

136. ToddeV,VeenhuisM,vanderKleiIJ:Autophagy:Principlesandsignificance inhealthanddisease.BiochimBiophysActa2008.

123

137. KlionskyDJ,CreggJM,DunnWA,Jr.,EmrSD,SakaiY,SandovalIV,Sibirny A, Subramani S, Thumm M, Veenhuis M et al: A unified nomenclature for yeastautophagyrelatedgenes.DevCell2003,5(4):539545.

138. WangCW,KlionskyDJ: The molecular mechanismofautophagy. Mol Med 2003,9(34):6576.

139. KlionskyDJ,CuervoAM,SeglenPO:Methodsformonitoringautophagyfrom yeasttohuman.Autophagy2007,3(3):181206.

140. KabeyaY,MizushimaN,UenoT,YamamotoA,KirisakoT,NodaT,Kominami E,OhsumiY,YoshimoriT:LC3,amammalianhomologueofyeastApg8p,is localized in autophagosome membranes after processing. Embo J 2000, 19(21):57205728.

141. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004, 15(3):11011111.

142. Kabeya Y, Mizushima N, Yamamoto A, OshitaniOkamoto S, Ohsumi Y, Yoshimori T: LC3, GABARAP and GATE16 localize to autophagosomal membranedependingonformIIformation.JCellSci2004,117(Pt13):2805 2812.

143. Xie Z, Nair U, Klionsky DJ: Atg8 Controls Phagophore Expansion during AutophagosomeFormation.MolBiolCell2008,19(8):32903298.

144. MizushimaN,SugitaH,YoshimoriT,OhsumiY:Anewproteinconjugation systeminhuman.ThecounterpartoftheyeastApg12pconjugationsystem essentialforautophagy.JBiolChem1998,273(51):3388933892.

145. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, TokuhisaT,OhsumiY,YoshimoriT:Dissectionofautophagosomeformation using Apg5deficient mouse embryonic stem cells. J Cell Biol 2001, 152(4):657668.

124

146. Abeliovich H, Klionsky DJ: Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev 2001, 65(3):463479, table of contents.

147. MizushimaN: Methods for monitoring autophagy. Int J Biochem Cell Biol 2004,36(12):24912502.

148. LegakisJE,KlionskyDJ:OverviewofAutophagy.In:AutophagyinImmunity andInfection.EditedbyDereticV.Weinheim, Germany:WILEYVCHVerlag GmbH&Co;2006.

149. DiazTroya S, PerezPerez ME, Florencio FJ, Crespo JL: TheroleofTORin autophagy regulation from yeast to plants and mammals. Autophagy 2008, 4(7):851865.

150. YuL,StrandbergL,LenardoMJ:Theselectivityofautophagyanditsrolein celldeathandsurvival.Autophagy2008,4(5):567573.

151. HabibzadegahTariP,DunnWA:Glucoseinduced pexophagy. In:Autophagy. EditedbyKlionskyDJ.Georgetown,TX:LandesBioscience;2004:107114.

152. DevenishRJ:Mitophagy:growinginintricacy.Autophagy2007,3(4):293294.

153. CheongH,NairU,GengJ,KlionskyDJ:TheAtg1kinasecomplexisinvolved in the regulation of protein recruitment to initiate sequestering vesicle formationfornonspecificautophagyinSaccharomycescerevisiae. Mol Biol Cell2008,19(2):668681.

154. GengJ,KlionskyDJ:TheAtg8andAtg12ubiquitinlikeconjugationsystems in macroautophagy. 'Protein modifications: beyond the usual suspects' reviewseries.EMBORep2008,9(9):859864.

155. LevineB,YuanJ:Autophagyincelldeath:aninnocentconvict?JClinInvest 2005,115(10):26792688.

125

156. Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ: Apg9p/Cvt7pisanintegralmembraneproteinrequiredfortransportvesicle formationintheCvtandautophagypathways.JCellBiol2000,148(3):465 480.

157. ReggioriF,TuckerKA,StromhaugPE,KlionskyDJ:TheAtg1Atg13complex regulatesAtg9andAtg23retrievaltransportfromthepreautophagosomal structure.DevCell2004,6(1):7990.

158. Eskelinen EL: Maturation of autophagic vacuoles in Mammalian cells. Autophagy2005,1(1):110.

159. Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ: DegradationoflipidvesiclesintheyeastvacuolerequiresfunctionofCvt17, aputativelipase.JBiolChem2001,276(3):20832087.

160. Jahreiss L,MenziesFM,RubinszteinDC: The itinerary of autophagosomes: from peripheral formation to kissandrun fusion with lysosomes. Traffic 2008,9(4):574587.

161. Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism.Cell2006,124(3):471484.

162. KamadaY,FunakoshiT,ShintaniT,NaganoK,OhsumiM,Ohsumi Y: Tor mediatedinductionofautophagyviaanApg1proteinkinasecomplex.JCell Biol2000,150(6):15071513.

163. ScottSV,NiceDC,3rd,NauJJ,WeismanLS,Kamada Y, KeizerGunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ: Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuoletargeting.JBiolChem2000,275(33):2584025849.

164. Seglen PO, Gordon PB, Poli A: Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes.BiochimBiophysActa1980,630(1):103118.

126

165. ChuaB,SiehlDL,MorganHE:Effectofleucineandmetabolitesofbranched chain amino acids on protein turnover in heart. J Biol Chem 1979, 254(17):83588362.

166. FulksRM,LiJB,GoldbergAL:Effectsofinsulin,glucose,andaminoacidson proteinturnoverinratdiaphragm.JBiolChem1975,250(1):290298.

167. PfeiferU:Inhibitionbyinsulinoftheformationofautophagicvacuolesinrat liver.Amorphometricapproachtothekineticsofintracellulardegradation byautophagy.JCellBiol1978,78(1):152167.

168. NeelyAN,CoxJR,FortneyJA,SchworerCM,MortimoreGE: Alterations of lysosomalsizeanddensityduringratliverperfusion.Suppressionbyinsulin andaminoacids.JBiolChem1977,252(19):69486954.

169. Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK: The Ras/cAMPdependent protein kinase signaling pathway regulates an early stepoftheautophagyprocessinSaccharomycescerevisiae.JBiolChem2004, 279(20):2066320671.

170. Wang Z, Wilson WA, Fujino MA, Roach PJ: Antagonistic controls of autophagyandglycogenaccumulationbySnf1p,theyeasthomologofAMP activatedproteinkinase,andthecyclindependentkinasePho85p.MolCell Biol2001,21(17):57425752.

171. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, MartonMJ:TranscriptionalprofilingshowsthatGcn4pisamasterregulator ofgeneexpressionduringaminoacidstarvationinyeast.MolCellBiol2001, 21(13):43474368.

172. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC: Trehalose, a novelmTORindependentautophagyenhancer,acceleratestheclearanceof mutanthuntingtinandalphasynuclein.JBiolChem2007,282(8):56415652.

173. De Duve C, Wattiaux R: Functions of lysosomes. Annu Rev Physiol 1966, 28:435492.

127

174. Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor mechanism.Oncogene2004,23(16):28912906.

175. OgierDenisE,CodognoP:Autophagy:abarrieroranadaptiveresponseto cancer.BiochimBiophysActa2003,1603(2):113128.

176. Alva AS, Gultekin SH, Baehrecke EH: Autophagy in human tumors: cell survivalordeath?CellDeathDiffer2004,11(9):10461048.

177. Li X, Li H, Li XJ: Intracellular degradation of misfolded proteins in polyglutamineneurodegenerativediseases.BrainResRev2008.

178. Ventruti A, Cuervo AM: Autophagy and neurodegeneration. Curr eurol eurosciRep2007,7(5):443451.

179. Michalik A, Van Broeckhoven C: Pathogenesis of polyglutamine disorders: aggregationrevisited.HumMolGenet2003,12Speco2:R173186.

180. Nishino I: Autophagic vacuolar myopathy. Semin Pediatr eurol 2006, 13(2):9095.

181. Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I: Lysosomal myopathies:anexcessivebuildupinautophagosomesistoomuchtohandle. euromusculDisord2008,18(7):521529.

182. RussellDG,MwandumbaHC,RhoadesEE: Mycobacterium and the coat of manylipids.JCellBiol2002,158(3):421426.

183. VergneI,SinghS,RobertsE,KyeiG,MasterS,HarrisJ,deHaroS,NaylorJ, Davis A, Delgado M et al: Autophagy in immune defense against Mycobacteriumtuberculosis.Autophagy2006,2(3):175178.

184. AmanoA,NakagawaI,YoshimoriT:Autophagyininnateimmunityagainst intracellularbacteria.JBiochem2006,140(2):161166.

128

185. ZhouD,SpectorSA:Humanimmunodeficiencyvirustype1infectioninhibits autophagy.AIDS2008,22(6):695699.

186. Spector SA, Zhou D: Autophagy: an overlooked mechanism of HIV1 pathogenesisandneuroAIDS?Autophagy2008,4(5):704706.

187. OrvedahlA,AlexanderD,TalloczyZ,SunQ,WeiY,ZhangW,BurnsD,Leib DA,LevineB:HSV1ICP34.5confersneurovirulencebytargetingtheBeclin 1autophagyprotein.CellHostMicrobe2007,1(1):2335.

188. LeeYR,LeiHY,LiuMT,WangJR,ChenSH,JiangShiehYF,LinYS,YehTM, LiuCC,LiuHS:Autophagicmachineryactivatedbydenguevirusenhances virusreplication.Virology2008,374(2):240248.

189. JacksonWT,GiddingsTH,Jr.,TaylorMP,MulinyaweS,RabinovitchM,Kopito RR,KirkegaardK:SubversionofcellularautophagosomalmachinerybyRA viruses.PLoSBiol2005,3(5):e156.

190. Liberski PP, Brown DR, Sikorska B, Caughey B, Brown P: Cell death and autophagy in prion diseases (transmissible spongiform encephalopathies). Foliaeuropathol2008,46(1):125.

191. Schmid D, Pypaert M, Munz C: Antigenloading compartments for major histocompatibility complex class II molecules continuously receive input fromautophagosomes.Immunity2007,26(1):7992.

192. PaludanC,SchmidD,LandthalerM,VockerodtM,KubeD,TuschlT,MunzC: Endogenous MHC class II processing of a viral nuclear antigen after autophagy.Science2005,307(5709):593596.

193. PizarroCerdaJ,MeresseS,PartonRG,vanderGootG,SolaLandaA,Lopez GoniI,MorenoE,GorvelJP:Brucellaabortustransitsthroughtheautophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes.InfectImmun1998,66(12):57115724.

194. Dorn BR, Dunn WA, Jr., ProgulskeFox A: Bacterial interactions with the autophagicpathway.CellMicrobiol2002,4(1):110.

129

195. Beron W, Gutierrez MG, Rabinovitch M, Colombo MI: Coxiella burnetii localizes in a Rab7labeled compartment with autophagic characteristics. InfectImmun2002,70(10):58165821.

196. Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, HigginsDE,BrumellJH:Listeriamonocytogenesevadeskillingbyautophagy duringcolonizationofhostcells.Autophagy2007,3(5):442451.

197. Belanger M, Rodrigues PH, Dunn WA, Jr., ProgulskeFox A: Autophagy: a highwayforPorphyromonasgingivalisinendothelialcells.Autophagy2006, 2(3):165170.

198. Cullinane M, Gong L, Li X, LazarAdler N, Tra T, Wolvetang E, Prescott M, Boyce JD, Devenish RJ, Adler B: Stimulation of autophagy suppresses the intracellularsurvivalofBurkholderiapseudomalleiinmammaliancelllines. Autophagy2008,4(6):744753.

199. WongJ,ZhangJ,SiX,GaoG,MaoI,McManusBM,LuoH:Autophagosome supportscoxsackievirusB3replicationinhostcells.JVirol2008,82(18):9143 9153.

200. PrenticeE,JeromeWG,YoshimoriT,MizushimaN,DenisonMR:Coronavirus replication complex formation utilizes components of cellular autophagy. J BiolChem2004,279(11):1013610141.

201. Sandvig K, van Deurs B: Toxininduced cell lysis: protection by 3 methyladenineandcycloheximide.ExpCellRes1992,200(2):253262.

202. AkazawaH,KomazakiS,ShimomuraH,TerasakiF,ZouY,TakanoH,NagaiT, KomuroI:Diphtheriatoxininducedautophagiccardiomyocytedeathplaysa pathogenic role in mouse model of heart failure. J Biol Chem 2004, 279(39):4109541103.

203. Kosta A, RoisinBouffay C, Luciani MF, Otto GP, Kessin RH, Golstein P: Autophagy gene disruption reveals a nonvacuolar cell death pathway in Dictyostelium.JBiolChem2004,279(46):4840448409.

130

204. Lee CY, Baehrecke EH: Steroid regulation of autophagic programmed cell deathduringdevelopment.Development2001,128(8):14431455.

205. YuL,AlvaA,SuH,DuttP,FreundtE,WelshS,BaehreckeEH,LenardoMJ: Regulation of an ATG7beclin 1 program of autophagic cell death by caspase8.Science2004,304(5676):15001502.

206. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, ArakawaKobayashi S, ThompsonCB,TsujimotoY:RoleofBcl2familyproteinsinanonapoptotic programmed cell death dependent on autophagy genes. atCellBiol 2004, 6(12):12211228.

207. FaruqueSM,AlbertMJ,MekalanosJJ:Epidemiology,genetics,andecologyof toxigenicVibriocholerae.MicrobiolMolBiolRev1998,62(4):13011314.

208. BergT,SuddesH,MorriceG,HornitzkyM:ComparisonofPCR,cultureand microscopyofbloodsmearsforthediagnosisofanthraxinsheepandcattle. LettApplMicrobiol2006,43(2):181186.

209. Ramisse V, Patra G, Garrigue H, Guesdon JL, Mock M: Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DA. FEMS MicrobiolLett1996,145(1):916.

210. ThompsonCD,FrazierJessenMR,RawatR,NordanRP,BrownRT:Evaluation ofmethodsfortransienttransfectionofamurinemacrophagecellline,RAW 264.7.Biotechniques1999,27(4):824826,828830,832.

211. XuY,KimSO,LiY,HanJ:Autophagycontributestocaspaseindependent macrophagecelldeath.JBiolChem2006,281(28):1917919187.

212. HermanAntosiewicz A, Johnson DE, Singh SV: Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostatecancercells.CancerRes2006,66(11):58285835.

131

213. TraganosF,DarzynkiewiczZ:Lysosomalprotonpumpactivity:supravitalcell staining with acridine orange differentiates leukocyte subpopulations. MethodsCellBiol1994,41:185194.

214. PaglinS,HollisterT,DeloheryT,HackettN,McMahillM,SphicasE,Domingo D, Yahalom J: A novel response of cancer cells to radiation involves autophagyandformationofacidicvesicles.CancerRes2001,61(2):439444.

215. OhsumiY,MizushimaN:Twoubiquitinlikeconjugationsystemsessentialfor autophagy.SeminCellDevBiol2004,15(2):231236.

216. KumaA,MatsuiM,MizushimaN: LC3,anautophagosomemarker,canbe incorporated into protein aggregates independent ofautophagy:cautionin theinterpretationofLC3localization.Autophagy2007,3(4):323328.

217. DelgadoMA,ElmaouedRA,DavisAS,KyeiG,DereticV:Tolllikereceptors controlautophagy.EMBOJ2008,27(7):11101121.

218. KushnerN,ZhangD,TouzjianN,EssexM,LiebermanJ,LuY:Afragmentof anthrax lethal factor delivers proteins to the cytosol without requiring protectiveantigen.ProcatlAcadSciUSA2003,100(11):66526657.

219. Sadasivan S, Waghray A, Larner SF, Dunn WA, Jr., Hayes RL, Wang KK: AminoacidstarvationinducedautophagiccelldeathinPC12cells:evidence foractivationofcaspase3butnotcalpain1.Apoptosis2006,11(9):15731582.

220. TsujimotoY,ShimizuS: Another way to die: autophagic programmed cell death.CellDeathDiffer2005,12Suppl2:15281534.

221. CaroLH,PlompPJ,WolvetangEJ,KerkhofC,MeijerAJ:3Methyladenine,an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 1988,175(2):325329.

222. NakagawaI,AmanoA,MizushimaN,YamamotoA,YamaguchiH,Kamimoto T,NaraA,FunaoJ,NakataM,TsudaKetal:Autophagydefendscellsagainst invadinggroupAStreptococcus.Science2004,306(5698):10371040.

132

223. HindsonBJ,BrownSB,MarshallGD,McBrideMT,MakarewiczAJ,Gutierrez DM,WolcottDK,MetzTR,MadabhushiRS,DzenitisJMetal:Developmentof anautomatedsamplepreparationmoduleforenvironmentalmonitoringof biowarfareagents.Analyticalchemistry2004,76(13):34923497.

224. EspertL,CodognoP,BiardPiechaczykM:Whatistheroleofautophagyin HIV1infection?Autophagy2008,4(3):273275.

225. HaSD,NgD,LamotheJ,ValvanoMA,HanJ,KimSO:Mitochondrialproteins Bnip3andBnip3Lareinvolvedinanthraxlethaltoxininducedmacrophage celldeath.JBiolChem2007,282(36):2627526283.

226. Kuhn JF, Hoerth P, Hoehn ST, Preckel T, Tomer KB: Proteomics study of anthrax lethal toxintreated murine macrophages. Electrophoresis 2006, 27(8):15841597.

227. KimSO,JingQ,HoebeK,BeutlerB,DuesberyNS,HanJ:Sensitizinganthrax lethal toxinresistant macrophages to lethal toxininducedkillingbytumor necrosisfactoralpha.JBiolChem2003,278(9):74137421.

228. DunnWA,Jr.: Studiesonthemechanismsofautophagy:maturation of the autophagicvacuole.JCellBiol1990,110(6):19351945.

229. Eskelinen EL: Roles of LAMP1 and LAMP2 in lysosome biogenesis and autophagy.MolAspectsMed2006,27(56):495502.

230. SerinkanBF,GambelliF,PotapovichAI,BabuH, Di Giuseppe M, Ortiz LA, FabisiakJP,KaganVE:Apoptoticcellsquenchreactiveoxygenandnitrogen species and modulate TFalpha/TGFbeta1 balance in activated macrophages: involvement of phosphatidylserinedependent and independentpathways.CellDeathDiffer2005,12(8):11411144.

231. FangFC:Antimicrobialreactiveoxygenandnitrogenspecies:conceptsand controversies.atRevMicrobiol2004,2(10):820832.

133

232. Gordienko VM, Bogdanova TI, Shvirst EM: [Morphometric study of the ultrastructure of cells of the zona fasciculata of the adrenals in rats under stress].Tsitologiia1977,19(2):131136.

233. EllsonCD,DavidsonK,FergusonGJ,O'ConnorR,StephensLR,HawkinsPT: eutrophilsfromp40phox/miceexhibitseveredefectsinADPHoxidase regulation and oxidantdependent bacterial killing. J Exp Med 2006, 203(8):19271937.

234. BabiorBM:ADPHoxidase.CurrOpinImmunol2004,16(1):4247.

235. Wochna A, Niemczyk E, Kurono C, Masaoka M, Kedzior J, Slominska E, LipinskiM,WakabayashiT:Apossibleroleofoxidativestressintheswitch mechanismofthecelldeathmodefromapoptosistonecrosisstudiesonrho0 cells.Mitochondrion2007,7(12):119124.

236. Simon HU, HajYehia A, LeviSchaffer F: Role of reactive oxygen species (ROS)inapoptosisinduction.Apoptosis2000,5(5):415418.

237. Edinger AL, Thompson CB: Death by design: apoptosis, necrosis and autophagy.CurrOpinCellBiol2004,16(6):663669.

238. Hanna PC, Kruskal BA, Ezekowitz RA, Bloom BR, Collier RJ: Role of macrophageoxidativeburstintheactionofanthraxlethaltoxin. Mol Med 1994,1(1):718.

239. LinCG,KaoYT,LiuWT,HuangHH,ChenKC,WangTM,LinHC:Cytotoxic effects of anthrax lethal toxin on macrophagelike cell line J774A.1. Curr Microbiol1996,33(4):224227.

240. VermesI,HaanenC,SteffensNakkenH,ReutelingspergerC:Anovelassayfor apoptosis. Flow cytometric detection of phosphatidylserine expression on earlyapoptoticcellsusingfluoresceinlabelledAnnexinV.JImmunolMethods 1995,184(1):3951.

241. Jabs T: Reactive oxygen intermediates as mediators of programmed cell deathinplantsandanimals.BiochemPharmacol1999,57(3):231245.

134

242. LeeYJ,ChoHN,SohJW,JhonGJ,ChoCK,ChungHY,BaeS,LeeSJ,LeeYS: OxidativestressinducedapoptosisismediatedbyERK1/2phosphorylation. ExpCellRes2003,291(1):251266.

243. MacipS,IgarashiM,BerggrenP,YuJ,LeeSW, Aaronson SA: Influence of inducedreactiveoxygenspeciesinp53mediatedcellfatedecisions.MolCell Biol2003,23(23):85768585.

244. Bogdan C, Rollinghoff M, Diefenbach A: Reactive oxygen and reactive nitrogenintermediates ininnateandspecificimmunity.CurrOpinImmunol 2000,12(1):6476.

245. Lambeth JD: ox enzymes, ROS, and chronic disease: an example of antagonisticpleiotropy.FreeRadicBiolMed2007,43(3):332347.

246. SchraderM,FahimiHD: Peroxisomes and oxidative stress. Biochim Biophys Acta2006,1763(12):17551766.

247. Hanukoglu I: Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells.DrugMetabRev2006,38(12):171196.

248. AdamVizi V, Chinopoulos C: Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006, 27(12):639645.

249. PopovSG,VillasmilR,BernardiJ,GreneE,CardwellJ,PopovaT,WuA,Alibek D, Bailey C, Alibek K: Effect of Bacillus anthracis lethal toxin on human peripheralbloodmononuclearcells.FEBSLett2002,527(13):211215.

250. Sapra R, Gaucher SP, Lachmann JS, Buffleben GM, Chirica GS, Comer JE, Peterson JW, Chopra AK, Singh AK: Proteomic analyses of murine macrophages treated with Bacillus anthracis lethal toxin. Microb Pathog 2006,41(45):157167.

135

251. ScherzShouvalR,ShvetsE,FassE,ShorerH,GilL,ElazarZ:Reactiveoxygen species are essential for autophagy and specifically regulate the activity of Atg4.EMBOJ2007,26(7):17491760.

252. VandeVeldeC,CizeauJ,DubikD,AlimontiJ,BrownT, IsraelsS,HakemR, GreenbergAH:BIP3andgeneticcontrolofnecrosislikecelldeaththrough the mitochondrial permeability transition pore. Mol Cell Biol 2000, 20(15):54545468.

253. Kissova I, Deffieu M, Samokhvalov V, Velours G, Bessoule JJ, Manon S, CamougrandN:Lipidoxidationandautophagyinyeast.FreeRadicBiolMed 2006,41(11):16551661.

254. Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS: Sodium seleniteinducessuperoxidemediatedmitochondrialdamageandsubsequent autophagic cell death in malignant glioma cells. Cancer Res 2007, 67(13):63146324.

255. EscheC,StellatoC,BeckLA:Chemokines:keyplayersininnateandadaptive immunity.JInvestDermatol2005,125(4):615628.

256. Matsukawa A, Hogaboam CM, Lukacs NW, Kunkel SL: Chemokines and innateimmunity.RevImmunogenet2000,2(3):339358.

257. MayerSchollA,HurwitzR,BrinkmannV,SchmidM,JungblutP,WeinrauchY, ZychlinskyA:HumanneutrophilskillBacillusanthracis.PLoSPathog2005, 1(3):e23.

258. BischofTS,HahnBL,SohnlePG:ExperimentalcutaneousBacillusanthracis infectionsinhairlessHRS/Jmice.IntJExpPathol2007,88(1):7584.

259. BaldariCT,TonelloF,PaccaniSR,MontecuccoC:Anthraxtoxins:Aparadigm ofbacterialimmunesuppression.TrendsImmunol2006,27(9):434440.

260. Barakat LA, Quentzel HL, Jernigan JA, Kirschke DL, Griffith K, Spear SM, KelleyK,BardenD,MayoD,StephensDSetal:Fatalinhalationalanthraxin a94yearoldConnecticutwoman.JAMA2002,287(7):863868.

136

261. CondeelisJ:Lifeattheleadingedge:theformationofcellprotrusions.Annu RevCellBiol1993,9:411444.

262. GarciaRamallo E, Marques T, Prats N, Beleta J, Kunkel SL, Godessart N: Resident cell chemokine expression serves as the major mechanism for leukocyte recruitment during local inflammation. J Immunol 2002, 169(11):64676473.

263. FernandezEJ,LolisE:Structure,function,andinhibitionofchemokines.Annu RevPharmacolToxicol2002,42:469499.

264. LaingKJ,SecombesCJ:Chemokines.DevCompImmunol2004,28(5):443460.

265. RotA,vonAndrianUH: Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004, 22:891928.

266. MichelsenKS,AicherA,MohauptM,HartungT,DimmelerS,KirschningCJ, Schumann RR: The role of tolllike receptors (TLRs) in bacteriainduced maturation of murine dendritic cells (DCS). Peptidoglycanandlipoteichoic acid are inducers of DC maturation and require TLR2. JBiolChem 2001, 276(28):2568025686.

267. WertsC,leBourhisL,LiuJ,MagalhaesJG,CarneiroLA,FritzJH,StockingerS, BalloyV,ChignardM,DeckerTetal:od1andod2induceCCL5/RATES throughtheFkappaBpathway.EurJImmunol2007,37(9):24992508.

268. EliassonM,EgestenA:Antibacterialchemokinesactorsinbothinnateand adaptiveimmunity.ContribMicrobiol2008,15:101117.

269. BeckG, YardBA,SchulteJ,OberackerR,van AckernK,vanDerWoudeFJ, Krimsky M, Kaszkin M, Yedgar S: Inhibition of LPSinduced chemokine productioninhumanlungendothelialcellsbylipidconjugatesanchoredto themembrane.BrJPharmacol2002,135(7):16651674.

270. JabeenT,LeonardP,JamaluddinH,AcharyaKR:StructureofmouseIP10,a chemokine.ActaCrystallogrDBiolCrystallogr2008,64(Pt6):611619.

137

271. CarrMW,RothSJ,LutherE,RoseSS,SpringerTA:Monocytechemoattractant protein1actsasaTlymphocytechemoattractant.ProcatlAcadSciUSA 1994,91(9):36523656.

272. Xu LL, Warren MK, Rose WL, Gong W, Wang JM: Human recombinant monocyte chemotactic protein and other CC chemokinesbindandinduce directionalmigrationofdendriticcellsinvitro.JLeukocBiol1996,60(3):365 371.

273. LiaoF,RabinRL,YannelliJR,KoniarisLG,VanguriP,FarberJM:HumanMig chemokine: biochemical and functional characterization. J Exp Med 1995, 182(5):13011314.

274. RotA,KriegerM,BrunnerT,BischoffSC,SchallTJ,DahindenCA:RATES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992, 176(6):14891495.

275. BaggioliniM,ClarkLewisI:Interleukin8, achemotactic and inflammatory cytokine.FEBSLett1992,307(1):97101.

276. Cocchi F, DeVico AL, GarzinoDemo A, Arya SK, Gallo RC, Lusso P: IdentificationofRATES,MIP1alpha,andMIP1betaasthemajorHIV suppressivefactorsproducedbyCD8+Tcells.Science1995,270(5243):1811 1815.

277. GarzinoDemo A, Moss RB, Margolick JB, Cleghorn F, Sill A, Blattner WA, CocchiF,CarloDJ,DeVicoAL,GalloRC:Spontaneousandantigeninduced productionofHIVinhibitorybetachemokinesareassociatedwithAIDSfree status.ProcatlAcadSciUSA1999,96(21):1198611991.

278. HannaPC,AcostaD,CollierRJ:Ontheroleofmacrophagesinanthrax.Proc atlAcadSciUSA1993,90(21):1019810201.

279. PopovSG,PopovaTG,GreneE,KlotzF,Cardwell J, Bradburne C, Jama Y, Maland M, Wells J, Nalca A et al: Systemic cytokine response in murine anthrax.CellMicrobiol2004,6(3):225233.

138

280. AlvesFilho JC, Benjamim C, TavaresMurta BM, Cunha FQ: Failure of neutrophilmigrationtowardinfectiousfocusinseveresepsis:acriticalevent fortheoutcomeofthissyndrome. MemInstOswaldoCruz 2005, 100 Suppl 1:223226.

281. AlvesFilhoJC,TavaresMurtaBM,BarjaFidalgoC,BenjamimCF,BasileFilho A,ArraesSM,CunhaFQ:eutrophilfunctioninseveresepsis.EndocrMetab ImmuneDisordDrugTargets2006,6(2):151158.

282. AlvesFilho JC, de Freitas A, Spiller F, Souto FO, Cunha FQ: The role of neutrophilsinseveresepsis.Shock2008,30Suppl1:39.

283. CuiX,LiY,MoayeriM,ChoiGH,SubramanianGM,LiX,HaleyM,FitzY, Feng J, Banks SM et al: Late treatment with a protective antigendirected monoclonal antibody improves hemodynamic function and survival in a lethaltoxininfusedratmodelofanthraxsepsis.JInfectDis2005,191(3):422 434.

284. MohamedN,ClagettM,LiJ,JonesS,PincusS,D'AliaG,NardoneL,BabinM, Spitalny G, Casey L: A highaffinity monoclonal antibody to anthrax protective antigen passively protects rabbits before and after aerosolized Bacillusanthracissporechallenge.InfectImmun2005,73(2):795802.

285. Maynard JA, Maassen CB, Leppla SH, Brasky K, Patterson JL, Iverson BL, Georgiou G: Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. at Biotechnol 2002, 20(6):597 601.

286. Vitale L, Blanset D, Lowy I, O'Neill T, Goldstein J, Little SF, Andrews GP, Dorough G, Taylor RK, Keler T: Prophylaxis and therapy of inhalational anthraxbyanovelmonoclonalantibodytoprotective antigen that mimics vaccineinducedimmunity.InfectImmun2006,74(10):58405847.

287. SinghY,KhannaH,ChopraAP,MehraV: A dominant negative mutant of Bacillusanthracisprotectiveantigeninhibitsanthraxtoxinactioninvivo.J BiolChem2001,276(25):2209022094.

139

288. Sellman BR, Mourez M, Collier RJ: Dominantnegative mutants of a toxin subunit:anapproachtotherapyofanthrax.Science2001,292(5517):695697.

289. Karginov VA, Nestorovich EM, Yohannes A, Robinson TM, Fahmi NE, Schmidtmann F, Hecht SM, Bezrukov SM: Search for cyclodextrinbased inhibitors of anthrax toxins: synthesis, structural features, and relative activities.AntimicrobAgentsChemother2006,50(11):37403753.

290. Backer MV, Patel V, Jehning BT, Claffey KP, Karginov VA, Backer JM: Inhibition of anthrax protective antigen outside and inside the cell. AntimicrobAgentsChemother2007,51(1):245251.

291. Moayeri M, Wiggins JF, Lindeman RE, Leppla SH: Cisplatin inhibition of anthraxlethaltoxin.AntimicrobAgentsChemother2006,50(8):26582665.

292. LiY,ShererK,CuiX,EichackerPQ:ewinsightsintothepathogenesisand treatment of anthrax toxininduced shock. Expert Opin Biol Ther 2007, 7(6):843854.

293. CodognoP,MeijerAJ: Autophagy and signaling: their role in cell survival andcelldeath.CellDeathDiffer2005,12Suppl2:15091518.

140

CURRICULUM VITAE

Yian Kim Tan is a Singapore citizen. He graduated from Ngee Ann Polytechnic Singapore in 1995 with a Diploma in Biotechnology. He received his Bachelor of Science from University of Queensland, Australia in 1998. He was employed as a researcher at DSO National Laboratories (Singapore) for 3 years where he subsequently received a scholarship to pursue his PhD. He is due to return to DSO National Laboratories (Singapore) after the completion of his studies.

141