Chapter 10 100 Years of Progress in Gas-Phase Atmospheric Chemistry Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issues in Physics & Astronomy
Issues in Physics & Astronomy Board on Physics and Astronomy · The National Academies · Washington, D.C. · 202-334-3520 · nationalacademies.org/bpa · Winter 2010 Unveiling the Black Hole and its Environs at the Center of the Milky Way A. Ghez, UCLA he proximity of our galaxy’s center presence of a million solar masses (Mo) • How do stars interact with super- presents us with a unique oppor- of dark matter and confined it to within a massive black holes? tunity to study a galactic nucleus radius of 0.1 pc—to a probability—when • What is the nature of the matter Twith orders of magnitude higher spatial proper motion velocity dispersion mea- flows induced by the black hole in its resolution than can be brought to bear on surements increased the inferred dark neighborhood? any other galaxy. After more than a decade mass density by 3 orders of magnitude It has been known for some time that 12 3 of diffraction-limited imaging with the to 10 Mo/pc and eliminated a cluster there is a population of young stars around rudimentary technique of speckle imag- of dark objects as a possible explana- the center of the Milky Way. The presence ing at Keck and NTT/VLT, the case for tion of the galaxy’s central dark mass of these young stars was used initially to a supermassive black hole at the galactic concentration—and finally to a certainty— argue that there could not be a black hole; center has improved dramatically. The case when individual stellar orbits confined this argument went as follows. -
Johnson, Matthey and the Chemical Society
•Platinum Metals Rev., 2013, 57, (2), 110–116• Johnson, Matthey and the Chemical Society Two hundred years of precious metals expertise http://dx.doi.org/10.1595/147106713X664635 http://www.platinummetalsreview.com/ By William P. Griffi th The founders of Johnson Matthey – Percival Johnson and George Matthey – played important roles in the foundation Department of Chemistry, Imperial College, London SW7 and running of the Chemical Society, which was founded in 2AZ, UK 1841. This tradition continues today with the Royal Society Email: w.griffi [email protected] of Chemistry and Johnson Matthey Plc. The nineteenth century brought a ferment of discovery and research to all branches of chemistry; for example some twenty-six elements were discovered between 1800 and 1850, ten of them by British chemists, including rhodium, palladium, osmium and iridium. In 1841 the Chemical Society – the oldest national chemical society in the world still in existence – was established. Both Percival Johnson (Figure 1(a)) and George Matthey (Figure 1(b)) were prominent members, Johnson being one of its founders. The Origins of the Chemical Society Although there had been an earlier London Chemical Society in 1824 it lasted for only a year (1). The Chemical Society of London (‘of London’ was dropped in 1848) was founded at a meeting held on 30th March 1841 at the Society of Arts in John Street (now John Adam Street), London, UK; Robert Warington (1807–1867), an analytical chemist later to become resident Director of the Society of Apothecaries (2), was instrumental in setting it up and his son, also Robert Warington, later wrote an account of its history for its 1891 Jubilee (3). -
Entropy: Ideal Gas Processes
Chapter 19: The Kinec Theory of Gases Thermodynamics = macroscopic picture Gases micro -> macro picture One mole is the number of atoms in 12 g sample Avogadro’s Number of carbon-12 23 -1 C(12)—6 protrons, 6 neutrons and 6 electrons NA=6.02 x 10 mol 12 atomic units of mass assuming mP=mn Another way to do this is to know the mass of one molecule: then So the number of moles n is given by M n=N/N sample A N = N A mmole−mass € Ideal Gas Law Ideal Gases, Ideal Gas Law It was found experimentally that if 1 mole of any gas is placed in containers that have the same volume V and are kept at the same temperature T, approximately all have the same pressure p. The small differences in pressure disappear if lower gas densities are used. Further experiments showed that all low-density gases obey the equation pV = nRT. Here R = 8.31 K/mol ⋅ K and is known as the "gas constant." The equation itself is known as the "ideal gas law." The constant R can be expressed -23 as R = kNA . Here k is called the Boltzmann constant and is equal to 1.38 × 10 J/K. N If we substitute R as well as n = in the ideal gas law we get the equivalent form: NA pV = NkT. Here N is the number of molecules in the gas. The behavior of all real gases approaches that of an ideal gas at low enough densities. Low densitiens m= enumberans tha oft t hemoles gas molecul es are fa Nr e=nough number apa ofr tparticles that the y do not interact with one another, but only with the walls of the gas container. -
Photophoretic Spectroscopy in Atmospheric Chemistry – High-Sensitivity Measurements of Light Absorption by a Single Particle
Atmos. Meas. Tech., 13, 3191–3203, 2020 https://doi.org/10.5194/amt-13-3191-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Photophoretic spectroscopy in atmospheric chemistry – high-sensitivity measurements of light absorption by a single particle Nir Bluvshtein, Ulrich K. Krieger, and Thomas Peter Institute for Atmospheric and Climate Science, ETH Zurich, 8092, Switzerland Correspondence: Nir Bluvshtein ([email protected]) Received: 28 February 2020 – Discussion started: 4 March 2020 Revised: 30 April 2020 – Accepted: 16 May 2020 – Published: 18 June 2020 Abstract. Light-absorbing organic atmospheric particles, the UV–vis wavelength range, attributing them with a nega- termed brown carbon, undergo chemical and photochemi- tive (cooling) radiative effect. However, light-absorbing or- cal aging processes during their lifetime in the atmosphere. ganic aerosol, termed brown carbon (BrC), with wavelength- The role these particles play in the global radiative balance dependent light absorption (λ−2 − λ−6) in the UV–vis wave- and in the climate system is still uncertain. To better quan- length range (Chen and Bond, 2010; Hoffer et al., 2004; tify their radiative forcing due to aerosol–radiation interac- Kaskaoutis et al., 2007; Kirchstetter et al., 2004; Lack et al., tions, we need to improve process-level understanding of ag- 2012b; Moosmuller et al., 2011; Sun et al., 2007), may be the ing processes, which lead to either “browning” or “bleach- dominant light absorber downwind of urban and industrial- ing” of organic aerosols. Currently available laboratory tech- ized areas and in biomass burning plumes (Feng et al., 2013). -
On the Equation of State of an Ideal Monatomic Gas According to the Quantum-Theory, In: KNAW, Proceedings, 16 I, 1913, Amsterdam, 1913, Pp
Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW) Citation: W.H. Keesom, On the equation of state of an ideal monatomic gas according to the quantum-theory, in: KNAW, Proceedings, 16 I, 1913, Amsterdam, 1913, pp. 227-236 This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl' - 1 - 227 high. We are uncertain as to the cause of this differencc: most probably it is due to an nncertainty in the temperature with the absolute manometer. It is of special interest to compare these observations with NERNST'S formula. Tbe fourth column of Table II contains the pressUl'es aceord ing to this formula, calc111ated witb the eonstants whieb FALCK 1) ha~ determined with the data at bis disposal. FALOK found the following expression 6000 1 0,009983 log P • - --. - + 1. 7 5 log T - T + 3,1700 4,571 T . 4,571 where p is the pressure in atmospheres. The correspondence will be se en to be satisfactory considering the degree of accuracy of the observations. 1t does riot look as if the constants could be materially improved. Physics. - "On the equation of state oj an ideal monatomic gflS accoJ'ding to tlw quantum-the01'Y." By Dr. W. H. KEEsmr. Supple ment N°. 30a to the Oommunications ft'om the PhysicaL Labora tory at Leiden. Oommunicated by Prof. H. KAl\IERLINGH ONNES. (Communicated in the meeting of May' 31, 1913). -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Ralph J. Cicerone 1943–2016
Ralph J. Cicerone 1943–2016 A Biographical Memoir by Barbara J. Finlayson-Pitts, Diane E. Griffin, V. Ramanathan, Barbara Schaal, and Susan E. Trumbore ©2020 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. RALPH JOHN CICERONE May 2, 1943–November 5, 2016 Elected to the NAS, 1990 Baseball afficinado; scientific visionary; natural leader; statesman of great integrity; convincer par excellence; half of an incredible team…this is the human treasure that was Ralph J. Cicerone. It is an enormous challenge to capture adequately Ralph’s essence and the many ways he left the world a better place. We hope in the following we have some small measure of success in this endeavor. Ralph Cicerone’s is a very American story. His grandparents were immigrants from Italy and he was born in New Castle, Pennsylvania on May 2, 1943. His father, Salvatore, was an insurance salesman who, when working in the evenings, left math problems for Ralph to solve. Ralph, who had a natural affinity for sports, became the first in his family to attend college. At MIT, he was captain of the baseball team By Barbara J. Finlayson-Pitts, while majoring in electrical engineering. Graduating with Diane E. Griffin, V. Ramanathan, a B.S. in 1965, he moved to the University of Illinois for his Barbara Schaal, Master’s (1967) and Ph.D. (1970) degrees in electrical engi- and Susan E. Trumbore neering (minoring in physics). Ralph’s start at Illinois proved to be life-changing; while standing in line to register for the class Theory of Complex Variables, he met his future life partner, Carol, and they married in 1967. -
Atmospheric Chemistry
Atmospheric Chemistry John Lee Grenfell Technische Universität Berlin Atmospheres and Habitability (Earthlike) Atmospheres: -support complex life (respiration) -stabilise temperature -maintain liquid water -we can measure their spectra hence life-signs Modern Atmospheric Composition CO2 Modern Atmospheric Composition O2 CO2 N2 CO2 N2 CO2 Modern Atmospheric Composition O2 CO2 N2 CO2 N2 P 93bar 1bar 6mb 1.5bar surface CO2 Tsurface 735K 288K 220K 94K Early Earth Atmospheric Compositions Magma Hadean Archaean Proterozoic Snowball CO2 Early Earth Atmospheric Compositions Magma Hadean Archaean Proterozoic Snowball Silicate CO2 CO2 N2 N2 Steam H2ON2 O2 O2 CO2 Additional terrestrial-type atmospheres Jurassic Earth Early Mars Early Venus Jungleworld Desertworld Waterworld Superearth Modern Atmospheric Composition Today we will talk about these CO2 Reading List Yuk Yung (Caltech) and William DeMore “Photochemistry of Planetary Atmospheres” Richard P. Wayne (Oxford) “Chemistry of Atmospheres” T. Gredel and Paul Crutzen (Mainz) “Chemie der Atmosphäre” Processes influencing Photochemistry Photons Protection Delivery Escape Clouds Photochemistry Surface OCEAN Biology Volcanism Some fundamentals… ALKALI METALS The Periodic Table NOBLE GASES One outer electron Increasing atomic number 8 outer electrons: reactive Rows called PERIODS unreactive GROUPS: similar Halogens chemical C, Si etc. have 4 outer electrons properties SO CAN FORM STABLE CHAINS Chemical Structure and Reactivity s and p orbitals d orbitals The Aufbau Method works OK for the first 18 elements -
Chapter 1 – Introduction
1 Chapter 1 – Introduction 1.1 – Scientific Background Knowledge of gas phase compounds and their chemical reactions are pivotal to our understanding of chemistry. The conditions these molecules are in can vary dramatically, from temperatures as low as 10 K in the depths of the interstellar medium, to more than 1000 K in the combustion of hydrocarbons in engines. The chemistry in these systems is dominated by highly reactive, unstable compounds, leading to fast and complex chemistry occurring. In order to accurately understand these systems, we must be able to observe these unstable species and measure the kinetics of their formation and destruction. While molecular spectra and reaction rate constants of these reactive compounds can be computed with theoretical calculations, they must be benchmarked with experimental measurements to determine their accuracy. To that end, one major focus in experimental gas phase chemistry is to better understand these unstable molecules and their reactions in systems such as atmospheric chemistry and astrochemistry. 1.1a – Atmospheric Chemistry Understanding Earth’s atmosphere and the chemistry behind it has been a major topic in gas phase chemistry since the mid-20th century, when the impact of fossil fuel usage and air pollution resulting from the Industrial Revolution became apparent. The dominant molecule in Earth’s atmosphere is N2 (77% of the atmosphere) followed by O2 (21%) and argon (1%). The remaining components are largely stable molecules, such as CO2 and H2O. 2 Figure 1.1: The average temperature (left) and pressure (right) profiles of the Earth’s lower atmosphere, consisting of the troposphere and stratosphere. -
Executive Summary)
Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age (Free Executive Summary) http://www.nap.edu/catalog/12615.html Free Executive Summary Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age Committee on Ensuring the Utility and Integrity of Research Data in a Digital Age; National Academy of Sciences ISBN: 978-0-309-13684-6, 188 pages, 6 x 9, paperback (2009) This free executive summary is provided by the National Academies as part of our mission to educate the world on issues of science, engineering, and health. If you are interested in reading the full book, please visit us online at http://www.nap.edu/catalog/12615.html . You may browse and search the full, authoritative version for free; you may also purchase a print or electronic version of the book. If you have questions or just want more information about the books published by the National Academies Press, please contact our customer service department toll-free at 888-624-8373. As digital technologies are expanding the power and reach of research, they are also raising complex issues. These include complications in ensuring the validity of research data; standards that do not keep pace with the high rate of innovation; restrictions on data sharing that reduce the ability of researchers to verify results and build on previous research; and huge increases in the amount of data being generated, creating severe challenges in preserving that data for long-term use. Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age examines the consequences of the changes affecting research data with respect to three issues - integrity, accessibility, and stewardship-and finds a need for a new approach to the design and the management of research projects. -
Ideal Gasses Is Known As the Ideal Gas Law
ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T . -
Gao-21-306, Nasa
United States Government Accountability Office Report to Congressional Committees May 2021 NASA Assessments of Major Projects GAO-21-306 May 2021 NASA Assessments of Major Projects Highlights of GAO-21-306, a report to congressional committees Why GAO Did This Study What GAO Found This report provides a snapshot of how The National Aeronautics and Space Administration’s (NASA) portfolio of major well NASA is planning and executing projects in the development stage of the acquisition process continues to its major projects, which are those with experience cost increases and schedule delays. This marks the fifth year in a row costs of over $250 million. NASA plans that cumulative cost and schedule performance deteriorated (see figure). The to invest at least $69 billion in its major cumulative cost growth is currently $9.6 billion, driven by nine projects; however, projects to continue exploring Earth $7.1 billion of this cost growth stems from two projects—the James Webb Space and the solar system. Telescope and the Space Launch System. These two projects account for about Congressional conferees included a half of the cumulative schedule delays. The portfolio also continues to grow, with provision for GAO to prepare status more projects expected to reach development in the next year. reports on selected large-scale NASA programs, projects, and activities. This Cumulative Cost and Schedule Performance for NASA’s Major Projects in Development is GAO’s 13th annual assessment. This report assesses (1) the cost and schedule performance of NASA’s major projects, including the effects of COVID-19; and (2) the development and maturity of technologies and progress in achieving design stability.