Johnson Noise and Shot Noise: the Determination of the Boltzmann Constant, Absolute Zero Temperature and the Charge of the Electron
Johnson Noise and Shot Noise: The Determination of the Boltzmann Constant, Absolute Zero Temperature and the Charge of the Electron MIT Department of Physics Some kinds of electrical noise that interfere with a measurement may be avoided by proper attention to experimental design such as provisions for adequate shielding or multiple grounds. Johnson noise [1] and shot noise, however, are intrinsic phenomena of all electrical circuits, and their magnitudes are related to important physical constants. The purpose of this experiment is to measure these two fundamental electrical noises. From the measurements, values of the Boltzmann constant, k, and the charge of the electron, e will be derived. PREPARATORY QUESTIONS To illustrate the dilemma faced by physicists in 1900, consider the highly successful kinetic theory of gases 1. De¯ne the following terms: Johnson noise, shot based on the atomic hypothesis and the principles of noise, RMS voltage, thermal equilibrium, temper- statistical mechanics from which one can derive the ature, Kelvin and centigrade temperature scales, equipartition theorem. The theory showed that the well- entropy, dB. measured gas constant Rg in the equation of state of a 2. What is the Nyquist theory ?? of Johnson noise? mole of a gas at low density, 3. What is the mean square of the fluctuating compo- nent of the current in a photodiode when its average P V = RgT (1) current is Iav ? is related to the number of degrees of freedom of the The goals of the present experiment are: system, 3N , by the equation 1. To measure the properties of Johnson noise in a k(3N) R = = kN (2) variety of conductors and over a substantial range g 3 of temperature and to compare the results with the Nyquist theory; where N is the number of molecules in one mole (Avo- gadro's number), and k is the Boltzmann constant de- 2.
[Show full text]