Monatomic and Diatomic Gases the Thermal Energy of a Monatomic Gas of N Atoms Is

Total Page:16

File Type:pdf, Size:1020Kb

Monatomic and Diatomic Gases the Thermal Energy of a Monatomic Gas of N Atoms Is • Temperature ~ Average KE of each particle • Particles have different speeds • Gas Particles are in constant RANDOM motion • Average KE of each particle is: 3/2 kT • Pressure is due to momentum transfer Speed ‘Distribution’ at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Mean Free Path . A single molecule follows a zig-zag path through a gas as it collides with other molecules. The average distance between the collisions is called the mean free path: . (N/V) is the number density of the gas in m−3. r is the the radius of the molecules when modeled as hard spheres; for many common gases r ≈ 10−10 m. © 2013 Pearson Education, Inc. Slide 18-20 QuickCheck 18.1 The temperature of a rigid container of oxygen gas (O2) is lowered from 300C to 0C. As a result, the mean free path of oxygen molecules A. Increases. B. Is unchanged. C. Decreases. © 2013 Pearson Education, Inc. Slide 18-21 QuickCheck 18.1 The temperature of a rigid container of oxygen gas (O2) is lowered from 300C to 0C. As a result, the mean free path of oxygen molecules A. Increases. B. Is unchanged. λ depends only on N/V, not T. C. Decreases. © 2013 Pearson Education, Inc. Slide 18-22 Pressure and Kinetic Energy • Assume a container is a cube with edges d. • Look at the motion of the molecule in terms of its velocity components and momentum and the average force • Pressure is proportional to the number of molecules per unit volume (N/V) and to the average translational kinetic energy of the molecules. • This equation also relates the macroscopic quantity of pressure with a microscopic quantity of the average value of the square of the molecular speed ___ • One way to increase the pressure is to 21N 2 increase the number of molecules per P mo v unit volume 32V • The pressure can also be increased by increasing the speed (kinetic energy) of the molecules Molecular Interpretation of Temperature • We can take the pressure as it relates to the kinetic energy and compare it to the pressure from the equation of state for an ideal gas ___ 21N2 nRT NkB T P mv 32VVV • Temperature is a direct measure of the average molecular kinetic energy 13___ m v2 k T 22o B The Kelvin Temperature of an ideal gas is a measure of the average translational kinetic energy per particle: ___ 12 3 3 3 Ktot trans N mv Nk B T nRT PV 2 2 2 2 k =1.38 x 10-23 J/K Boltzmann’s Constant 2 3kT Root-mean-square speed: vv rms m Total Kinetic Energy • The total kinetic energy is just N times the kinetic energy of each molecule ___ 12 3 3 Ktot trans N mv Nk B T nRT 2 2 2 • If we have a gas with only translational energy, this is the internal energy of the gas • This tells us that the internal energy of an ideal gas depends only on the temperature Kinetic Theory Problem A 5.00-L vessel contains nitrogen gas at 27.0C and 3.00 atm. Find (a) the total translational kinetic energy of the gas molecules and (b) the average kinetic energy per molecule. Kinetic Theory Problem Calculate the RMS speed of an oxygen molecule in the air if the temperature is 5.00 °C. The mass of an oxygen molecule is 32.00 u (k = 1.3 8x 10 -23 J/K, u = 1.66 x 10 -27 kg) 3kT m is the mass of one v What is m? oxygen molecule in kg. rms m What is u? How do we get the mass in kg? Kinetic Theory Problem Calculate the RMS speed of an oxygen molecule in the air if the temperature is 5.00 °C. The mass of an oxygen molecule is 32.00 u (k = 1.3 8x 10 -23 J/K, u = 1.66 x 10 -27 kg) 3kT m is the mass of one v What is m? oxygen molecule. rms m 3(1.38x 1023 J / K )278 K (32u )(1.66 x 1027 kg / u ) Speed of 466ms / Is this fast? sound: YES! 343m/s! Distribution of Molecular Speeds • The observed speed distribution of gas molecules in thermal equilibrium is shown at right • NV is called the Maxwell-Boltzmann speed distribution function • mo is the mass of a gas molecule, kB is Boltzmann’s constant and T is the absolute temperature 3 / 2 m 2 o 2 mv/2 kB T NV 4 N v e 2kTB Ludwig Boltzmann 1844 – 1906 Austrian physicist Contributed to Kinetic Theory of Gases Electromagnetism Thermodynamics Pioneer in statistical mechanics QuickCheck 18.3 A rigid container holds both hydrogen gas (H2) and nitrogen gas (N2) at 100C. Which statement describes their rms speeds? A. vrms of H2 < vrms of N2. B. vrms of H2 = vrms of N2. C. vrms of H2 > vrms of N2. © 2013 Pearson Education, Inc. Slide 18-34 QuickCheck 18.3 A rigid container holds both hydrogen gas (H2) and nitrogen gas (N2) at 100C. Which statement describes their rms speeds? A. vrms of H2 < vrms of N2. B. vrms of H2 = vrms of N2. C. vrms of H2 > vrms of N2. © 2013 Pearson Education, Inc. Slide 18-35 More Kinetic Theory Problems A gas molecule with a molecular mass of 32.0 u has a speed of 325 m/s. What is the temperature of the gas molecule? A) 72.0 K B) 136 K C) 305 K D) 459 K E) A temperature cannot be assigned to a single molecule. Temperature ~ Average KE of all particles Molecular Interpretation of Temperature • Simplifying the equation relating temperature and kinetic energy gives • This can be applied to each direction, 11___ 2 ___ mvx 13 kB T 22m v2 k T 22o B – with similar expressions for vy and vz Equipartition of Energy • Each translational degree of freedom contributes an equal amount to the energy of the gas – In general, a degree of freedom refers to an independent means by which a molecule can possess energy • Each degree of freedom contributes ½kBT to the energy of a system, where possible degrees of freedom are those associated with translation, rotation and vibration of molecules Monatomic and Diatomic Gases The thermal energy of a monatomic gas of N atoms is A diatomic gas has more thermal energy than a monatomic gas at the same temperature because the molecules have rotational as well as translational kinetic energy. Molar Specific Heats Isobaric requires MORE HEAT than Isochoric for the same change in Temperature!!!! .The total change in thermal energy for ANY PROCESS, due to work and heat, is: This applies to all ideal gases, not just monatomic ones! WOW! C and C P V Note that for all ideal gases: where R = 8.31 J/mol K is the universal gas constant. Slide 17-80 Important Concepts Agreement with Experiment: Diatomic Hydrogen acts like a monatomic gas at low temperature! •Molar specific heat is a function of temperature. •At low temperatures, a diatomic gas acts like a monatomic gas. – CV = 3/2 R •At about room temperature, the value increases to CV = 5/2 R. – This is consistent with adding rotational energy but not vibrational energy. •At high temperatures, the value increases to CV = 7/2 R. – This includes vibrational energy as well as rotational and translational. Quantization of Energy. •To explain the results of the various molar specific heats, we must use some quantum mechanics. – Classical mechanics is not sufficient •This energy level diagram shows the rotational and vibrational states of a diatomic molecule. •The lowest allowed state is the ground state. •The vibrational states are separated by larger energy gaps than are rotational states. •At low temperatures, the energy gained during collisions is generally not enough to raise it to the first excited state of either rotation or vibration. Section 21.4 In a constant-volume process, 209 J of energy is transferred by heat to 1.00 mol of an ideal monatomic gas initially at 300 K. Find (a) the increase in internal energy of the gas, (b) the work done on it, and (c) its final temperature Reading Question 18.2 What additional kind of energy makes CV larger for a diatomic than for a monatomic gas? A. Charismatic energy. B. Translational energy. C. Heat energy. D. Rotational energy. E. Solar energy. Slide 18-12 Reading Question 18.2 What additional kind of energy makes CV larger for a diatomic than for a monatomic gas? A. Charismatic energy. B. Translational energy. C. Heat energy. D. Rotational energy. E. Solar energy. Slide 18-13 AdiabaticAdiabatic Processes Processes: Q=0 . An adiabatic process is one for which: g-1 g-1 Ti Vi = Tf Vf where: . Adiabats are steeper than hyperbolic isotherms because only work is being done to change the Temperature. The temperature falls during an adiabatic expansion, and rises during an adiabatic compression. Slide 17-88 A 4.00-L sample of a nitrogen gas confined to a cylinder, is carried through a closed cycle. The gas is initially at 1.00 atm and at 300 K. First, its pressure is tripled under constant volume. Then, it expands adiabatically to its original pressure. Finally, the gas is compressed isobarically to its original volume. (a) Draw a PV diagram of this cycle. (b) Find the number of moles of the gas. (c) Find the volumes and temperatures at the end of each process (d) Find the Work and heat for each process. (e) What was the net work done on the gas for this cycle? Adiabatic Processes for an Ideal Gas • An adiabatic process is one in which no energy is transferred by heat between a system and its surroundings (think styrofoam cup) • Assume an ideal gas is in an equilibrium state and so PV = nRT is valid • The pressure and volume of an ideal gas at any time during an adiabatic process are related by PV g = constant g = CP / CV is assumed to be constant All three variables in the ideal gas law (P, V, T ) can change during an adiabatic process Special Case: Adiabatic Free Expansion • This is an example of adiabatic free expansion • The process is adiabatic because it takes place in an insulated container • Because the gas expands into a vacuum, it does not apply a force on a piston and W = 0 • Since Q = 0 and W = 0, DEint = 0 and the initial and final states are the same and no change in temperature is expected.
Recommended publications
  • Entropy: Ideal Gas Processes
    Chapter 19: The Kinec Theory of Gases Thermodynamics = macroscopic picture Gases micro -> macro picture One mole is the number of atoms in 12 g sample Avogadro’s Number of carbon-12 23 -1 C(12)—6 protrons, 6 neutrons and 6 electrons NA=6.02 x 10 mol 12 atomic units of mass assuming mP=mn Another way to do this is to know the mass of one molecule: then So the number of moles n is given by M n=N/N sample A N = N A mmole−mass € Ideal Gas Law Ideal Gases, Ideal Gas Law It was found experimentally that if 1 mole of any gas is placed in containers that have the same volume V and are kept at the same temperature T, approximately all have the same pressure p. The small differences in pressure disappear if lower gas densities are used. Further experiments showed that all low-density gases obey the equation pV = nRT. Here R = 8.31 K/mol ⋅ K and is known as the "gas constant." The equation itself is known as the "ideal gas law." The constant R can be expressed -23 as R = kNA . Here k is called the Boltzmann constant and is equal to 1.38 × 10 J/K. N If we substitute R as well as n = in the ideal gas law we get the equivalent form: NA pV = NkT. Here N is the number of molecules in the gas. The behavior of all real gases approaches that of an ideal gas at low enough densities. Low densitiens m= enumberans tha oft t hemoles gas molecul es are fa Nr e=nough number apa ofr tparticles that the y do not interact with one another, but only with the walls of the gas container.
    [Show full text]
  • On the Equation of State of an Ideal Monatomic Gas According to the Quantum-Theory, In: KNAW, Proceedings, 16 I, 1913, Amsterdam, 1913, Pp
    Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW) Citation: W.H. Keesom, On the equation of state of an ideal monatomic gas according to the quantum-theory, in: KNAW, Proceedings, 16 I, 1913, Amsterdam, 1913, pp. 227-236 This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl' - 1 - 227 high. We are uncertain as to the cause of this differencc: most probably it is due to an nncertainty in the temperature with the absolute manometer. It is of special interest to compare these observations with NERNST'S formula. Tbe fourth column of Table II contains the pressUl'es aceord­ ing to this formula, calc111ated witb the eonstants whieb FALCK 1) ha~ determined with the data at bis disposal. FALOK found the following expression 6000 1 0,009983 log P • - --. - + 1. 7 5 log T - T + 3,1700 4,571 T . 4,571 where p is the pressure in atmospheres. The correspondence will be se en to be satisfactory considering the degree of accuracy of the observations. 1t does riot look as if the constants could be materially improved. Physics. - "On the equation of state oj an ideal monatomic gflS accoJ'ding to tlw quantum-the01'Y." By Dr. W. H. KEEsmr. Supple­ ment N°. 30a to the Oommunications ft'om the PhysicaL Labora­ tory at Leiden. Oommunicated by Prof. H. KAl\IERLINGH ONNES. (Communicated in the meeting of May' 31, 1913).
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Ideal Gasses Is Known As the Ideal Gas Law
    ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T .
    [Show full text]
  • Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles
    Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles. I. Algorithmic Details Aleksandar Donev,1, 2 Salvatore Torquato,1, 2, 3, ∗ and Frank H. Stillinger3 1Program in Applied and Computational Mathematics, Princeton University, Princeton NJ 08544 2Materials Institute, Princeton University, Princeton NJ 08544 3Department of Chemistry, Princeton University, Princeton NJ 08544 Abstract In this first part of a series of two papers, we present in considerable detail a collision-driven molecular dynamics algorithm for a system of nonspherical particles, within a parallelepiped sim- ulation domain, under both periodic or hard-wall boundary conditions. The algorithm extends previous event-driven molecular dynamics algorithms for spheres, and is most efficient when ap- plied to systems of particles with relatively small aspect ratios and with small variations in size. We present a novel partial-update near-neighbor list (NNL) algorithm that is superior to previ- ous algorithms at high densities, without compromising the correctness of the algorithm. This efficiency of the algorithm is further increased for systems of very aspherical particles by using bounding sphere complexes (BSC). These techniques will be useful in any particle-based simula- tion, including Monte Carlo and time-driven molecular dynamics. Additionally, we allow for a nonvanishing rate of deformation of the boundary, which can be used to model macroscopic strain and also alleviate boundary effects for small systems. In the second part of this series of papers we specialize the algorithm to systems of ellipses and ellipsoids and present performance results for our implementation, demonstrating the practical utility of the algorithm. ∗ Electronic address: [email protected] 1 I.
    [Show full text]
  • Thermodynamics Molecular Model of a Gas Molar Heat Capacities
    Thermodynamics Molecular Model of a Gas Molar Heat Capacities Lana Sheridan De Anza College May 7, 2020 Last time • heat capacities for monatomic ideal gases Overview • heat capacities for diatomic ideal gases • adiabatic processes Quick Recap For all ideal gases: 3 3 K = NK¯ = Nk T = nRT tot,trans trans 2 B 2 and ∆Eint = nCV ∆T For monatomic gases: 3 E = K = nRT int tot,trans 2 and so, 3 C = R V 2 and 5 C = R P 2 Reminder: Kinetic Energy and Internal Energy In a monatomic gas the three translational motions are the only degrees of freedom. We can choose 3 3 E = K = N k T = nRT int tot,trans 2 B 2 (This is the thermal energy, so the bond energy is zero { if we liquify the gas the bond energy becomes negative.) Equipartition Consequences in Diatomic Gases Reminder: Equipartition of energy theorem Each degree of freedom for each molecule contributes an and 1 additional 2 kB T of energy to the system. A monatomic gas has 3 degrees of freedom: it can have translational KE due to motion in 3 independent directions. A diatomic gas has more ways to move and store energy. It can: • translate • rotate • vibrate 21.3 The Equipartition of Energy 635 Equipartition21.3 The Equipartition Consequences of Energy in Diatomic Gases Predictions based on our model for molar specific heat agree quite well with the Contribution to internal energy: Translational motion of behavior of monatomic gases, but not with the behavior of complex gases (see Table the center of mass 21.2).
    [Show full text]
  • Equipartition of Energy
    Equipartition of Energy The number of degrees of freedom can be defined as the minimum number of independent coordinates, which can specify the configuration of the system completely. (A degree of freedom of a system is a formal description of a parameter that contributes to the state of a physical system.) The position of a rigid body in space is defined by three components of translation and three components of rotation, which means that it has six degrees of freedom. The degree of freedom of a system can be viewed as the minimum number of coordinates required to specify a configuration. Applying this definition, we have: • For a single particle in a plane two coordinates define its location so it has two degrees of freedom; • A single particle in space requires three coordinates so it has three degrees of freedom; • Two particles in space have a combined six degrees of freedom; • If two particles in space are constrained to maintain a constant distance from each other, such as in the case of a diatomic molecule, then the six coordinates must satisfy a single constraint equation defined by the distance formula. This reduces the degree of freedom of the system to five, because the distance formula can be used to solve for the remaining coordinate once the other five are specified. The equipartition theorem relates the temperature of a system with its average energies. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in the translational motion of a molecule should equal that of its rotational motions.
    [Show full text]
  • Atkins' Physical Chemistry
    Statistical thermodynamics 2: 17 applications In this chapter we apply the concepts of statistical thermodynamics to the calculation of Fundamental relations chemically significant quantities. First, we establish the relations between thermodynamic 17.1 functions and partition functions. Next, we show that the molecular partition function can be The thermodynamic functions factorized into contributions from each mode of motion and establish the formulas for the 17.2 The molecular partition partition functions for translational, rotational, and vibrational modes of motion and the con- function tribution of electronic excitation. These contributions can be calculated from spectroscopic data. Finally, we turn to specific applications, which include the mean energies of modes of Using statistical motion, the heat capacities of substances, and residual entropies. In the final section, we thermodynamics see how to calculate the equilibrium constant of a reaction and through that calculation 17.3 Mean energies understand some of the molecular features that determine the magnitudes of equilibrium constants and their variation with temperature. 17.4 Heat capacities 17.5 Equations of state 17.6 Molecular interactions in A partition function is the bridge between thermodynamics, spectroscopy, and liquids quantum mechanics. Once it is known, a partition function can be used to calculate thermodynamic functions, heat capacities, entropies, and equilibrium constants. It 17.7 Residual entropies also sheds light on the significance of these properties. 17.8 Equilibrium constants Checklist of key ideas Fundamental relations Further reading Discussion questions In this section we see how to obtain any thermodynamic function once we know the Exercises partition function. Then we see how to calculate the molecular partition function, and Problems through that the thermodynamic functions, from spectroscopic data.
    [Show full text]
  • Kinetics and Atmospheric Chemistry
    12/9/2017 Kinetics and Atmospheric Chemistry Edward Dunlea, Jose-Luis Jimenez Atmospheric Chemistry CHEM-5151/ATOC-5151 Required reading: Finlayson-Pitts and Pitts Chapter 5 Recommended reading: Jacob, Chapter 9 Other reading: Seinfeld and Pandis 3.5 General Outline of Next 3 Lectures • Intro = General introduction – Quick review of thermodynamics • Finlayson-Pitts & Pitts, Chapter 5 A. Fundamental Principles of Gas-Phase Kinetics B. Laboratory Techniques for Determining Absolute Rate Constants for Gas-Phase Reactions C. Laboratory Techniques for Determining Relative Rate Constants for Gas-Phase Reactions D. Reactions in Solution E. Laboratory Techniques for Studying Heterogeneous Reactions F. Compilations of Kinetic Data for Atmospheric Reactions 1 12/9/2017 Kinetics and Atmospheric Chemistry • What we’re doing here… – Photochemistry already covered – We will cover gas phase kinetics and heterogeneous reactions – Introductions to a few techniques used for measuring kinetic parameters • What kind of information do we hope to get out of “atmospheric kinetics”? – Predictive ability over species emitted into atmosphere • Which reactions will actually proceed to products? • Which products will they form? • How long will emitted species remain before they react? Competition with photolysis, wash out, etc. • Pare down list of thousands of possible reactions to the ones that really matter – Aiming towards idea practical predictive abilities • Use look up tables to decide if reaction is likely to proceed and determine an “atmospheric lifetime”
    [Show full text]
  • Chemical Examples for the Fit Equations
    Chemical Examples for the Fit Equations The following are just a few of the applications for nonlinear curve fitting. A nice introduction to biological applications of nonlinear curve fitting by Dr. Harvey Motulsky is available on the Web 1. a exp(-bx) f = a e-bx Example: Chemical kinetics first order decay of a reactant. A → P gives [A] = [A] o e-kt a(1-exp(-bx)) f = a (1 - e-bx ) 1.2 1 0.8 0.6 0.4 a(1-exp(-bx)) 0.2 0 0 2 4x 6 8 10 Example: Chemical kinetics first order increase of a product. A → P gives [P] = [P] o(1 - e-kt ) a(1-exp(-b(x-c))) f = a (1 - e-b(x-c) ) Example: This form is the same function as above with an x axis offset. For first order kinetics a delay in the time of the start of the reaction of t o would give the rate law [P] = [P] o(1 - e-k(t-to) ) where t o = c in the fitting function. a(1-exp(-bx)) + c f = a (1 - e-bx ) + c Example: This form introduces a constant offset for first order type growth. For a first order chemical reaction [P] = [P] o(1 - e-kt ) + c where the offset, c, is due to miscalibration or an instrumental artifact. This form can be used interchangeably with f = A e-bx + C as given in the next function with A = -a and C = a+c. a exp(-bx) + c f = a e-bx + c 1 0.8 0.6 0.4 a exp(-bx) + c a exp(-bx) 0.2 0 0 2 4x 6 8 10 Example: Chemical kinetics first order decay of a reactant towards equilibrium.
    [Show full text]
  • Section 2 Introduction to Statistical Mechanics
    Section 2 Introduction to Statistical Mechanics 2.1 Introducing entropy 2.1.1 Boltzmann’s formula A very important thermodynamic concept is that of entropy S. Entropy is a function of state, like the internal energy. It measures the relative degree of order (as opposed to disorder) of the system when in this state. An understanding of the meaning of entropy thus requires some appreciation of the way systems can be described microscopically. This connection between thermodynamics and statistical mechanics is enshrined in the formula due to Boltzmann and Planck: S = k ln Ω where Ω is the number of microstates accessible to the system (the meaning of that phrase to be explained). We will first try to explain what a microstate is and how we count them. This leads to a statement of the second law of thermodynamics, which as we shall see has to do with maximising the entropy of an isolated system. As a thermodynamic function of state, entropy is easy to understand. Entropy changes of a system are intimately connected with heat flow into it. In an infinitesimal reversible process dQ = TdS; the heat flowing into the system is the product of the increment in entropy and the temperature. Thus while heat is not a function of state entropy is. 2.2 The spin 1/2 paramagnet as a model system Here we introduce the concepts of microstate, distribution, average distribution and the relationship to entropy using a model system. This treatment is intended to complement that of Guenault (chapter 1) which is very clear and which you must read.
    [Show full text]
  • 4 Pressure and Viscosity
    4 Pressure and Viscosity Reading: Ryden, chapter 2; Shu, chapter 4 4.1 Specific heats and the adiabatic index First law of thermodynamics (energy conservation): d = −P dV + dq =) dq = d + P dV; (28) − V ≡ ρ 1 = specific volume [ cm3 g−1] dq ≡ T ds = heat change per unit mass [ erg g−1] − s ≡ specific entropy [ erg g−1 K 1]: The specific heat at constant volume, @q −1 −1 cV ≡ [ erg g K ] (29) @T V is the amount of heat that must be added to raise temperature of 1 g of gas by 1 K. At constant volume, dq = d, and if depends only on temperature (not density), (V; T ) = (T ), then @q @ d cV ≡ = = : @T V @T V dT implying dq = cV dT + P dV: 1 If a gas has temperature T , then each degree of freedom that can be excited has energy 2 kT . (This is the equipartition theorem of classical statistical mechanics.) The pressure 1 ρ P = ρhjw~j2i = kT 3 m since 1 1 3kT h mw2i = kT =) hjw~j2i = : 2 i 2 m Therefore kT k P V = =) P dV = dT: m m Using dq = cV dT + P dV , the specific heat at constant pressure is @q dV k cP ≡ = cV + P = cV + : @T P dT m Changing the temperature at constant pressure requires more heat than at constant volume because some of the energy goes into P dV work. 19 For reasons that will soon become evident, the quantity γ ≡ cP =cV is called the adiabatic index. A monatomic gas has 3 degrees of freedom (translation), so 3 kT 3 k 5 k 5 = =) c = =) c = =) γ = : 2 m V 2 m P 2 m 3 A diatomic gas has 2 additional degrees of freedom (rotation), so cV = 5k=2m, γ = 7=5.
    [Show full text]