Equipartition of Energy

Total Page:16

File Type:pdf, Size:1020Kb

Equipartition of Energy Equipartition of Energy The number of degrees of freedom can be defined as the minimum number of independent coordinates, which can specify the configuration of the system completely. (A degree of freedom of a system is a formal description of a parameter that contributes to the state of a physical system.) The position of a rigid body in space is defined by three components of translation and three components of rotation, which means that it has six degrees of freedom. The degree of freedom of a system can be viewed as the minimum number of coordinates required to specify a configuration. Applying this definition, we have: • For a single particle in a plane two coordinates define its location so it has two degrees of freedom; • A single particle in space requires three coordinates so it has three degrees of freedom; • Two particles in space have a combined six degrees of freedom; • If two particles in space are constrained to maintain a constant distance from each other, such as in the case of a diatomic molecule, then the six coordinates must satisfy a single constraint equation defined by the distance formula. This reduces the degree of freedom of the system to five, because the distance formula can be used to solve for the remaining coordinate once the other five are specified. The equipartition theorem relates the temperature of a system with its average energies. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in the translational motion of a molecule should equal that of its rotational motions. At temperature T, the average energy of any quadratic degree of freedom is 1/2 kT. For a system of N molecules, each with f degrees of freedom: 1 U = N f kT thermal · · 2 The difficulty is to count the number of degrees of freedom f. Although the equipartition theorem makes very accurate predictions in certain conditions, it becomes inaccurate when quantum effects are significant, such as at low temperatures. When the thermal energy kT is smaller than the quantum energy spacing in a particular degree of freedom, the average energy and heat capacity of this degree of freedom are less than the values predicted by equipartition. Such a degree of freedom is said to be "frozen out" when the thermal energy is much smaller than this spacing. An important application of the equipartition theorem is to the specific heat capacity of a crystalline solid. Each atom in such a solid can oscillate in three independent directions, so the solid can be viewed as a system of 3N independent simple harmonic oscillators, where N denotes the number of atoms in the lattice. Since each harmonic oscillator has average energy kT, the average total energy of the solid is 3NkT, and its heat capacity is 3Nk. Heat Heat Q is energy transferred from one body to another by thermal conduction (by molecular contact), electromagnetic radiation, or convection (bulk motion of a gas or liquid) – caused by a difference in temperature Simulation of thermal convection. Red hues designate hot areas, while regions with blue hues are cold. A hot, less-dense lower boundary layer sends plumes of hot material upwards, and likewise, cold material from the top moves downwards. This illustration is taken from a model of convection in the Earth's mantle. The first law of thermodynamics In thermodynamics, work W performed by a closed system is the energy transferred to another system that is measured by the external generalized mechanical constraints on the system. If the total energy inside the system (internal energy) is U, then ∆U = Q + W (energy conservation for a thermodynamic system). The first explicit statement of the first law of thermodynamics, by Rudolf Clausius in 1850, referred to cyclic thermodynamic processes. "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced.” Rudolf Julius Emanuel Clausius (1822 –1888) Compression work Work done by the gas is: W = PA∆s = P ∆V Work done on the gas (assuming equistatic compression) is: W = P ∆V − Vf W = P (V )dV − ZVi Isothermal compression: P = NkT/V V W = NkT ln i Vf Q = ∆U W = W (heat leaves the gas) − − An adiabatic process is any process occurring without gain or loss of heat within a system (i.e. during the process the system is thermodynamically isolated- there is no heat transfer with the surroundings). A key concept in thermodynamics, many rapid chemical and physical processes are described or approximated in this way. Q =0, ∆U = W P = NkT/V f dU = NkdT = P dV 2 − f dT dV = VTf/2 = const 2 T − V PVγ = const γ =(f + 2)/f (adiabatic exponent) Heat capacity Heat capacity C is the measurable physical quantity that shows the amount of heat required to change a substance's temperature by a given amount. Specific heat capacity c is the heat capacity per unit mass. Q ∆U W C C = − c = ⌘ ∆T ∆T m Heat capacity at constant volume (W=0): ∆U @U CV = = ∆T V @T V ✓ ◆ ✓ ◆ Heat capacity at constant pressure: ∆U + P ∆V @U @V CP = = + P ∆T P @T P @T P ✓ ◆ ✓ ◆ ✓ ◆ If the system stores thermal energy only in “quadratic” degrees of freedom: @ NfkT Nfk CV = = @T 2 2 … if f does not depend on T… ✓ ◆ + vibration + rotation CV /R translation Idealized plot of the molar specific heat of a diatomic gas against temperature. It agrees with the value (7/2)R predicted by equipartition at high temperatures (where R is the gas constant), but decreases to (5/2)R and then (3/2)R at lower temperatures, as the vibrational and rotational modes of motion are "frozen out". The failure of the equipartition theorem led to a paradox that was only resolved by quantum mechanics. For most molecules, the transitional temperature Trot is much less than room temperature, whereas Tvib can be ten times larger or more. A typical example is carbon monoxide, CO, for which Trot ≈ 2.8 K and Tvib ≈ 3103 K. For molecules with very large or weakly bound atoms, Tvib can be close to room temperature (about 300 K). For solids: rule of Dulong and Petit (1819) C /R 3 V ! For the ideal gas: @V @ NkT Nk = = @T @T P P ✓ ◆P ✓ ◆ CP = CV + Nk = CV + Rn.
Recommended publications
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Ideal Gasses Is Known As the Ideal Gas Law
    ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T .
    [Show full text]
  • Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles
    Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles. I. Algorithmic Details Aleksandar Donev,1, 2 Salvatore Torquato,1, 2, 3, ∗ and Frank H. Stillinger3 1Program in Applied and Computational Mathematics, Princeton University, Princeton NJ 08544 2Materials Institute, Princeton University, Princeton NJ 08544 3Department of Chemistry, Princeton University, Princeton NJ 08544 Abstract In this first part of a series of two papers, we present in considerable detail a collision-driven molecular dynamics algorithm for a system of nonspherical particles, within a parallelepiped sim- ulation domain, under both periodic or hard-wall boundary conditions. The algorithm extends previous event-driven molecular dynamics algorithms for spheres, and is most efficient when ap- plied to systems of particles with relatively small aspect ratios and with small variations in size. We present a novel partial-update near-neighbor list (NNL) algorithm that is superior to previ- ous algorithms at high densities, without compromising the correctness of the algorithm. This efficiency of the algorithm is further increased for systems of very aspherical particles by using bounding sphere complexes (BSC). These techniques will be useful in any particle-based simula- tion, including Monte Carlo and time-driven molecular dynamics. Additionally, we allow for a nonvanishing rate of deformation of the boundary, which can be used to model macroscopic strain and also alleviate boundary effects for small systems. In the second part of this series of papers we specialize the algorithm to systems of ellipses and ellipsoids and present performance results for our implementation, demonstrating the practical utility of the algorithm. ∗ Electronic address: [email protected] 1 I.
    [Show full text]
  • Fastest Frozen Temperature for a Thermodynamic System
    Fastest Frozen Temperature for a Thermodynamic System X. Y. Zhou, Z. Q. Yang, X. R. Tang, X. Wang1 and Q. H. Liu1, 2, ∗ 1School for Theoretical Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China 2Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University,Changsha 410081, China For a thermodynamic system obeying both the equipartition theorem in high temperature and the third law in low temperature, the curve showing relationship between the specific heat and the temperature has two common behaviors: it terminates at zero when the temperature is zero Kelvin and converges to a constant value of specific heat as temperature is higher and higher. Since it is always possible to find the characteristic temperature TC to mark the excited temperature as the specific heat almost reaches the equipartition value, it is also reasonable to find a temperature in low temperature interval, complementary to TC . The present study reports a possibly universal existence of the such a temperature #, defined by that at which the specific heat falls fastest along with decrease of the temperature. For the Debye model of solids, below the temperature # the Debye's law manifest itself. PACS numbers: I. INTRODUCTION A thermodynamic system usually obeys two laws in opposite limits of temperature; in high temperature the equipar- tition theorem works and in low temperature the third law of thermodynamics holds. From the shape of a curve showing relationship between the specific heat and the temperature, the behaviors in these two limits are qualitatively clear: in high temperature it approaches to a constant whereas it goes over to zero during the temperature is lowering to the zero Kelvin.
    [Show full text]
  • Atkins' Physical Chemistry
    Statistical thermodynamics 2: 17 applications In this chapter we apply the concepts of statistical thermodynamics to the calculation of Fundamental relations chemically significant quantities. First, we establish the relations between thermodynamic 17.1 functions and partition functions. Next, we show that the molecular partition function can be The thermodynamic functions factorized into contributions from each mode of motion and establish the formulas for the 17.2 The molecular partition partition functions for translational, rotational, and vibrational modes of motion and the con- function tribution of electronic excitation. These contributions can be calculated from spectroscopic data. Finally, we turn to specific applications, which include the mean energies of modes of Using statistical motion, the heat capacities of substances, and residual entropies. In the final section, we thermodynamics see how to calculate the equilibrium constant of a reaction and through that calculation 17.3 Mean energies understand some of the molecular features that determine the magnitudes of equilibrium constants and their variation with temperature. 17.4 Heat capacities 17.5 Equations of state 17.6 Molecular interactions in A partition function is the bridge between thermodynamics, spectroscopy, and liquids quantum mechanics. Once it is known, a partition function can be used to calculate thermodynamic functions, heat capacities, entropies, and equilibrium constants. It 17.7 Residual entropies also sheds light on the significance of these properties. 17.8 Equilibrium constants Checklist of key ideas Fundamental relations Further reading Discussion questions In this section we see how to obtain any thermodynamic function once we know the Exercises partition function. Then we see how to calculate the molecular partition function, and Problems through that the thermodynamic functions, from spectroscopic data.
    [Show full text]
  • Exercise 18.4 the Ideal Gas Law Derived
    9/13/2015 Ch 18 HW Ch 18 HW Due: 11:59pm on Monday, September 14, 2015 To understand how points are awarded, read the Grading Policy for this assignment. Exercise 18.4 ∘ A 3.00­L tank contains air at 3.00 atm and 20.0 C. The tank is sealed and cooled until the pressure is 1.00 atm. Part A What is the temperature then in degrees Celsius? Assume that the volume of the tank is constant. ANSWER: ∘ T = ­175 C Correct Part B If the temperature is kept at the value found in part A and the gas is compressed, what is the volume when the pressure again becomes 3.00 atm? ANSWER: V = 1.00 L Correct The Ideal Gas Law Derived The ideal gas law, discovered experimentally, is an equation of state that relates the observable state variables of the gas­­pressure, temperature, and density (or quantity per volume): pV = NkBT (or pV = nRT ), where N is the number of atoms, n is the number of moles, and R and kB are ideal gas constants such that R = NA kB, where NA is Avogadro's number. In this problem, you should use Boltzmann's constant instead of the gas constant R. Remarkably, the pressure does not depend on the mass of the gas particles. Why don't heavier gas particles generate more pressure? This puzzle was explained by making a key assumption about the connection between the microscopic world and the macroscopic temperature T . This assumption is called the Equipartition Theorem. The Equipartition Theorem states that the average energy associated with each degree of freedom in a system at T 1 k T k = 1.38 × 10−23 J/K absolute temperature is 2 B , where B is Boltzmann's constant.
    [Show full text]
  • Lecture 8 - Dec 2, 2013 Thermodynamics of Earth and Cosmos; Overview of the Course
    Physics 5D - Lecture 8 - Dec 2, 2013 Thermodynamics of Earth and Cosmos; Overview of the Course Reminder: the Final Exam is next Wednesday December 11, 4:00-7:00 pm, here in Thimann Lec 3. You can bring with you two sheets of paper with any formulas or other notes you like. A PracticeFinalExam is at http://physics.ucsc.edu/~joel/Phys5D The Physics Department has elected to use the new eCommons Evaluations System to collect end of the quarter instructor evaluations from students in our courses. All students in our courses will have access to the evaluation tool in eCommons, whether or not the instructor used an eCommons site for course work. Students will receive an email from the department when the evaluation survey is available. The email will provide information regarding the evaluation as well as a link to the evaluation in eCommons. Students can click the link, login to eCommons and find the evaluation to take and submit. Alternately, students can login to ecommons.ucsc.edu and click the Evaluation System tool to see current available evaluations. Monday, December 2, 13 20-8 Heat Death of the Universe If we look at the universe as a whole, it seems inevitable that, as more and more energy is converted to unavailable forms, the total entropy S will increase and the ability to do work anywhere will gradually decrease. This is called the “heat death of the universe”. It was a popular theme in the late 19th century, after physicists had discovered the 2nd Law of Thermodynamics. Lord Kelvin calculated that the sun could only shine for about 20 million years, based on the idea that its energy came from gravitational contraction.
    [Show full text]
  • Thermodynamic Temperature
    Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature.
    [Show full text]
  • Kinetics and Atmospheric Chemistry
    12/9/2017 Kinetics and Atmospheric Chemistry Edward Dunlea, Jose-Luis Jimenez Atmospheric Chemistry CHEM-5151/ATOC-5151 Required reading: Finlayson-Pitts and Pitts Chapter 5 Recommended reading: Jacob, Chapter 9 Other reading: Seinfeld and Pandis 3.5 General Outline of Next 3 Lectures • Intro = General introduction – Quick review of thermodynamics • Finlayson-Pitts & Pitts, Chapter 5 A. Fundamental Principles of Gas-Phase Kinetics B. Laboratory Techniques for Determining Absolute Rate Constants for Gas-Phase Reactions C. Laboratory Techniques for Determining Relative Rate Constants for Gas-Phase Reactions D. Reactions in Solution E. Laboratory Techniques for Studying Heterogeneous Reactions F. Compilations of Kinetic Data for Atmospheric Reactions 1 12/9/2017 Kinetics and Atmospheric Chemistry • What we’re doing here… – Photochemistry already covered – We will cover gas phase kinetics and heterogeneous reactions – Introductions to a few techniques used for measuring kinetic parameters • What kind of information do we hope to get out of “atmospheric kinetics”? – Predictive ability over species emitted into atmosphere • Which reactions will actually proceed to products? • Which products will they form? • How long will emitted species remain before they react? Competition with photolysis, wash out, etc. • Pare down list of thousands of possible reactions to the ones that really matter – Aiming towards idea practical predictive abilities • Use look up tables to decide if reaction is likely to proceed and determine an “atmospheric lifetime”
    [Show full text]
  • Chemical Examples for the Fit Equations
    Chemical Examples for the Fit Equations The following are just a few of the applications for nonlinear curve fitting. A nice introduction to biological applications of nonlinear curve fitting by Dr. Harvey Motulsky is available on the Web 1. a exp(-bx) f = a e-bx Example: Chemical kinetics first order decay of a reactant. A → P gives [A] = [A] o e-kt a(1-exp(-bx)) f = a (1 - e-bx ) 1.2 1 0.8 0.6 0.4 a(1-exp(-bx)) 0.2 0 0 2 4x 6 8 10 Example: Chemical kinetics first order increase of a product. A → P gives [P] = [P] o(1 - e-kt ) a(1-exp(-b(x-c))) f = a (1 - e-b(x-c) ) Example: This form is the same function as above with an x axis offset. For first order kinetics a delay in the time of the start of the reaction of t o would give the rate law [P] = [P] o(1 - e-k(t-to) ) where t o = c in the fitting function. a(1-exp(-bx)) + c f = a (1 - e-bx ) + c Example: This form introduces a constant offset for first order type growth. For a first order chemical reaction [P] = [P] o(1 - e-kt ) + c where the offset, c, is due to miscalibration or an instrumental artifact. This form can be used interchangeably with f = A e-bx + C as given in the next function with A = -a and C = a+c. a exp(-bx) + c f = a e-bx + c 1 0.8 0.6 0.4 a exp(-bx) + c a exp(-bx) 0.2 0 0 2 4x 6 8 10 Example: Chemical kinetics first order decay of a reactant towards equilibrium.
    [Show full text]
  • Kinetic Energy of a Free Quantum Brownian Particle
    entropy Article Kinetic Energy of a Free Quantum Brownian Particle Paweł Bialas 1 and Jerzy Łuczka 1,2,* ID 1 Institute of Physics, University of Silesia, 41-500 Chorzów, Poland; [email protected] 2 Silesian Center for Education and Interdisciplinary Research, University of Silesia, 41-500 Chorzów, Poland * Correspondence: [email protected] Received: 29 December 2017; Accepted: 9 February 2018; Published: 12 February 2018 Abstract: We consider a paradigmatic model of a quantum Brownian particle coupled to a thermostat consisting of harmonic oscillators. In the framework of a generalized Langevin equation, the memory (damping) kernel is assumed to be in the form of exponentially-decaying oscillations. We discuss a quantum counterpart of the equipartition energy theorem for a free Brownian particle in a thermal equilibrium state. We conclude that the average kinetic energy of the Brownian particle is equal to thermally-averaged kinetic energy per one degree of freedom of oscillators of the environment, additionally averaged over all possible oscillators’ frequencies distributed according to some probability density in which details of the particle-environment interaction are present via the parameters of the damping kernel. Keywords: quantum Brownian motion; kinetic energy; equipartition theorem 1. Introduction One of the enduring milestones of classical statistical physics is the theorem of the equipartition of energy [1], which states that energy is shared equally amongst all energetically-accessible degrees of freedom of a system and relates average energy to the temperature T of the system. In particular, for each degree of freedom, the average kinetic energy is equal to Ek = kBT/2, where kB is the Boltzmann constant.
    [Show full text]
  • Section 2 Introduction to Statistical Mechanics
    Section 2 Introduction to Statistical Mechanics 2.1 Introducing entropy 2.1.1 Boltzmann’s formula A very important thermodynamic concept is that of entropy S. Entropy is a function of state, like the internal energy. It measures the relative degree of order (as opposed to disorder) of the system when in this state. An understanding of the meaning of entropy thus requires some appreciation of the way systems can be described microscopically. This connection between thermodynamics and statistical mechanics is enshrined in the formula due to Boltzmann and Planck: S = k ln Ω where Ω is the number of microstates accessible to the system (the meaning of that phrase to be explained). We will first try to explain what a microstate is and how we count them. This leads to a statement of the second law of thermodynamics, which as we shall see has to do with maximising the entropy of an isolated system. As a thermodynamic function of state, entropy is easy to understand. Entropy changes of a system are intimately connected with heat flow into it. In an infinitesimal reversible process dQ = TdS; the heat flowing into the system is the product of the increment in entropy and the temperature. Thus while heat is not a function of state entropy is. 2.2 The spin 1/2 paramagnet as a model system Here we introduce the concepts of microstate, distribution, average distribution and the relationship to entropy using a model system. This treatment is intended to complement that of Guenault (chapter 1) which is very clear and which you must read.
    [Show full text]