NVEO 2018, Volume 5, Issue 4

CONTENTS

1. Essential oils of Anatolian – An update / Pages: 1-28 Kemal Hüsnü Can Başer and Neşe Kırımer

2. Headspace-SPME/GC-MS Analysis of the Anethum graveolens L. volatiles from Saudi Arabia with different fiber coatings / Pages: 29-34 Shaza Al-Massarani, Nurhayat Tabanca, Nida Nayyar Farshori

3. Characterization of Opuntia ficus-indica (L.) Mill. volatiles and antibacterial evaluation / Pages: 35-38 Ayse Esra Karadağ, Betül Demirci, Derya Çiçek Polat , Mehmet Evren Okur

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

REVIEW Essential oils of Anatolian Lamiaceae - An update

Kemal Hüsnü Can Başer1* and Neşe Kırımer2

1 Department of Pharmacognosy, Near East University, Faculty of Pharmacy, Lefkoşa (Nicosia), N. , Mersin 10, 2Anadolu University Faculty of Pharmacy Department of Pharmacognosy, 26470 Eskişehir, Turkey

*Coresponding author Email: [email protected]

Abstract In the present review, Lamiaceae genera studied for their essential oils during 2006-2017 were investigated and compiled. Acinos, , Ballota, (), Coridothymus, Cyclotrichium, Dorystoechas, Hymenocrater, Hyssopus, Lallemantia, Lavandula, Marrubium, Melissa, , Micromeria, Nepeta, Ocimum, Origanum, Pentapleura, , , Rosmarinus, , , Scutellaria, Sideritis, Stachys, Teucrium, Thymbra, Thymus, Wiedemannia, and Ziziphora species were comparatively listed and grouped referring to their major components. In addition, commercially important culinary and aromatic of Lamiaceae were also highlighted.

Keywords: Lamiaceae, essential oil, aromatic

Introduction

Turkey is situated in geographically between 42°N and 36°N altitudes. She is under the influence of three different climates, namely: Mediterranean, Continental, Oceanic. Her transect is between the sea level and 5137 m (Mt. Ararat). is a peninsula thrusting from east to west. She has land in Anatolia and Thrace being at the junction of Asia and Europe. Turkey covers ca. 0.8 million sq. km. and supports ca. 80 million of human population in the rich flora and fauna. Turkey is at the junction of three phytogeographic regions. Aegean and Mediterranean coastal areas are under the Mediterranean influence. Central and eastern parts enjoy the Irano-Turanian influence and the northern parts are affected by the Euro-Siberian phytogeography. Flora of Turkey is well documented thanks to the efforts of the late Prof. P.H. Davis of Edinburgh University. He had edited and published the Flora of Turkey and the East Aegean Islands in nine volumes and one supplement between 1965 and 1988. Volume 11 (second supplement) was edited by Profs. Tuna Ekim, Adil Güner, Neriman Özhatay and K. Hüsnü Can Başer and published by Edinburgh University press in 2000 (distributed in April 2001). Publication of the Illustrated Flora of Turkey (in Turkish) [Resimli Türkiye Florası] started in 2014, to be completed in 2023. Lamiaceae is the third largest family in Turkey with 46 genera, 782 taxa comprising 603 species and 179 subspecies and varieties. 346 taxa (271 species and 75 subspecies and varieties) are endemic. Endemism ratio is ca. 44%. There are 28 hybrids of which 24 are endemic. The largest five genera are as follows: Stachys (118 taxa), Salvia (107 taxa), Sideritis (54 taxa), Phlomis (53 taxa) and Teucrium (49 taxa) (Celep & Dirmenci, 2017). Extensive research has been carried out into studying the chemical composition of essential oils of the Lamiaceae plants of Turkey by our group (Başer, 1993; Başer & Kırımer, 2006).

1

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

So far, essential oils of 323 taxa (281 species) belonging to 32 genera in Lamiaceae have been investigated. In this present work, Lamiaceae genera studied for their essential oils are Acinos, Ajuga, Ballota, Calamintha (Clinopodium), Coridothymus, Cyclotrichium, Dorystoechas, Hymenocrater, Hyssopus, Lallemantia, Lavandula, Marrubium, Melissa, Mentha, Micromeria, Nepeta, Ocimum, Origanum, Pentapleura, Perilla, Phlomis, Rosmarinus, Salvia, Satureja, Scutellaria, Sideritis, Stachys, Teucrium, Thymbra, Thymus, Wiedemannia, and Ziziphora species, which were comparatively reviewed and listed. Results and Discussion

The first review on the essentail oil on Lamiaceae species were reported in 2006 (Baser & Kirimer). Recent literature, which cover the years 2006 and 2017 are summarized in this present work as below. Ajuga laxmannii (Murray) Benth. Ajuga is represented by 23 taxa including 13 species in Turkey. Endemism ratio is 46% on species basis; 30% on taxon basis. Recently, essential oil composition of Ajuga laxmannii was reported.

Table 1. Essential oil composition of A. laxmannii Sample Main Compounds % References A nonacosane 18, heptacosane 12, hexahydrofarnesyl acetone 11 Köse et al., 2015 B hexadecanoic acid 21, dodecanoic acid 12, hexahydrofarnesyl acetone 9 C phytol 13, hexadecanoic acid 10, hexahydrofarnesyl acetone 9 D hexahydrofarnesyl acetone 9, hexadecanoic acid 9 E hexadecanoic acid 14, phytol 13

Main components in the essential oil of the aerial parts of Ajuga orientalis L. from Erzurum were reported as phytol (36.7 %), n-hexadecanoic acid (14.2 %) and dodecanoic acid (12.2 %) (Kücükbay et al, 2013). Ballota spp. Ballota is represented by 18 taxa including 12 species. Endemism ratio on species basis is 67%; on taxon basis 61%.

Table 2. Ballota nigra essential oils Species Main Compounds % References B. nigra subsp. uncinata caryophyllene oxide 21, hexadecanoic acid 20, β-caryophyllene 19 Kaya et al., 2017 B. nigra subsp. anatolica hexadecanoic acid 41, β-bisabolene 13

The volatiles of Ballota nigra subsp. anatolica P.H. Davis and from Kütahya were evaluated and 59 components were characterized, where hexenal (17.6%), germacrene D (6.7%) and β-caryophyllene (8.8%) were the main compound (Arikaya, 2017). Calamintha spp. Calamintha has recently been merged with Clinopodium and the status of the following species mentioned in the table to Clinopodium nepeta subsp. nepeta, Clinopodium nepeta subsp. glandulosum, Clinopodium menthifolium subsp. menthifolium, Clinopodium menthifolium subsp. ascendens. The genus Clinopodium is represented by 21 species and altogether 32 taxa in Turkey. 12 taxa are endemic.

2

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Table 3. Clinopodium nepeta essential oils Species Main Compounds % References C. nepeta cis-piperitone epoxide 49, piperitenone oxide 22, 14 Gormez et al., 2015 caryophylleneoxide 34, β-caryophyllene 20 Ceker et al., 2013 C. nepeta subsp. glandulosa pulegone 20, menthone 10 Alan et al., 2011 trans-piperitone oxide 34, limonene 17, piperitenone oxide 11 pulegone 54, menthone 16 Demirci B. et al., 2011 piperitone oxide 34, piperitenone oxide 16, isomenthone 11 Yasar et al., 2011 C. sylvatica subsp. sylvatica cis-piperitone oxide 46, terpinen-4-ol 9 Alan et al., 2010 C. sylvatica subsp. ascendens cis-piperitone oxide 22, limonene 16, piperitenone oxide 11 Alan et al., 2010

Cyclotrichium niveum (Boiss.) Manden & Scheng This species is characterized by pulegone (60-77%) as main constituent in the oil (Cetinus et al., 2007; Inan et al., 2014; Inan & Tel, 2014). Dorystaechas hastata Boiss. & Heldr. ex Benth. Dorystaechas hastata is a monotypic endemic species distributed only in Antalya region of Turkey. 1,8- Cineole 26%, borneol 19%, camphor 17% were found as main constituents in the oil (Oz et al., 2012; Baser & Ozturk, 1992). L.

Table 4. Hyssopus officinalis essential oils Main Compounds % References isopinocamphone 57, β-pinene 7, terpinene-4-ol 7, pinocarvone 6 Kızıl et al., 2010a β-phellandrene 78, β-myrcene 20 Salman et al., 2015 pinocarvone 27, β-pinene 19, pinocamphone 14, isopinocamphone 14 Kürkçüoğlu et al., 2016 Lallemantia iberica (M.Bieb.) Fisch. & C.A.Mey Germacrene-D 36%, β-caryophyllene 18%, bicyclogermacrene 10% were found as main constituents in the oil from parts (Yuce & Bagci, 2012). Lavandula spp. Lavandula stoechas, the only native Lavandula species, is represented by two subsp. stoechas and cariensis in Turkey (Davis, 1982). Other Lavandula species mentioned are introduced taxa.

Table 5. Lavandula spp. essential oils Species Main Compounds % References L. x intermedia 43, linalyl acetate 34, isoborneol 9 Salman et al., 2015 L. stoechas subsp. stoechas (leaves) α-fenchone 42, 1,8-cineole 16, camphor 12 Kirmizibekmez et al., 2009 L. stoechas subsp. stoechas (flowers) α-fenchone 39, myrtenyl acetate 10 Kirmizibekmez et al., 2009 L. stoechas subsp. stoechas α-thujone 66, L-camphor 18 Sertkaya et al., 2010

3

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Oils from cultivated samples revealed T-cadinol (17-9%), borneol (14-9%) ve δ-3-carene (9%) as main constituents while those from micropropagated samples linalool (15-22%), lavandulyl acetate (13-15%), T- cadinol (10-11%) ve linalyl acetate (5-15%) were found as main constituents of L. angustifolia (Kırımer et al, 2017). Marrubium spp. Marrubium is represented by 21 species and altogether 27 taxa in Turkey. The rate of endemism on species basis is 52%, on taxon basis 63% (Celep & Dirmenci, 2017). Table 6. Marrubium spp. essential oils

Species Main Compounds % References M. anisodon (Z)-β-farnesene 20, β-caryophyllene 13 Kırımer et al., 2015 M. bourgaei subsp. bourgaei hexadecanoic acid 33, hexahydrofarnesyl asetone 6 Kürkçüoğlu et al., 2007 M. globosum subsp. globosum spathulenol 16, β-caryophyllene 9 Sarıkurkcu et al., 2008

Melissa officinalis L. Oil samples from micropropagated plants via tissue culture showed geranial (43-45%), neral (27-30%) as main constituents (Mokhtarzadeh et al, 2017). Mentha spp. The genus Mentha is represented in Turkey by 6 species and altogether 15 taxa including 5 hybrids (Baser et al, 2012). Recent results on mint oils of Turkey are represented here. Previously communicated results on Mentha oils did not include M. x rotundifolia. Here, we incorporate those results as well. Table 7. Mentha spp. essential oils

Species Main Compounds % References M. aquatica 2 samples: menthofuran 35-58 Baser et al., 2012 3 samples: menthofuran 14-30 1,8-cineole 15-27 M. x dumerotum menthofuran 28, menthyl acetate 18, β-caryophyllene 12, menthol 9 Baser et al., 2012 40, eucalyptol 14, dihydrocarvone 13, limonene 8 Onaran et al., 2014; Yilar et al., 2013 M. longifolia subsp. longifolia menthone 19, pulegone 12, piperitone 11 Okut et al., 2017 An unknown compound with RI: 2209 at GC (35%), 1,8-cineole 15 Baser et al., 2012 carvone 52, limonene 14, 1,8-cineole 13 Baser et al., 2012 M. piperita menthol 38, menthol 36, neomenthol 7 Kızıl et al., 2010b isomenthone 50, menthol 22, menthofuran 5 Orhan et al., 2011 M. pulegium 11 samples: isomenthone 29-74 Baser et al., 2012 pulegone 10-57 One sample: pulegone 36, menthone 34 One sample: piperitone 95 M. x rotundifolia piperitenone oxide 64 Baser et al., 2012 α-pinene 4 M. spicata carvone 75, limonene 8 Orhan et al., 2011 carvone 75, limonene 8 Kızıl et al., 2010b carvone 60, limonene 10, 1,8-cineole 7 Sertkaya et al., 2010

4

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

M. spicata subsp. spicata 7 samples: carvone 59-77, limonene 2–23, 1,8-cineole 1-7 Baser et al., 2012 One sample: isomenthone 32, cis-piperitone oxide 30, menthone 14 carvone 48,1,8-cineole 21 Sarer et al., 2011 M. spicata subsp. tomentosa 13 samples: piperitenone oxide 1-74, trans-piperitone oxide 0-61, cis- Baser et al., 2012 piperitone oxide 0-11, 1,8-cineole 1-9 One sample: isopulegyl acetate 30, isopulegol 21, pulegone 15 M. suaveolens piperitenone oxide 63-77, limonene 2-6 Baser et al., 2012 M. X villosa-nervata trans-piperitone oxide 58-76, piperitenone oxide 2-13, 1,8-cineole 1-7 Baser et al., 2012

Micromeria spp. Micromeria is represented by 9 species and altogether 13 taxa of which 8 are endemic in Turkey (Duman & Dirmenci, 2017). Recent results on Micromeria essential oils are as follows.

Table 8. Micromeria spp. essential oils Species Main Compounds % References

M. congesta piperitone oxide 40, pulegone 24 Herken et al., 2012 M. fruticosa pulegone 57-61, isomenthone 15-19, piperitenone 7-9, β-pinene 1-4, β- Arslan, 2012 caryophyllene 1-2, piperitone tr-2

Nepeta spp. Nepeta is represented by 39 species and altogether 46 taxa in the flora of Turkey. The rate of endemism on species basis is 44% (Celep & Dirmenci, 2017). The following table shows the results of recent studies on the essential oils of Nepeta taxa of Turkey.

Table 9. Nepeta spp. essential oils Species Main Compounds % References N. baytopii 1,8-cineole 23, nepetalactone 13 Kilic et al., 2013 N. cataria nepetalactone 28, 1,8-cineole 11, germacrene D 9 Kilic et al., 2013 N. conferta p-cymene 26, eucalyptol 10 Yayli et al., 2014 N. congesta var. congesta 1,8-cineole 30, germacrene D 20, sabinene 10 Kaya et al., 2007 N. fissa 1,8-cineole 24, nepetalactone 18 Kilic et al., 2013 N. italica linalool 42, T-cadinol 21 Hasimi et al., 2015 N. meyeri 4aα,7α,7aβ-nepetalactone 83, 4aα,7α,7aα-nepetalactone 9 Mutlu et al., 2010 N. nuda subsp. albiflora 4aα,7α,7αβ-nepetalactone 74, 2(1H)-naphthalenone, octahydro- Bozok et al., 2017 8a-methyl-trans- 10 N. nuda subsp. nuda camphor 24, 1,8-cineole 21, borneol 19 Kilic et al., 2011 N. nuda 4aα,7β,7aα-nepetalactone 18, germacrene 16, elemol 14, β- Gormez et al., 2013 caryophyllene 9 N. transcaucasica 4aα,7α,7aβ-nepetalactone 40, 4aα,7α,7aα-nepetalactone 28, Iscan et al., 2011) germacrene D 16

Ocimum basilicum L. Main constituents in the oils from , and branches were found as follows: Leaves: estragole 53%, limonene 14% and p-cymene 2%; flowers: estragole 58% and limonene 19%, branches: apiole 50%, estragole 16% and apiole 9% (Chalchat & Ozcan, 2008).

5

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

In two cultivated samples linalool 40-76%, 1,8-cineole 0-18%, (E)-methyl cinnamate 1-13% and -cadinene 1- 12% were found as main constituents (Orhan et al., 2011; Karaman et al., 2008). Giachino et al. reported the existence of 7 genotypes in their study with 14 O. basilicum samples. Main compounds found in the oild of these genotypes were as follows: linalool, methyl chavicol, citral/methyl chavicol, methyl eugenol, methyl cinnamate/linalool, linalool/methyl eugenol, methyl chavicol/linalool (Giachino et al., 2014). Telci et al. reported the occurrence of linalool, citral and methyl chavicol in three genotypes (Telci et al., 2006). A study involving hydrodistillation with fresh samples resulted in the characterization of linalool 41%, γ- cadinene 10%, methyl chavicol 10% and germacrene D 9%. Results with steam distillation indicated linalool 36%, (E)-methyl cinnamate 17%, eugenol 15% and β-sesquiphellandrene 9% as main constituents (Onar et al., 2010). Origanum spp. According to recent results, Origanum is represented in Turkey by 27 species and altogether 31 taxa. The rate of endemism on species basis is 67%, on taxon basis 58% (Celep & Dirmenci, 2017).

Table 10. Origanum spp. essential oils

Species Main Compounds % References O. acutidens m-cymene 40*, allo-aromadendrene 25, aromadendrene 12 Yilmaz, H. et al., 2017 87, linalool acetate 2, p-cymene 2, borneol 2 Tozlu, 2011 carvacrol 87, p-cymene 2, borneol 2, linalool acetate 2 Kordali et al., 2008 O. bilgeri carvacrol 93, p-cymene 2, borneol 2, -terpinene 2 Koc, S. et al., 20013 carvacrol 85, p-cymene 4, ɣ-terpinene 3, borneol 2 Kose et al., 2013 O. brevidens carvacrol 72, carvone 9 Yilmaz, H. et al., 2017 O. haussknechtii aromadendrene 24, carvacrol 16, allo-aromadendrene 15, α- Yilmaz, H. et al., 2017 himachalene 12 O. husnucanbaseri cis-β-terpineol 24, menth-3-en-8-ol 23, menthone 13 Yilmaz, H. et al., 2017 borneol 13-15, terpinen-4-ol 11-12, α-terpineol 12-11, trans- sabinenehydrate 10-12 Uysal et al., 2010 O. hypericifolium p-cymene 43, carvacrol 32, ϒ-terpinene 8 Celik, A. et al., 2010 cymene 34, carvacrol 22, 20. ɣ-terpinene 14 Ili & Keskin, 2013 O. leptocladum T-muurolene 20, p-cymene 17, borneol 16 Yilmaz, H. et al., 2017 O. saccatum p-cymene 83, p-cymene-8-ol 1, carvacrol 1 Ozcan & Chalchat, 2009 O. rotundifolium isopulegyl acetate 20, aromadendrene 16, limonene oxide 15, Yilmaz, H. et al., 2017 viridiflorol 10 *It is unusual to find m-cymene in the absence of p-cymene as a major constituent. This must be read as p-cymene. Recent literature information on commercial Origanum species are shown in the following table. In a study, DNA data have indicated that the status of O. majorana recorded in the Flora of Turkey must be changed to O. dubium. Therefore, all the previous literature on the oils of O. majorana rich in carvacrol from Turkey must be read as O. dubium (Lukas et al., 2013).

6

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Table 11. Origanum spp. essential oils Species Main Compounds % References O. dubium carvacrol 63, ɣ-terpinene 11, p-cymene 9 Maral et al., 2017. O. majorana carvacrol 53, linalool 45 Erdogan A. & Ozkan, 2017 carvacrol 80, ɣ-terpinene 7 Orhan et al., 2011 linalool 88, thymol 12 Karaborklu et al., 2011 O. minutiflorum carvacrol 79, p-cymene 8 Ozkum et al., 2010 micropropagation: carvacrol 86, p-cymene 4, ɣ-terpinene 4 carvacrol 98 Oz et al., 2012 carvacrol 74, p-cymene 7 Altundag et al., 2011 O. onites carvacrol 68, ɣ-terpinene 15 Orhan et al., 2011 carvacrol 84-89, ɣ-terpinene 3-6 Ozkan, G. et al, 2010a carvacrol 70, linalool 12, thymol 9 Ayvaz et al, 2010 carvacrol 68, p-cymene 11, ɣ-terpinene 7 Sertkaya et al, 2010 carvacrol 83, thymol 13 Gormez, O. et al, 2014 carvacrol 47, p-cymene 16, ɣ-terpinene 9, myrcene 9 Yaylı et al., 2014 carvacrol 81, linalool 6 Koca & Cevikbas, 2015 carvacrol 64, linalool 14, p-cymene 7 Bostancıoglu et al., 2012 carvacrol 57, ɣ-terpinene 9, linalool 8, p-cymene 8 Atak et al., 2016 13 samples: carvacrol 65-81, ɣ-terpinene 4-9, p-cymene 2-6 Tonk et al., 2010 One sample: thymol 66, carvacrol 6, υ-terpinene 5 O. vulgare subsp. hirtum 20 samples: carvacrol 8-83, thymol 0.3-60, p-cymene 6-31 Esen et al., 2007 20 samples, cultivated: carvacrol 5-89, thymol 0.3-68, ϒ-terpinene 3-20, p-cymene 4-32 carvacrol 61, linalool 9, p-cymene 7 Maral et al., 2017

Table 12. exports of Turkey (TUIK 2016): Kekik 2011 2016 Ton 13.112 17.085 USD ($) 29.721 63.351 Unit Export Value ($/kg) 2.3 3.7

Table 13. Cultivation areas and production in Turkey (TUIK 2016): Year Cultivation Areas (Hectare) Production (Ton) 2009 8.496 12.329 2012 9.428 11.598 2016 12.112 14.724

Phlomis spp. Phlomis is represented in Turkey by 33 species and altogether 53 taxa. The rate of endemism on species basis is 48%, on taxon basis 57% (Celep & Dirmenci, 2017). Recent results are summarized in the following table.

7

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Table 14. Phlomis spp. essential oils Species Main Compounds % References P. amanica 8(14),15-isopimaradien-11α-ol 23, germacrene-D 15, Demirci B. et al., 2009 bicyclogermacrene 11 P. armeniaca hexadecanoic acid 5, pentacosane 3, hexahydrofarnesyl acetone 2, Demirci B. et al., 2009 spathulenol 2, heptacosane 2 germacrene D 27-23, (E)-2-hexenal 10-12, β-caryophyllene 12-17 Sarikaya & Fakir, 2016 P. bourgaei β-caryophyllene 15-22, α-cubebene 14-16, germacrene-D 11-15 Sarikaya & Fakir, 2016 germacrene D 11, β-caryophyllene 11, manoyl oxide 4 Başer et al., 2008 P. chimerae β-caryophyllene 35, germacrene D 16, caryophyllene oxide 6 Başer et al., 2008 P. grandiflora var. grandiflora β-eudesmol 61-62, β-curcumene 3-6, ar-curcumene 2 Ozcan et al., 2011 β-eudesmol 42, α-eudesmol 16, ar-curcumene 3 Demirci F. et al., 2008 α-pinene 19-26, α-cedrene 19-28, α-curcumene 12-14 Sarikaya & Fakir, 2016 P. lunarifolia hexadecanoic acid 10, β-caryophyllene 9, germacrene-D 8 Demirci B. et al., 2009 P. lycia germacrene-D 16, β-caryophyllene 18, limonene 14 Sarikaya & Fakir, 2016 P. monocephala 8(14),15-isopimaradien-11α-ol 13, germacrene D 6, manoyl oxide 6 Demirci B. et al., 2009 P. nissoli limonene 16-24 , β-caryophyllene 10-13, germacrene-D 12-21 Sarikaya & Fakir, 2016 germacrene D 34, bicyclogermacrene 15, (Z)-β-farnesene 11, β- Kirimer et al., 2006 caryophyllene 9 P. pungens var. pungens (E)-2-hexenal 13-18, vinyl amyl carbinol 13-19, germacrene-D 8-10 Sarikaya & Fakir, 2016 P. rigida β-caryophyllene 31-39, β-selinene 13-15, caryophyllene oxide 4-5 Demirci B. et al., 2006 P. russelina β-caryophyllene 22, germacrene-D 15, caryophyllene oxide 8 Demirci F. et al., 2008 P. samia germacrene D 34, β-caryophyllene 6 Demirci B. et al., 2006 germacrene-D 19-23, β-caryophyllene 14-15, α-copaene 10-11 Sarikaya & Fakir, 2016 P. sieheana germacrene D 16, β-caryophyllene 11, α-pinene 8 Ozdemir FA et al., 2017 spathulenol 3, hexahydrofarnesyl acetone 2, hexadecanoic acid 2 Demirci B. et al., 2009 P. X vuralii caryophyllene oxide 17, diterpene 8,12-epoxylabd-14-en-13-ol 6 Başer et al., 2008

Rosmarinus officinalis L.

Table 15. Rosmarinus officinalis essential oils Main Compounds % References 1,8-cineole 21, camphor 20, borneol 9 Atak et al., 2016 1,8-cineole 12-61, camphor 6-17, verbenone tr-45, borneol 2-9, α-pinene 1-14, α-terpineol 1-7 Yesil Celiktas et al., 2007 camphor 17, borneol 11, 1,8-cineole 10, linalool 6, α-pinene 6 (dried) Bagci et al., 2017 camphor 16, borneol 12, 1,8-cineole 8, linalool 8, bornyl acetate 8, verbenone 6 (fresh, cultivated) Bagci et al., 2017 camphor 15, 1,8-cineole 14, α-pinene 10, verbenone 9, borneol 6 (fresh) Bagci et al., 2017 camphor 26, 1,8-cineole 18, α-pinene 13, camphene 8 (dried, cultivated) Bagci et al., 2017 camphor 35, 1,8-cineole 25, borneol 23, α-pinene 7 Salman et al., 2015 borneol 26, verbenone 24, camphor 20, 1,8-cineole 6 Gudek & Cetin, 2016

8

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Salvia spp. In the Flora of Turkey, there are 100 species and 107 taxa. Rate of endemism on taxon basis is 54% (Celep & Dirmenci, 2017). The following table summarizes the recent work on the essential oils of Salvia taxa of Turkish origin.

Table 16. Salvia spp. essential oils Species Main Compounds % References S. adenophylla α-pinene 16, β-pinene 14, α-terpineol 5, borneol 5 Kaya et al., 2017b S. aethiopis α-copaene 18, α-cubebene 12, (-)-spathulenol 12, germacrene-D 8, α- Goze et al., 2016 limonene 7, ledol 7 S. aramiensis 1,8-cineole 46, β-pinene 10, camphor 9, α-pinene 5 Kelen & Tepe, 2008 S: aucheri var. aucheri 1,8-cineole 31, camphor 21, borneol 9, α-pinene 8, camphene 8, β- Kelen & Tepe, 2008 pinene 6 S. ballsiana caryophyllene oxide 34, β-caryophyllene 8, α-pinene 8 Temel et al., 2016 S. blepharochlaena 1,8-cineol 27, cis-β-ocimene 15, β-pinene 8, camphor 6, camphene 6 Goze et al., 2016 S. bracteata caryophyllene oxide 18, β-caryophyllene 17, β-pinene 11 Doğan et el., 2014 S. ceratophylla α-pinene27, β-pinene 16, β-caryophyllene 11, bornyl acetate 6 Baser et al., 2015 α-pinene 25, β-pinene 10, 1,8- cineole 7, α-terpineol 6 Baser et al., 2015 germacrene D 24, α-copaene 20, 1,8-cineole 8, camphor 6 Kılıç, 2016 ɣ-muurolene 11, ɣ-cadinene 6, trans-pinocarvyl acetate 5, α-copaene 5 Gürsoy et al., 2012 S. cilicica spathulenol 24, caryophyllene oxide 15, hexadecanoic acid 10 Tan et al., 2016 S. cryptantha camphor 19, 1,8-cineole 16, borneol 12, viridiflorol 12 Akın et al., 2010 S. cyanescens spathulenol 23, p-cymene 10, 1,8-cineole 9 Temel et al., 2016 S. dicroantha caryophyllene oxide 22, phytol 6, caryophyllenol II 6 Kunduhoglu et al., 2011 S. divaricata α-pinene 17, camphor 10, camphene 7, 1,8-cineole 3 Temel et al., 2016 S. euphratica var. cis-sabinol 22, myrcenyl acetate 17, 1,8-cineole 9 Goze et al., 2016 euphratica camphor 54, 1,8-cineole 17, cryptone 5 Temel et al., 2016 (Syn. S. pseudeuphratica) S. fruticosa 1,8-cineole 59, α-pinene 6, β-pinene 5, β-myrcene 5, camphor 5 Topcu et al., 2013 1,8-cineole 36, camphor 19, thujon 8, β-pinene 6, α-pinene 5, Senol et al., 2011 camphene 6, caryophyllene 5 S. heldreichiana linalool 9, α-pinene 6, 1,8-cineole 6, borneol 6, cryptone 5, linalyl Akin et al., 2010 acetate 5 α-pinene 14 Basalma et al., 2007 S. hydrangea camphor 47, camphene 9, 1,8-cineole 7 Temel et al., 2016 camphor 54, α-humulene 4 Kotan et al., 2008 S. kronenburgii limonene 12, 2-cyclohexen-1-ol 9, trans-verbenol 8, trans-(+)-carveol 7 Kocak & Bagci, 2011 S. limbata spathulenol 30, β-eudesmol 7 Ogutcu et al., 2008 S. macrochlamys β-caryophyllene 26, caryophyllene oxide 22, β-pinene 5 Temel et al., 2016 1,8-cineole 27, borneol 13, camphor 11, caryophyllene oxide 8, β- Tabanca et al., 2006 caryophyllene 7 S. multicaulis caryophyllene oxide 23, spathulenol 13, β-pinene 8 Kilic, 2016 S. nydeggeri α-pinene 16, β-pinene 9, cubebol 6, caryophyllene oxide 6 Temel et al., 2016 S. officinalis (cultivated) 1,8-cineole 35, camphor 30, α-thujone 20 Salman et al., 2015 camphor 20, cis-thujone 20, 1,8-cineole 18, trans-thujone 9 Baydar et al., 2013 camphor 43, 1,8-cineole 24, cis-thujone 16 Baydar et al., 2013

9

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

camphor 27, 1,8-cineole 18, cis-thujone 14, viridiflorol 9 Baydar et al., 2013 camphor 20, linalool 11, linalyl acetate 11, cis-thujone 11, viridiflorol Baydar et al., 2013 11, borneol 8 S. pachystachys β-pinene 24, α-pinene 12, spathulenol 10 Temel et al., 2016 S. palestina caryophyllene oxide 16, (E)-caryophyllene 5 Gursoy et al., 2012 S. pilifera β-pinene 25, myrcene 9, α-humulene 8 Kaya et al., 2017b α-pinene 14, 1,8-cineole 9, trans-thujone 4 Kelen, 2008 S. pisidica camphor 24, sabinol 20, α-thujone 14, 1,8-cineole 6 Ozkan et al., 2010b S. pinnata bornyl acetate 26-43, camphor 12-18, camphene 10-15 Somer et al., 2015 bornyl formate 5-7 S. potentillifolia α-pinene 29, β-pinene 15, 1,8-cineole 7 Kıvrak et al., 2009 S. recognita camphor 42, 1,8-cineole 12, camphene 7 Tabanca et al., 2006 S. rosifolia α-pinene 16-35, 1,8-cineole 17-25, β-pinene 7-14, p-cymene 2-7 Ozek et al., 2010 S. russelli β-pinene 20, 1,8-cineole 10, α-copaene 9, valeranone 8 Temel et al., 2016 thymol 32, α-terpinol 13, γ-terpinene 13 Dogan et al., 2014 S. sclarea germacrene-D 25, β-caryophyllene 16, bicyclogermacrene 10, linalyl Ogutcu et al., 2008 acetate 6 S. sericeo-tomentosa var. sabinyl acetate 80, α-pinene 3, trans-sabinol 3, alcohol 3 Tan et al., 2017 hatayica S. tomentosa β-pinene 37, α-pinene 6 Ulukanlı et al.,2013 1,8-cineole 32, α-pinene 16, borneol 7, β-caryophyllene 5 Haznedaroglu et al., 2013 20 samples: pinene 2-39, β-pinene 2-36, camphor 2-41, β- Karık et al., 2013 caryophyllene 3-11, borneol 2-12 S. trichoclada caryophyllene oxide 25, spathulenol 15, β-pinene 12, 1,8-cineole 7, β- Kılıc, 2016 caryophyllene 5 S. verticillata subsp. germacrene D 37, β-caryophyllene 8, hexadecanoic acid 7, β-copaene Kunduhoglu et al., 2011 amasiaca 6, spathulenol 5 S. verticillata subsp. spathulenol 31, α-pinene 8, limonene 4 Tabanca et al., 2006 verticillata S. virgata 1,8-cineole 20, α-copaene 19, germacrene D 18, camphor 5 Kilic, 2016 S. viscosa α-copaene 13, β-caryophyllene 11, γ-muurolene 10, δ-cadinene 8, Kaya et al., 2017b germacrene D 5 S. wiedemannii α-pinene 36, 1,8-cineole 14, β-pinene 13, camphor 7, p-cymene 5 Kunduhoglu et al., 2011

Typical groups of compounds found in Salvia oils and their classification are as follows (Başer, 1993; Başer & Kırımer, 2006):

Table 17. Salvia spp. essential oils Group Taxa (oil yield %) content (%) α/β-Pinene tomentosa (0.6-1.3) 2-39/2-37 rosifolia (0.4) 16-35/7-14 potentillifolia (0.9) 29/15 ceratophylla (0.8) 25/10 wiedemannii (0.4-0.6) 23-36/13-30 adenophylla (0.3) 16/14 nydeggeri (0.3) 16/9 heldreichiana (0.2-0.8) 14/- pachystachys (0.1) 12/24 potentillifolia (0.4) 10/8

10

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

pilifera (0.2-0.8) -/25 russelli (tr-0.8) -/20 Camphor/1,8-cineole (CaCi) euphratica/eupratica (0.7) 54/17 hydrangea (0.5-0.8) 47-54/2-7 officinalis (0.2-0.6) 20-43/18-24 recognita (0.3-0.6) 37-42/8-12 tomentosa (0.7-3.5) 2-41/15 aytachii (0.9) 31/27 pisidica (0.04-0.4) 24-30/6 cryptantha (0.4-09) 19-24/16-10 tchihatcheffii (0.6-1.9) 20-23/16 aucheri/aucheri (0.7) 21/20 multicaulis (tr) 19/8 blepharochlaena (tr) 18/14 aramiensis (3.0) 17/- 1,8-Cineole/Camphor (CiCa) fruticosa (0.9-2.8) 35-51/7-13 cryptantha (0.6-0.9) 16-37/6- officinalis (-) 35/30 tomentosa (0.6) 32/- divaricata (0.3) 31/10 macrochlamys (0.2) 27/11 aucheri/canescens (0.4-0.8) 15-25/14-18 virgata (-) 20/5 pililifera (0.2) 9/- 1,8-Cineole/Cryptone cadmica (0.2) 22/12 smyrnaea (0.4) 18/18 α/β-Thujone pomifera [1.0; 2.7 (Leaf)] 16-20/16-51 caespitosa (0.6) 24(a+b) Linalyl acetate/Linalool (LaLi) sclarea (0.3-1.3) 14-49/6-29 palaestina (0.3) 24/12 trichoclada (0.3) 24/26 multicaulis (0.1) 21/12 heldreichana (0.5) 9/5 aethiopis (tr) -/20 Other monoterpene esters sericeo-tomentosa/hatayica (-) sabinylacetate 80 pisidica (0.4-1.1) sabinyl acetate 16-33 chrysophylla (0.4) α-terpinyl acetate 26 euphratica/euphratica (0.04) trans-pinocarvyl acetate 17 pinnata (0.06-0.1) bornyl acetate 26-43 suffruticosa (0.2) bornyl acetate 10 Other oxygenated monoterpenes halophila (0.01) carvacrol 36 russelli (0.8) thymol 32 aethiopis (tr) linalool 20 candidissima/occidentalis (0.2) linalool 9 cyanescens (0.4) borneol+isoborneol 10 tomentosa (1.3) borneol 27 cryptantha (0.6) borneol 25 heldreichiana (tr) borneol 15 euprathica/euprathica (-) cis-sabinol 22 albimaculata (0.3) trans-verbenol + ɣ-selinene 11 Sesquiterpene hydrocarbons β-caryophyllene virgata (tr-0.02) 28-55

11

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

macrochlamys (0.1) 26 dichroantha (tr-0.2) 23 bracteata (0.2) 21 napifolia (0.4) 20 microphylla (0.4-0.5) 14-17 verticillata/amasiaca (0.1) 17 yosgadensis (0.3) 13 germacrene D chionantha (0.02) 38 verticillata/amasiaca (-) 37 argentea (0.2) 27 sclarea (2.4) 25 ceratophylla (-) 24 syriaca (0.1) 24 candidissima/candidissima (0.2) 21 verticillata/verticillata (0.06-0.07) 10-16 forskahlei (0.05) 15 candidissima/occidentalis (0.1) 13 hypargeia (0.02) 11 cilicica (0.04) 10 others aethiopis (0.1-0.2) α-copaene 18-25 viscosa (0.1) α-copaene 13 albimaculata (0.3) β-selinene 11 (with trans-verbenol) ceratophylla (0.8) ϒ-muurolene 11 Oxygenated sesquiterpenes spathulenol verticillata/verticillata (0.05) 31 limbata (1.5) 30 cilicica (-) 24 cyanescens (0.07) 23 syriaca (0.03-0.08) 11-20 heldreichiana (0.2) 9 microstegia (0.1) 5 caryophyllene oxide ballisiana (0.2) 34 trichoclada (-) 25 bracteata (0.7) 18 multicaulis (-) 23 dicroantha (-) 22 Phenylpropanoids viridis (0.02) methyl chavicol 28

Commercial Salvia species belong to the following groups: CiCa group: S. fruticosa (syn. S. triloba) Pinene group: S. tomentosa Thujone group: S. officinalis, S. pomifera (syn. S. calycina)

Sage [Salvia fruticosa and S. officinalis (Cultivated)] exports of Turkey can be seen in the following table (Temel et al., 2018)

12

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Table 18. Salvia essential oils commercial figure

Data 2005 2016

Kg 1.689.200 1.918.000 US Dollar 4.694.571 7.285.000

Unit Export Value ($/kg) 2.78 3.80

Satureja spp. Satureja is represented in the flora of Turkey by 16 species and altogether 17 taxa. Rate of endemism on species basis is 31% and on taxon basis 35% (Celep & Dirmenci, 2017). Carvacrol being a major component in their oils, Satureja species are used as a culinary herb like kekik (oregano).

Table 19. Satureja essential oils Species Main Compounds % References S. boissieri ɣ-terpinene 23, p-cymene 23, carvacrol 21, thymol 19 Oke-Altuntas et al., 2016 S. cilicica p-cymene 18, carvacrol 14, ɣ-terpinene 11, thymol 9 Arabaci et al., 2017 thymol 23, carvacrol 19, p-cymene 20, ɣ-terpinene 13 Ozkan G., et al., 2007 S. cuneifolia carvacrol 67, ɣ-terpinene 15, p-cymene 7 Eminagaoglu et al., 2007 carvacrol 45, p-cymene 22, thymol 9 Oke et al., 2009 carvacrol 59, thymol 16, p-cymene 10 Kan et al., 2006 thymol 42, o-cymene 22, ɣ-terpinene 5 Orhan et al., 2011 carvacrol 33, p-cymene 22, ɣ-terpinene 15 Yayli et al., 2014 S. hortensis thymol 41, ɣ-terpinene 19, carvacrol 14, p-cymene 9 Adiguzel et al., 2007 carvacrol 15, cyclohexanone 15, cymene 13, phenol-2-methyl 12, Bozari et al., 2017 thymol 11, ɣ-terpinene 9 carvacrol 55, ɣ-terpinene 21, p-cymene 12 Tozlu, 2011 carvacrol 80, ɣ-terpinene 9 Ceker et al., 2014 carvacrol 79, ɣ-terpinene 9 Gormez et al., 2015 carvacrol 25, thymol 15, o-cymene 11 Sagdic et al., 2013 carvacrol 41-51, ɣ-terpinene 33-39, α-terpinene 3-6 Katar et al., 2017 S. spicigera carvacrol 43, ɣ-terpinene 22, p-cymene 21 Eminagaoglu et al., 2007 S. thymbra ɣ-terpinene 41, carvacrol 18, thymol 13, p-cymene 13 Karabay-Yavasoglu et al., 2006 carvacrol 54, ɣ-terpinene 18, thymol 13, p-cymene 10 Ayvaz et al., 2010 carvacrol 35, ɣ-terpinene 23, p-cymene 13, thymol 13 Ozturk, M., 2012 carvacrol 53, thymol 26, ɣ-terpinene 9 Gormez & Diler, 2014 Scutellaria spp. Scutellaria is represented in the flora of Turkey by 39 taxa including 17 species. Endemism ratio is 44% on taxon basis and 35% on species basis (Celep & Dirmenci, 2017).

Table 20. Scutellaria essential oils Species Main Compounds % References S. diffusa hexadecanoic acid 30, caryophyllene oxide 9, tetradecanoic acid 6, palmito-ɣ- Cicek et al., 2011 lactone 5 S. heterophylla germacrene D 21, hexadecanoic acid 16, β-caryophyllene 13, bicyclogermacrene 7 Cicek et al., 2011 S. salviifolia germacrene D 40, bicyclogermacrene 14, β-caryophyllene 11 Cicek et al., 2011

13

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Sideritis spp. Two main gene centres for Sideritis are Iberic peninsula and Turkey. In the Iberic peninsula, only section Sideritis exists with 69 species and altogether 100 taxa. In Turkey, Sections Empedoclia and Hesiodia (annuals) exist with 45 species and altogether 54 taxa comprising 40 endemic taxa. Taxon based endemism ratio is 74% while it is 80% on species basis (Celep & Dirmenci, 2017). A comprehensive research into taxonomical, anatomical, morphological, caryological, palinological and genetical aspects of all the Sideritis species growing in Turkey was recently reported (Duman, 2003). The essential oil yields ranged between trace (<0.01) and 0.85%. A rough correlation may be established according to the oil yield and main groups of constituents in Sideritis oils of Turkey as follows: The higher the oil yield the higher the monoterpene hydrocarbons content. The lower the oil yield the higher the sesquiterpenes content. Correlation between the oil yield and main groups of constituents are as follows in Table 21.

Table 21. Sideritis essential oils

Oil yield Main Groups of Constituents* 0.85 - 0.2 Monoterpenes 0.2 - 0.02 Monoterpenes+ Sesquiterpenes 0.02 - tr Sesquiterpenes *Diterpenes may occur at any yield. SIDERITIS

TIC of Sideritis lycia. TIC: H787C.D Abundance 1 A typical chromatogram of Sideritis oils. 9000000

8000000 1. a-pinene, b-pinene, sabinene, -3-carene, myrcene, limonene, b-phellandrene 2. nonanal, 1-octen-3-ol, a-copaene, b-bourbonene 7000000 3. Linalool, b-caryophyllene, (Z)-b-farnesene

6000000 4. germacrene D, bicyclogermacrene, -cadinene, naphthalene 5. caryophyllene oxide, spathulenol 5000000 6. diterpenes

4000000 5 4 3 3000000 2 2000000

1000000 6

0 Time--> 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Fig. 1. Sideritis lycia Boiss. & Heldr. essential oil GC/MS analysis chromatogram

14

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

As far as diterpenes are concerned, plants of section Empedoclia distributed in Turkey and Central and southern Europe contain ent-kaurane type diterpenoids, however, section Sideritis distributed in Spain and Canary Islands may comprise ent-kaurane, ent-labdane, ent-trachilobane and ent-beyerene type diterpenoids (Bondi et al., 2000; Topcu et al., 1999).

Table 22. Recent Sidetis essential oil studies Species Main Compounds % References S. brevibracteata β-caryophyllene 43, germacrene-D 11, α-cadinene 10, carvacrol 5, β- Sagir et al., 2017 pinene 5 S. caesarea β-caryophyllene 6-13, caryophyllene oxide 7-20, spathulenol 3-6, Gunbatan et al., 2017 hexadecanoic acid 9-21 S. cilicica β-Pinene 39, α-pinene 28, β-phellandrene 20 Iscan et al., 2005 S. erytrantha subsp. α-pinene 18, β-caryophyllene 12, sabinene 10, β-caryophyllene 8, α- Altundag et al., 2011 erytrantha bisabolol 8 S. montana subsp. montana β-caryophyllene 30, α-pinene 13, β-pinene 11 Kilic, 2014 S. vulcanica α-pinene 16, β-caryophyllene 13, 1,8-cineole 10 Kilic, 2014 S. trojana valeranone 11, α-bisabolol 11, β-caryophyllene 9 Kirmizibekmez et al., 2017

Classification of Sideritis species of Turkey in order of main components of their essential oils is as follows (Başer, 1993; Başer & Kırımer, 2006): Table 23. Sideritis classifications according their essential oil compositions

Monoterpene hydrocarbons amasiaca, argyrea, armeniaca, athoa, bilgerana, brevidens, cilicica, congesta, dichotoma, erythrantha var. erythrantha, erythrantha var. cedretorum, galatica, germanicapolitana ssp. germanicapolitana, germanicapolitana ssp. viridis, gulendamii, hispida, huber-morathii, libanotica ssp. libanotica, libanotica ssp. kurdica, lycia, montana ssp. remota, niveotomentosa, phrygia, pisidica var. termessii, rubriflora, scardica ssp. scardica, serratifolia. sipylea, stricta, syriaca ssp. nusairiensis, trojana, vulcanica, vuralii Oxygenated monoterpenes arguta, libanotica ssp. microchlamys, romana ssp. romana Sesquiterpene hydrocarbons akmanii, albiflora, brevibracteata, caesarea, cilicica, condensata, curvidens, hololeuca, leptoclada, libanotica ssp. linearis, libanotica ssp. violascens, montana ssp. montana, ozturkii, pisidica var. pisidica, romana ssp. romana, tmolea, vulcanica Oxygenated sesquiterpenes phlomoides, taurica, trojana Diterpenes dichotoma, perfoliata, lanata Others lanata

Stachys spp. The genus Stachys is represented in the flora of Turkey by 90 species and altogether 118 taxa. Endemism ratio on species basis is 48%, on taxon basis is 45% (Celep & Dirmenci, 2017). It is generally considered as an oil-poor genus. Table 24. Stachys essential oils

Species Main Compounds % References S. aetherocalyx germacrene D 25, β-myrcene 16, linalool 12, linalyl acetate 11 Kilic et al., 2017

S. aleurites β-caryophyllene 34, bicyclogermacrene 15, germacrene D 10, α-pinene 8 Flamini et al., 2005

S. amanica Sample I: α-pinene 30, α-bisabolol 9, (E)-β-caryophyllene 6 Ilcim et al., 2014 Sample II: α-pinene 33 , β-pinene 28, (E)-β-caryophyllene 5

15

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

S. angustifolia germacrene D 22, α-terpineol 20, β-myrcene 12 Kilic et al., 2017 S. annua subsp. annua var. (Z)-β-ocimene 25, β-pinene 23, α-pinene 11, benzaldehyde 11, β- Renda et al., 2017 annua bourbonene 7 germacrene D 22, α-terpineol 22, 1,8-cineol 22, linalyl acetate 14, linalool Kilic et al., 2017 7, β-ocimene 2, dodecanoic acid 2 S. antalyensis bicyclogermacrene 29, β-caryophyllene 15, spathulenol 11, β-pinene 9, Fakir et al., 2010 viridiferol 7 S. balansae subsp. balansae germacrene D 38, β-caryophyllene 18, spathulenol 8 Goren et al., 2011 S. balansae subsp. β-caryophyllene 30, germacrene 14, α-cadinene 6 Goren et al., 2011 carduchorum S. bayburtensis germacrene D 33, caryophyllene oxide 6 Goren et al., 2011 S. citrina subsp. citrina α-pinene 30, β-phellandrene 14 Iscan, 2012 S. cretica subsp. mersinaea β-caryophyllene 13, germacrene D 12, caryophyllene oxide 12 Kilic et al., 2017 S. cretica subsp. germacrene D 28, β-caryophyllene 12, spathulenol 7, caryophyllene oxide Goren et al., 2011 bulgarica 6, α-cadinene 6 S. cretica subsp. anatolica germacrene D 29, sabinene 9, β-pinene 8 Goren et al., 2011 S. cretica subsp. cassia germacrene D 28, ɣ-elemene 15, β-caryophyllene 9, farnesyl acetate 7 Goren et al., 2011 S. cretica subsp. garana α-cadinol 16, verbenol 11, dodecanoic acid 9, α-humulene 7, spathulenol Goren et al., 2011 7, T-muurolol 7, β-caryophyllene 6, α-cadinene 6 S. cretica subsp. germacrene D 28, T-muurolol 10, cubenol 9, bicyclogermacrene 7, Goren et al., 2011 kutahyensis caryophyllene oxide 7 spathulenol 7, α-cadinol 6 S. cretica subsp. lesbiaca germacrene D 14, β-caryophyllene 13, α-cadinol 7, α-bisabolol 7, Goren et al., 2011 spathulenol 6, verbenol 6, T-muurolol 6 S. cretica subsp. smyrnaea germacrene D 39, β-caryophyllene 15, caryophyllene oxide 9, β- Goren et al., 2011 bourbonene 6, α-cadinol 6 trans-β-caryophyllene 51, germacrene-D 33 Ozturk M. et al., 2009 S. gaziantepensis α-pinene 53 , β-pinene 8 Kaya et al., 2017a S. germanica subsp. germacrene D 27, β-caryophyllene 16, caryophyllene oxide 13 Goren et al., 2011 heldreichii S. germanica subsp. germacrene D 23, β-caryophyllene 15, α-copaene 8, caryophyllene oxide Goren et al., 2011 bithynica 7, trans-β-farnesene 7, spathulenol 6 S. huber-morathii germacrene D 18, β-caryophyllene 15, trans-β-farnesene 10, globulol 7, Goren et al., 2011 caryophyllene oxide 6 S. huetii germacrene D 30, β-caryophyllene 12, β-bourbonene 9, trans-β- Goren et al., 2011 farnesene 6 S. iberica subsp. linanyl acetate 24, α-terpineol 20, germacrene D 16, geranyl acetate 6 Kilic et al., 2017 stenostachya S. iberica subsp. iberica hexadecanoic acid 42, germacrene D 10, phytol 8 Göger et al., 2016 S. lavandulifolia α-bisabolol 56, bicyclogermacrene 5 Barreto et al., 2016 var. lavandulifolia β-phellandrene 27, α-pinene 19, germacrene D 13 Iscan et al., 2012 germacrene D 20, β-myrcene 15, α-pinene 13, α-copaene 7 Kilic et al., 2017 S. longispicata germacrene D 27, β-caryophyllene 10, spathulenol 6 Goren et al., 2011 S. macrantha carvacrol 29, p-cymene 19, α-pinene 11, thymoquinone 9, (E)- Renda et al., 2017 caryophyllene 9 S. mardinensis menthyl acetate 15, isomenthone 15, pulegone 10, menthol 8, Kaya et al., 2017a spathulenol 7, caryophyllene oxide 7 β-caryophyllene 25, β-bourbonene 11, spathulenol 13 Kilic et al., 2017 S. obliqua germacrene D 45, β-caryophyllene 17, limonene 8 Goren et al., 2011

16

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

S. petrokosmos Sample I: α-pinene 26 , α-bisabolol 7 Ilcim et al., 2014 Sample II: α-pinene 28 , γ-curcumene 9 S. pinetorum germacrene D 29, β-caryophyllene 11, caryophyllene oxide 8, spathulenol Goren et al., 2011 7, globulol 6 S. pumila trans-nerolidol 32-39, α-pinene 17-18, β-pinene 9-10 Kaya, D. A., 2015 S. ramossima var. α-terpineol 21, linalool 17, α-pinene 11 Kilic et al., 2017 ramossima S. sericantha germacrene D 32, β-caryophyllene 23, α-cadinene 7 Goren et al., 2011 hexadecanoic acid 24, dodecanoic acid 11, caryophyllene oxide 11 Kaya et al., 2017 S. spectabilis germacrene D 33, β-caryophyllene 10, α-cadinene 9 Goren et al., 2011 β-myrcene 16, caryophyllene oxide 15, β-caryophyllene 14, germacrene Kilic et al., 2017 D 13 S. sylvatica limonene 37, α-ledrene 11, γ-muurolene 1, (2E)-hexenal 7 Renda et al., 2017 germacrene D 24, β-caryophyllene 21, α-pinene 20 Kilic et al., 2017 S. thirkei germacrene D 38, caryophyllene oxide 8, β-pinene 7, trans-β-farnesene 7 Goren et al., 2011 S. tmolea germacrene D 22, β-caryophyllene 20, valeronone 9, spathulenol 6 Goren et al., 2011 S. viticina β-caryophyllene 62, farnesyl acetate 9 Goren et al., 2011

Teucrium spp. The genus Teucrium is represented in the flora of Turkey by 36 species and altogether 49 taxa. Rate of endemism on species basis is 42, on taxon basis is 35 (Celep & Dirmenci, 2017). The following table shows the recent results. Table 25. Teucrium essential oils

Species Main Compounds % References T. alyssifolium trans-β-caryophyllene 17, ar-curcumene 11, bisabolene 11, α- Semiz et al., 2016 humulene 8 T. chamaedrys subsp. germacrene D 16, α-pinene 16, β-caryophyllene 12, β-pinene 9 Kucuk et al. 2006 chamaedrys T. chamaedrys subsp. lydium β-caryophyllene 20, α-pinene 13, germacrene D 9, β-pinene 7, Kucuk et al., 2006 caryophyllene oxide 6 T. chamaedrys subsp. β-caryophyllene 18, nonacosane 12, germacrene D 11, α-pinene 7, Kaya et al., 2009 trapezunticum caryophyllene oxide 7 T. chamaedrys subsp. syspirense caryophyllene oxide 22, α-pinene 11 Kaya et al., 2009 T. lamiifolium subsp. lamiifolium β-caryophyllene 24-45, trans-β-bergamotene 22-26, germacrene D Dogu et al., 2013 6-22, (Z)-β-farnesene 3-14, caryophyllene oxide 3-8 T. lamiifolium subsp. trans-β-bergamotene 38-41, β-caryophyllene 8-9, α-humulene 6, Dogu et al., 2013 stachyophylum germacrene D 6-7 T. multicaule germacrene D 13, caryophyllene oxide 11, spathulenol 7 Polat et al., 2010 T. orientale var. glabrescens nonanal 25, thuja-2,4(10)-diene 23, tetracosane 15, pentacosane 7, Yildirmis et al., 2017 eicosane 7 β-cubebene 27, hexadecanoic acid 13, β-caryophyllene 7 Ozek et al., 2012 T. orientale var. orientale germacrene D 25, β-caryophyllene 23, hexadecanoic acid 8, Ozek et al., 2012 bicyclogermacrene 7, caryophyllene oxide 6 T. orientale var. puberulens germacrene D 33, hexadecanoic acid 13, β-caryophyllene 9, Ozek et al., 2012 bicyclogermacrene 9 T. orientale var. puberulens β-caryophyllene 22, 2-methyl cumarone 20, germacrene D 11 Kucuk et al., 2006

17

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Thymbra spp. In the flora of Turkey, Thymbra is represented by 2 species and altogether 4 taxa. Recent papers on the essential oil of two Thymbra taxa are as follows:

Table 26. Thymbra essential oils Species Main Compounds % References T. spicata subsp. spicata carvacrol 71, p-cymene 14, ɣ-terpinene 7 Sertkaya et al., 2010 T. spicata α-terpinene 27, carvacrol 27, p-cymene 14, thymol 1 Maral et al. carvacrol 83, cymene 8, ɣ-terpinene 6 Gormez & Diler, 2014 carvacrol 79, ɣ-terpinene 10, p-cymene 6 Bayan et al., 2017

Thymus spp.

Thymus is represented in Turkey by 42 species (47 taxa). Rate of endemism on species basis is 48% (Celep & Dirmenci, 2017) Several recent papers have appeared in recent years on the composition of Thymus species. Important note: Some papers on T. vulgaris and T. serpyllum have not been included in this review since the species mentioned there do not exist in the Flora of Turkey, and their botanical identity is in question.

Table 27. Thymus essential oils Species Main Compounds % References T. fallax thymol 41, o-cymene 27, ɣ-terpinen 16 Yilar et al., 2013; Onaran et al., 2014 T. pseudopulegioides (Syn. T. thymol 58, ɣ-terpinene 10, p-cymene 9 Bektas et al., 2016 nummularius) T. revolutus cymene 33, ɣ-terpinene 17, carvacrol 12, thymol 10, borneol 8, Erdogan & Ozkan, 2013 α-pinene 6 T. sipyleus α-pinene 21, farnesol 16, 1,8-cineole 9, limonene 8, linalool 6 Maral et al., 2017

T. spathulifolius carvacrol 49, thymol 18, p-cymene 12, ɣ-terpinene 7 Celen et al.,2012 T. vulgaris carvacrol 36, o-cymene 8, linalool 6, carvacrol methyl ether 5 Sagdic et al., 2013

Pure Chemotype Patterns in the Thymus Taxa in Turkey: 1. Carvacrol and/or thymol, p-cymene, γ-terpinene (oregano or smell) 2. Geraniol, geranyl acetate (rose smell) 3. Geranial, neral (lemon smell) 4. Linalool, linalyl acetate (lavender smell) 5. α-terpineol, α-terpinyl acetate (lavender smell) 6. 1,8-cineole, α-terpineol, α-terpinyl acetate, borneol, camphor, α/β-pinenes, limonene may come together (e.g., Thymus cariensis, T. cilicicus) 7. β-caryophyllene, germacrene D, caryophyllene oxide 8. Other sesquiterpenes

Ziziphora spp. Ziziphora is represented in Turkey by 5 species and altogether 10 taxa (Firat, 2017). Recent data on the essential oils of three species are listed below.

18

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Table 28. Ziziphora essential oils Species Main Compounds % References Z. clinopodioides pulegone 20, piperitone 14, limonene 11 Kilic & Bagci, 2013 Z. persica pulegone 80, limonene 7, piperitone 4, β-pinene 2 Ozturk & Ercisli, 2006 pulegone 33, β-pinene 6, piperitone 5 Kilic & Bagci, 2013 Z. tenuior pulegone 30, 1,8-cineole 10 Kilic & Bagci, 2013 pulegone 74, piperitenone 4 Celik et al., 2016

ACKNOWLEDGMENT Part of this work was presented during the International Symposium: Advances in Lamiaceae Science, April 26-29, 2017, Antalya, Turkey REFERENCES

Adiguzel, A., Ozer, H., Kilic, H., & Cetin, B. (2007). Screening of antimicrobial activity of essential oil and methanol extract of Satureja hortensis on foodborne bacteria and fungi. Czech Journal of Food Sciences, 25(2), 81-89.

Akin, M., Demirci, B., Bagci, Y., & Baser, K. H. C. (2010). Antibacterial activity and composition of the essential oils of two endemic Salvia sp from Turkey. African Journal of Biotechnology, 9(15), 2322-2327.

Alan, S., Kurkcuoglu, M., & Baser, K. H. C. (2010). Composition of the Essential Oils of Calamintha sylvatica Bromf. subsp. sylvatica and Calamintha sylvatica Bromf. subsp. ascendens (Jordan) PW Ball. Journal of Essential Oil Research, 22(4), 325-327. Alan, S., Kurkcuoglu, M., & Baser, K. H. C. (2011). Composition of Essential Oils of Calamintha nepeta (L.) Savi subsp. nepeta and Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) PW Ball. Asian Journal of Chemistry, 23(6), 2357-2360. Altundag, S., Aslim, B., & Ozturk, S. (2011). In vitro Antimicrobial Activities of Essential Oils from Origanum minutiflorum and Sideritis erytrantha subsp. erytrantha on Phytopathogenic Bacteria. Journal of Essential Oil Research, 23(1), 4-8. Arabaci, T., Uzay, G., Kelestemur, U., Karaaslan, M. G., Balcioglu, S., & Ates, B. (2017). Cytotoxicity, Radical Scavenging, Antioxidant Properties and Chemical Composition of the Essential Oil of Satureja cilicica P.H. Davis from Turkey. Marmara Pharmaceutical Journal, 21(3), 500-505.

Arslan, M. (2012). Effects of Intra-Row Spacing on Herbage Yield, Essential Oil Content and Composition of . Farmacia, 60(6), 925-931.

Atak, M., Mavi, K., & Uremis, I. (2016). Bio-Herbicidal Effects of Oregano and Essential Oils on Germination and Seedling Growth of Wheat Cultivars and Weeds. Romanian Biotechnological Letters, 21(1), 11149-11159.

Ayvaz, A., Sagdic, O., Karaborklu, S., & Ozturk, I. (2010). Insecticidal activity of the essential oils from different plants against three stored-product insects. Journal of Insect Science, 10, 21.

Bagci, Y., Kan, Y., Dogu, S., & Celik, S. A. (2017). The Essential Oil Compositions of Rosmarinus officinalis L. Cultivated in Konya and Collected from Mersin-Turkey. Indian Journal of Pharmaceutical Education and Research, 51(3), S470-S478.

Barreto, R. S., Quintans, J. S., Amarante, R. K., Nascimento, T. S., Amarante, R. S., Barreto, A. S., Pereira, E. W. M., Duarte, M. C., Coutinjo, H. D .M., Menezes I. R. A., Zengin G., Aktumsek, A., Quintans-Junior, L. J. (2016). Evidence for the involvement of TNF-alpha and IL-1beta in the antinociceptive and anti-inflammatory activity of Stachys lavandulifolia Vahl. (Lamiaceae) essential oil and (-)-alpha-bisabolol, its main compound, in mice. Journal of Ethnopharmacology, 191, 9-18. Basalma, D., Gurbuz, B., Sarihan, E. O., Ipek, A., Arslan, N., Duran, A., & Kendir, H. (2007). Essential oil composition of Salvia heldreichiana Boiss. Ex Bentham described endemic species from Turkey. Asian Journal of Chemistry, 19(3), 2130- 2134.

19

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Başer, K. H. C., Ağalar, H. G., Celep, F., Kahraman, A., Doğan, M., & Demirci, B. (2015). The Comparison Of Volatile Components of Salvia ceratophylla L. Collected from Different Regions in Turkey. Turkish Journal Of Pharmaceutical Sciences, 12(1), 53-58. Başer, K. H. C., Demirci, B., & Dadandi, M. Y. (2008). Comparative essential oil composition of the natural hybrid Phlomis x vuralii Dadandi (Lamiaceae) and its parents. Journal of Essential Oil Research, 20(1), 57-62. Başer, K. H. C., Kurkcuoglu, M., Demirci, B., Ozek, T., & Tarimcilar, G. (2012). Essential oils of Mentha species from Marmara region of Turkey. Journal of Essential Oil Research, 24(3), 265-272. Başer, K.H.C. & Kırımer, N. (2006). Essential Oils of Lamiaceae Plants of Turkey, Acta Horticulture, 723, 163-171.

Başer, K.H.C. & Ozturk, N. (1992). Composition uf the Essential Oil of Dorystoechas hastata, A Monotypic Endemic from Turkey, Journal of Essential Oil Research. 4(4) 369-374.

Başer, K.H.C. (1993). Essential Oil of Anatolian Labiatae: A profile, Acta Horticulturae, 333, 217-238. Bayan, Y., Genc, N., Kusek, M., Gul, F., & Imecik, Z. (2017). Determination of Chemical Compositions, Antifungal, Antibacterial and Antioxidant Activity of Thymbra Spicata L. From Turkey. Fresenius Environmental Bulletin, 26(12), 7595-7599.

Bektas, E., Daferera, D., Sokmen, M., Serdar, G., Erturk, M., Polissiou, M. G., & Sokmen, A. (2016). In vitro antimicrobial, antioxidant, and antiviral activities of the essential oil and various extracts from Thymus nummularis M. Bieb. Indian Journal of Traditional Knowledge, 15(3), 403-410 Bondi, M.L., Bruno, M., Piozzi, F., Başer, K.H.C. & Simmonds, M.S.J. (2000). Diversity and antifeedant activity of diterpenes from Turkish species of Sideritis. Biochemical Sysematics and Ecology, 28, 299 Bostancioglu, R. B., Kurkcuoglu, M., Baser, K. H. C., & Koparal, A. T. (2012). Assessment of anti-angiogenic and anti- tumoral potentials of Origanum onites L. essential oil. Food and Chemical Toxicology, 50(6), 2002-2008. Bozari, S., Cakmak, B., & Kurt, H. (2017). Genotoxic Effects of the Essential Oil Obtained from Satureja hortensis Against to Hordeum vulgare L. Seedlings. Kahramanmaras Sutcu Imam University Journal of Natural Sciences, 20(3), 185-192. Bozok, F., Cenet, M., Sezer, G., & Ulukanli, Z. (2017). Essential Oil and Bioherbicidal Potential of the Aerial Parts of Nepeta nuda subsp albiflora (Lamiaceae). Journal of Essential Oil Bearing Plants, 20(1), 148-154. Ceker, S., Agar, G., Alpsoy, L., Nardemir, G., & Kizil, H. E. (2014). Antagonistic effects of Satureja hortensis essential oil against AFB, on human lymphocytes in vitro. Cytology and Genetics, 48(5), 327-332. Ceker, S., Agar, G., Alpsoy, L., Nardemir, G., & Kizil, H. E. (2013). Protective role of essential oils of Calamintha nepeta L. on oxidative and genotoxic damage caused by Aflatoxin B-1 in vitro. Fresenius Environmental Bulletin, 22(11), 3258- 3263. Celen, S., Azaz, A. D., Kurkcuoglu, M., & Başer, K. H. C. (2012). Chemical Composition of Endemic Thymus spathulifolius Hausskn. and Velen. Essential Oil and its Antimicrobial and Antioxidant Activity from Turkey. Journal of Essential Oil Bearing Plants, 15(4), 628-636.

Celep, F. & Dirmenci, T. (2017). Systematic and Bio-geographic Overview of Lamiaceae in Turkey, Natural Volatiles and Essential Oils, 4(4), 14-27.

Celik, A., Herken, E. N., Arslan, I., Ozel, M. Z., & Mercan, N. (2010). Screening of the constituents, antimicrobial and antioxidant activity of endemic Origanum hypericifolium O. Schwartz PH Davis. Natural Product Research, 24(16), 1568- 1577. Celik, C., Tutar, U., Karaman, I., Hepokur, C., & Atas, M. (2016). Evaluation of the Antibiofilm and Antimicrobial Properties of Ziziphora tenuior L. Essential Oil Against Multidrug-resistant. Acinetobacter baumannii. International Journal of Pharmacology, 12(1), 28-35.

20

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Chalchat, J. C., & Ozcan, M. M. (2008). Comparative essential oil composition of flowers, leaves and stems of (Ocimum basilicum L.) used as herb. Food Chemistry, 110(2), 501-503.

Cicek, M., Demirci, B., Yilmaz, G., & Baser, K. H. C. (2011). Essential oil composition of three species of Scutellaria from Turkey. Natural Product Research, 25(18), 1720-1726.

Davis P.H. (1982). Thymbra L. In: Davis P.H. (ed.) Flora of Turkey and the East Aegean Islands Vol. 7: 382-384. Edinburgh: Edinburgh University Press.

Demirci, B., Başer, K. H. C., & Dadandi, M. Y. (2006). Composition of the essential oils of Phlomis rigida Labill. and Phlomis samia L. Journal of Essential Oil Research, 18(3), 328-331.

Demirci, B., Temel, H. E., Portakal, T., Kirmizibekmez, H., Demirci, F., & Başer, K. H. C. (2011). Inhibitory effect of Calamintha nepeta subsp glandulosa essential oil on lipoxygenase. Turkish Journal of Biochemistry-Turk Biyokimya Dergisi, 36(4), 290-295. Demirci, B., Toyota, M., Demirci, F., Dadandi, M. Y., & Başer, K. H. C. (2009). Anticandidal pimaradiene diterpene from Phlomis essential oils. Comptes Rendus Chimie, 12(5), 612-621. Demirci, F., Guven, K., Demirci, B., Dadandi, M. Y., & Başer, K. H. C. (2008). Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control, 19(12), 1159-1164. Dogan, G., Demirpolat, A., & Bagci, E. (2014). Essential Oil Composition of Aerial Parts of Two Salvia L. (S. russellii Bentham and S. bracteata Banks & Sol.) Species. Asian Journal of Chemistry, 26(18), 5998-6000. Dogu, S., Dinc, M., Kaya, A., & Demirci, B. (2013). Taxonomic status of the subspecies of Teucrium lamiifolium in Turkey: reevaluation based on macro- and micro-morphology, anatomy and chemistry. Nordic Journal of , 31(2), 198- 207.

Duman, H. & Dirmenci, T. (2017). A new species of Micromeria (Lamiaceae) from Köyceğiz (Muğla, south west of Turkey). Turkish Journal of Botany, 41, 383-391.

Duman, H. (2003). Türkiye Sideritis L. Türlerinin Revizyonu, TUBITAK-TBAG-1853, 199T090. Eminagaoglu, O., Tepe, B., Yumrutas, O., Akpulat, H. A., Daferera, D., Polissiou, M., & Sokmen, A. (2007). The in vitro antioxidative properties of the essential oils and methanol extracts of Satureja spicigera (K. Koch.) Boiss. and Satureja cuneifolia ten. Food Chemistry, 100(1), 339-343.

Erdogan, A., & Ozkan, A. (2013). Effects of Thymus revolutus Celak essential oil and its two major components on Hep G2 cells membrane. Biologia, 68(1), 105-111.

Erdogan, A., & Ozkan, A. (2017). Investigation of Antioxidative, Cytotoxic, Membrane-Damaging and Membrane- Protective Effects of The Essential Oil of Origanum majorana and its Oxygenated Monoterpene Component Linalool in Human-Derived Hep G2 Cell Line. Iranian Journal of Pharmaceutical Research, 16, 24-34.

Fakir, H., Yasar, S., & Erbas, S. (2010). Essential Oil Composition of Stachys antalyensis Y. Ayasligil and PH Davis Described Endemic Species from Turkey. Asian Journal of Chemistry, 22(1), 527-530.

Firat, M. (2017). Report of five new subspecies of Ziziphora clinopodioides (Lamiaceae) for the flora of Turkey. Biological Sciences and Pharmaceutical Research 5(2) 5-11.

Flamini, G., Luigi Cioni, P., Morelli, I., Celik, S., Suleyman Gokturk, R., & Unal, O. (2005). Essential oil of Stachys aleurites from Turkey. Biochemical Systematics and Ecology, 33(1), 61-66.

Giachino, R. R. A., Sonmez, C., Tonk, F. A., Bayram, E., Yuce, S., Telci, I., & Furan, M. A. (2014). RAPD and essential oil characterization of Turkish basil (Ocimum basilicum L.). Plant Systematics and Evolution, 300(8), 1779-1791. Goren, A. C., Piozzi, F., Akcicek, E., Kılıç, T., Çarıkçı, S., Mozioğlu, E., & Setzer, W. N. (2011). Essential oil composition of twenty-two Stachys species (mountain tea) and their biological activities. Phytochemistry Letters, 4(4), 448-453.

21

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Agar, G., & Sahin, F. (2013). Antibacterial activity and chemical composition of essential oil obtained from Nepeta nuda against phytopathogenic bacteria. Journal of Essential Oil Research, 25(2), 149-153. Gormez, O., & Diler, O. (2014). In vitro Antifungal activity of essential oils from Thymbra, Origanum, Satureja species and some pure compounds on the fish pathogenic fungus, Saprolegnia parasitica. Aquaculture Research, 45(7), 1196- 1201.

Göger, F., Demirci, B., Özek, G., Duman, H., & Başer, K. H. C. (2016). Essential oil composition of Stachys iberica Bieb. subsp. iberica from Turkey. Natural Volatiles & Essential Oils, 3(1), 31-34.

Göze, İ., Vural, N., & Ercan, N. (2016). Characterization of Essential Oil and Antioxidant Activities of Some Species of Salvia in Turkey. Natural Volatiles & Essential Oils, 3(4): 1-7

Gudek, M., & Cetin, H. (2016). Fumigant toxicity of Rosmarinus officinalis L. (: Lamiaceae) essential oil against immature stages of Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae). Turkiye Entomoloji Dergisi- Turkish Journal of Entomology, 40(4), 455-466. Gunbatan, T., Demirci, B., Gurbuz, I., Demirci, F., & Ozkan, A. M. G. (2017). Comparison of Volatiles of Sideritis caesarea Specimens Collected from Different Localities in Turkey. Natural Product Communications, 12(10), 1639-1642. Gursoy, N., Tepe, B., & Akpulat, H. A. (2012). Chemical Composition and Antioxidant Activity of the Essential Oils of Salvia palaestina (Bentham) and S. ceratophylla (L.). Records of Natural Products, 6(3), 278-287. Hasimi, N., Kizil, S., & Tolan, V. (2015). Essential Oil Components, Microelement Contents and Antioxidant Effects of Nepeta italica L. and Achillea filipendulina LAM. Journal of Essential Oil Bearing Plants, 18(3), 678-686. Haznedaroglu, M. Z., Yurdasiper, A., Koyu, H., Yalcin, G., Ozturk, I., & Gokce, E. H. (2013). Preparation and Evaluation of a Novel Organogel Formulation of Salvia tomentosa Mill. Essential Oil. Latin American Journal of Pharmacy, 32(6), 845- 851

Herken, E. N., Celik, A., Aslan, M., & Aydinlik, N. (2012). The constituents of essential oil: antimicrobial and antioxidant activity of Micromeria congesta Boiss. & Hausskn. ex Boiss. from East Anatolia. Journal of Medicinal Food, 15(9), 835- 839. Ilcim, A., Alma, M. H., & Karaogul, E. (2014). Investigation of Volatile Constituents in Stachys amanica PH Davis and Stachys petrokosmos Rech. fil. Collected in Different Regions of Turkey. Journal of Essential Oil Bearing Plants, 17(1), 49- 55.

Ili, P., & Keskin, N. (2013). A histochemical study of ultraviolet B irradiation and Origanum hypericifolium oil applied to the skin of mice. Biotechnic & Histochemistry, 88(5), 272-279. Iscan, G., Demirci, B., Demirci, F., Goger, F., Kirimer, N., Kose, Y. B., & Başer, K. H. C. (2012). Antimicrobial and antioxidant activities of Stachys lavandulifolia subsp. lavandulifolia essential oil and its infusion. Natural Product Communications, 7(9), 1241-1244.

Iscan, G., Kirimer, N., Kurkcuoglu, M., & Başer, K. H. C. (2005). Composition and antimicrobial activity of the essential oils of two endemic species from Turkey: Sideritis cilicica and Sideritis bilgerana. Chemistry of natural compounds, 41(6), 679-682. Iscan, G., Kose, Y. B., Demirci, B., & Başer, K. H. C. (2011). Anticandidal Activity of the Essential Oil of Nepeta transcaucasica Grossh. Chemistry & Biodiversity, 8(11), 2144-2148. Kan, Y., Ucan, U. S., Kartal, M., Altun, M. L., Aslan, S., Sayar, E., & Ceyhan, T. (2006). GC-MS analysis and antibacterial activity of cultivated Satureja cuneifolia Ten. essential oil. Turkish Journal of Chemistry, 30(2), 253-259. Karabay-Yavasoglu, N. U., Baykan, S., Ozturk, B., Apaydin, S., & Tuglular, I. (2006). Evaluation of the antinociceptive and anti-inflammatory activities of L. essential oil. Pharmaceutical Biology, 44(8), 585-591.

22

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Karaborklu, S., Ayvaz, A., Yilmaz, S., & Akbulut, M. (2011). Chemical composition and fumigant toxicity of some essential oils against Ephestia kuehniella. Journal of Economic Entomology, 104(4), 1212-1219.

Karaman, S., Kirecci, O. A., & Ilcim, A. (2008). Influence of polyamines (Spermine, Spermidine and Putrescine) on the essential oil composition of basil (Ocimum basilicum L.). Journal of Essential Oil Research, 20(4), 288-292.

Karik, Ü., Sağlam, A. C., & Kürkçüoğlu, M. (2013). Güney Marmara Florasındaki Adaçayı (Salvia tomentosa Mill.) Populasyonlarının Bazı Morfolojik ve Kalite Özellikleri. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 23(2).

Katar, D., Kacar, O., Kara, N., Aytac, Z., Goksu, E., Kara, S., Katar, N., Erbaş, S, Telci, İ., Elmastas, M. (2017). Ecological variation of yield and aroma components of (Satureja hortensis L.). Journal of Applied Research on Medicinal and Aromatic Plants, 7, 131-135. Kaya, A., Demirci, B., & Başer, K. H. C. (2007). Micromorphology of glandular trichomes of Nepeta congesta Fisch & Mey. var. congesta (Lamiaceae) and chemical analysis of the essential oils. South African Journal of Botany, 73(1), 29-34 Kaya, A., Demirci, B., & Başer, K. H. C. (2009). Compositions of Essential Oils and Trichomes of Teucrium chamaedrys L. subsp. trapezunticum Rech. fil. and subsp syspirense (C. Koch) Rech. fil. Chemistry & Biodiversity, 6(1), 96-104 Kaya, A., Demirci, B., Dogu, S., & Dinc, M. (2017a). Composition of the essential oil of Stachys sericantha, S. gaziantepensis, and S. mardinensis (Lamiaceae) from Turkey. International Journal of Food Properties, 20(11), 2639- 2644.

Kaya, A., Dinç, M., Doğu, S., & Demirci, B. (2017b). Compositions of essential oils of Salvia adenophylla, Salvia pilifera, and Salvia viscosa in Turkey. Journal of Essential Oil Research, 29(3), 233-239.

Kaya, D. A., Guzel, Y., & Arslan, M. (2015). Chemical Composition of Stachys pumila Essential Oil. Chemistry of Natural Compounds, 51(2), 363-365.

Kelen, M., Tepe, B., (2008). Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresource Technology, 99(10), 4096-4104.

Kilic, O. (2014). Essential Oil Composition of Two Sideritis L. Taxa from Turkey: A Chemotaxonomic Approach. Asian Journal of Chemistry, 26(8), 2466-2470.

Kilic, O. (2016). Chemical Composition of Four Salvia L. Species From Turkey: A Chemotaxonomic Approach. Journal of Essential Oil Bearing Plants, 19(1), 229-235.

Kilic, O., & Bagci, E. (2013). Essential Oils of Three Ziziphora L. Taxa from Turkey and Their Chemotaxonomy. Asian Journal of Chemistry, 25(13), 7263-7266.

Kilic, O., Behcet, L., & Bagci, E. (2013). Essential Oil Compounds of Three Nepeta L. Taxa From Turkey and Their Chemotaxonomy. Asian Journal of Chemistry, 25(14), 8181-8183. Kilic, O., Hayta, S., & Bagci, E. (2011). Chemical Composition of Essential Oil of Nepeta nuda L. subsp. nuda (Lamiaceae) from Turkey. Asian Journal of Chemistry, 23(6), 2788-2790. Kilic, O., Ozdemir, F. A., & Yildirimli, S. (2017). Essential oils and fatty acids of Stachys L. taxa, a chemotaxonomic approach. Progress in Nutrition, 19, 49-59. Kirimer, N., Başer, K. H. C., & Kurkcuoglu, M. (2006). Composition of the essential oil of Phlomis nissolii L. Journal of Essential Oil Research, 18(6), 600-601. Kirimer, N., Kurkcuoglu, M., Akgul, G., Başer, K. H. C., & Abdel-Megeed, A. (2015). Composition of the Essential Oil of Marrubium anisodon C. Koch of Turkish Origin. Records of Natural Products, 9(2), 234-236. Kirimer, N., Mokhtarzadeh, S., Demirci, B., Goger, F., Khawar, K. M., & Demirci, F. (2017). profiling of volatile components of Miller propagated under in vitro conditions. Industrial Crops and Products, 96, 120-125.

23

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Kirmizibekmez, H., Demirci, B., Yesilada, E., Başer, K. H. C., & Demirci, F. (2009). Chemical Composition and Antimicrobial Activity of the Essential Oils of Lavandula stoechas L. ssp. stoechas Growing Wild in Turkey. Natural Product Communications, 4(7), 1001-1006. Kirmizibekmez, H., Karaca, N., Demirci, B., & Demirci, F. (2017). Characterization of Sideritis trojana Bornm. essential oil and its antimicrobial activity. Marmara Pharmaceutical Journal, 21(4), 860-865. Kivrak, I., Duru, M. E., Ozturk, M., Mercan, N., Harmandar, M., & Topcu, G. (2009). Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chemistry, 116(2), 470-479.

Kizil, S., Hasimi, N., Tolan, V., Kilinc, E., & Karatas, H. (2010a). Chemical Composition, Antimicrobial and Antioxidant Activities of Hyssop (Hyssopus officinalis L.) Essential Oil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 99- 103. Kizil, S., Hasimi, N., Tolan, V., Kilinc, E., & Yuksel, U. (2010b). Content, Essential Oil Components And Biological Activity Of Two Mentha Species (M. piperita L., M. spicata L.). Turkish Journal of Field Crops, 15(2), 148-153. Koc, S., Oz, E., Cinbilgel, I., Aydin, L., & Cetin, H. (2013). Acaricidal activity of Origanum bilgeri PH Davis (Lamiaceae) essential oil and its major component, carvacrol against adults Rhipicephalus turanicus (Acari: Ixodidae). Veterinary Parasitology, 193(1-3), 316-319.

Koca, S. B., & Cevikbas, M. (2015). Antifungal effect of Origanum onites essential oil as an alternative to formalin in the artificial incubation of narrow-clawed crayfish (Astacus leptodactylus Eschscholtz, 1823). Aquaculture Research, 46(9), 2204-2210. Kocak, A., & Bagci, E. (2011). Chemical Composition of Essential Oil of Local Endemic Salvia kronenburgii Rech. fil. to Turkey. Journal of Essential Oil Bearing Plants, 14(3), 360-365. Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M., & Mete, E. (2008). Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology, 99(18), 8788-8795.

Kose, E. O., Ongut, G., & Yanikoglu, A. (2013). Chemical Composition and Antimicrobial Activity of Essential Oil of Endemic Origanum bilgeri P. H. Davis for Turkey. Journal of Essential Oil Bearing Plants, 16(2), 233-242.

Kotan, R., Kordali, S., Cakir, A., Kesdek, M., Kaya, Y., & Kilic, H. (2008). Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC. ex Benth. Biochemical Systematics and Ecology, 36(5–6), 360-368.

Kucuk, M., Gulec, C., Yasar, A., Ucuncu, O., Yayli, N., Coskuncelebi, K., Terzioglu, S., Yayli, N. (2006). Chemical composition and antimicrobial activities of the essential oils of Teucrium chamaedrys subsp. chamaedrys, T. orientale var. puberulens, and T. chamaedrys subsp. lydium. Pharmaceutical Biology, 44(8), 592-599.

Kunduhoglu, B., Kurkcuoglu, M., Duru, M. E., & Başer, K. H. C. (2011). Antimicrobial and anticholinesterase activities of the essential oils isolated from Salvia dicroantha Stapf., Salvia verticillata L. subsp amasiaca (Freyn and Bornm.) Bornm. and Salvia wiedemannii Boiss. Journal of Research, 5(29), 6484-6490. Kurkcuoglu, M., Başer, K. H. C., Tosun, A., Dogan, E., & Duman, H. (2007). Essential oil composition of an endemic species of Turkey: Marrubium bourgaei Boiss. ssp. bourgaei (Labiatae). Journal of Essential Oil Research, 19(1), 34-36. Küçükbay, F. Z., Kuyumcu, E., Yildiz, B. (2013). Essential Oil Composition from the Aerial Parts of Ajuga orientalis L. Growing in Turkey. Asian Journal of Chemistry, 25(16) 9126-9128. Kürkçüoğlu, M., Eser, Ş. A., & Başer, K. H. C. (2016). Composition of the essential oil of the Hyssopus officinalis L. subsp. angustifolius (Bieb.) Arcangeli. Natural Volatiles & Essential Oils, 3(2). Lukas, B., Samuel, R., mader, E., Başer, K. H. C. , Duman, H., Novak, J. (2013). Complex evolutionary relationships in Origanum section Majorana (Lamiaceae), Botanical Journal of the Linnean Society, 171, 667–686.

24

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Maral, H., Türk, M., Çalışkan, T., & Kırıcı, S. (2017) Chemical composition and antioxidant activity of essential oils of six Lamiaceae plants growing in Southern Turkey. Natural Volatiles & Essential Oils, 4(4), 62-68

Mokhtarzadeh, S., Demirci, B., Goger, G., Khawar, K. M., & Kirimer, N. (2017). Characterization of volatile components in Melissa officinalis L. under in vitro conditions. Journal of Essential Oil Research, 29(4), 299-303.

Mutlu, S., Atici, O., & Esim, N. (2010). Bioherbicidal effects of essential oils of Nepeta meyeri Benth. on weed spp. Allelopathy Journal, 26(2), 291-299.

Ogutcu, H., Sokmen, A., Sokmen, M., Polissiou, M., Serkedjieva, J., Daferera, D., Sahin, F., Baris, O., Gulluce, M. (2008). Bioactivities of the various extracts and essential oils of Salvia limbata CAMey. and Salvia sclarea L. Turkish Journal of Biology, 32(3), 181-192. Oke, F., Aslim, B., Ozturk, S., & Altundag, S. (2009). Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chemistry, 112(4), 874-879. Oke-Altuntas, F., Demirtas, I., Tufekci, A. R., Koldas, S., Gul, F., Behcet, L., & Gecibesler, H. I. (2016). Inhibitory Effects of the Active Components Isolated from Satureja boissieri Hausskn. Ex Boiss. On Human Cervical Cancer Cell Line. Journal of Food Biochemistry, 40(4), 499-506.

Okut, N., Yagmur, M., Selcuk, N., & Yildirim, B. (2017). Chemical Composition of Essential Oil of Mentha longifolia L. subsp. longifolia Growing Wild. Pakistan Journal of Botany, 49(2), 525-529.

Onar, H. C., Hasdemir, B., & Yusufoglu, A. (2010). Chemical Composition and Repellent Activity of the Essential Oil of Ocimum minimum L. on Drosophila species. Asian Journal of Chemistry, 22(2), 1131-1135.

Onaran, A., Yilar, M., Belguzar, S., Bayan, Y., & Aksit, H. (2014). Antifungal and Bioherbicidal Properties of Essential Oils of Thymus fallax Fish & Mey., Origanum vulgare L. and Mentha dumetorum Schult. Asian Journal of Chemistry, 26(16), 5159-5164. Orhan, I. E., Ozcelik, B., Kan, Y., & Kartal, M. (2011). Inhibitory Effects of Various Essential Oils and Individual Components against Extended-Spectrum Beta-Lactamase (ESBL) Produced by Klebsiella pneumoniae and Their Chemical Compositions. Journal of Food Science, 76(8), M538-M546

Oz, E., Cetin, H., & Yanikoglu, A. (2012). Chemical Composition and Fumigant Activity of Essential Oils of Three Lamiaceae Species Against German Cockroach (Blattella germanica L.). Fresenius Environmental Bulletin, 21(6a), 1571-1577.

Ozcan, M. M., & Chalchat, J. C. (2009). Chemical Composition and Antimicrobial Properties of the Essential Oil of Origanum saccatum L. Journal of Food Safety, 29(4), 617-628.

Ozcan, M. M., Chalchat, J. C., Bagci, Y., Dural, H., Figueredo, G., & Savran, A. (2011). Chemical Composition of Essential Oils of Phlomis grandiflora Hs Thompson var. grandiflora Flowers and Leaves of Turkish Origin. Journal of Food Biochemistry, 35(1), 125-132.

Ozdemir, F. A., Kilic, O., & Yildirimli, S. (2017). Essential Oil Composition and Antimicrobial Activity of Endemic Phlomis sieheana Rech. From Bingol (Turkey). Journal of Essential Oil Bearing Plants, 20(2), 516-523.

Ozek, G., Demirci, F., Ozek, T., Tabanca, N., Wedge, D. E., Khan, S. I., Baser, K. H. C., Duran, A., Hamzaoglu, E. (2010). Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity. Journal of Chromatography A, 1217(5), 741-748. Ozek, G., Ozek, T., Dinc, M., Dogu, S., & Başer, K. H. C. (2012). Chemical Diversity of Volatiles of Teucrium orientale L. var. orientale, var. puberulens, and var. glabrescens Determined by Simultaneous GC-FID and GC/MS Techniques. Chemistry & Biodiversity, 9(6), 1144-1154.

Ozkan, G., Baydar, H., & Erbas, S. (2010a). The influence of harvest time on essential oil composition, phenolic constituents and antioxidant properties of Turkish oregano (Origanum onites L.). Journal of the Science of Food and Agriculture, 90(2), 205-209.

25

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Ozkan, G., Sagdic, O., Gokturk, R. S., Unal, O., & Albayrak, S. (2010b). Study on chemical composition and biological activities of essential oil and extract from Salvia pisidica. LWT - Food Science and Technology, 43(1), 186-190.

Ozkan, G., Simsek, B., & Kuleasan, H. (2007). Antioxidant activities of Satureja cilicica essential oil in butter and in vitro. Journal of Food Engineering, 79(4), 1391-1396.

Ozkum, D., Kurkcuoglu, M., Başer, K. H. C., & Tipirdamaz, R. (2010). Essential Oils From Wild and Micropropagated Plants of Origanum minutiflorum O. Schwarz et Davis. Journal of Essential Oil Research, 22(2), 135-137.

Ozturk, M. (2012). Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chemistry, 134(1), 48-54.

Ozturk, M., Duru, M. E., Aydogmus-Ozturk, F., Harmandar, M., Mahlicli, M., , U., & Ulubelen, A. (2009). GC-MS Analysis and Antimicrobial Activity of Essential Oil of Stachys cretica subsp. smyrnaea. Natural Product Communications, 4(1), 109-114. Ozturk, S., & Ercisli, S. (2006). The chemical composition of essential oil and in vitro antibacterial activities of essential oil and methanol extract of Ziziphora persica Bunge. Journal of Ethnopharmacology, 106(3), 372-376. Polat, T., Ozer, H., Ozturk, E., Cakir, A., Kandemir, A., & Demir, Y. (2010). Chemical Composition of the Essential Oil of Teucrium multicaule Montbret Et Aucher Ex Bentham from Turkey. Journal of Essential Oil Research, 22(5), 443-445. Renda, G., Bektas, N. Y., Korkmaz, B., Celik, G., Sevgi, S., & Yayli, N. (2017). Volatile Constituents of Three Stachys L. Species from Turkey. Marmara Pharmaceutical Journal, 21(2), 278-285. Sagdic, O., Ozturk, I., & Tornuk, F. (2013). Inactivation of non-toxigenic and toxigenic Escherichia coli O157:H7 inoculated on minimally processed tomatoes and cucumbers: Utilization of hydrosols of Lamiaceae as natural food sanitizers. Food Control, 30(1), 7-14.

Sagir, Z. O., Carikci, S., Kilic, T., & Goren, A. C. (2017). Metabolic profile and biological activity of Sideritis brevibracteata P. H. Davis endemic to Turkey. International Journal of Food Properties, 20(12), 2994-3005.

Salman, S. Y., Saritas, S., Kara, N., Aydinli, F., & Ay, R. (2015). Contact, Repellency and Ovicidal Effects of Four Lamiaceae Plant Essential Oils against Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Essential Oil Bearing Plants, 18(4), 857-872. Sarer, E., Toprak, S. Y., Otlu, B., & Durmaz, R. (2011). Composition and Antimicrobial Activity of the Essential Oil from Mentha spicata L. subsp. spicata. Journal of Essential Oil Research, 23(1), 105-108. Sarikaya, A. G. (2017). Volatile component composition of Ballota nigra subsp. anatolica at different vegetation periods in Çamlica Province of Kütahya City, Turkey. Applied Ecology and Environmental Research, 15(4), 1929 1933. Sarikaya, A. G., & Fakir, H. (2016). The Effect of Reaping Times on Volatile Components of Natural Phlomis L. (Lamiaceae) Taxa in the Lakes District of Turkey. Applied Ecology and Environmental Research, 14(3), 753-772.

Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M., & Harmandar, M. (2008). Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (Lamiaceae) by three different chemical assays. Bioresource Technology, 99(10), 4239-4246. Semiz, G., Celik, G., Gonen, E., & Semiz, A. (2016). Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Natural Product Research, 30(19), 2225-2229. Senol, F. S., Orhan, I. E., Erdem, S. A., Kartal, M., Sener, B., Kan, Y., Celep, F., Kahraman, A., Dogan, M. (2011). Evaluation of Cholinesterase Inhibitory and Antioxidant Activities of Wild and Cultivated Samples of Sage (Salvia fruticosa) by Activity-Guided Fractionation. Journal of Medicinal Food, 14(11), 1476-1483.

Sertkaya, E., Kaya, K., & Soylu, S. (2010). Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Industrial Crops and Products, 31(1), 107-112

26

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Somer, N. U., Sarikaya, B. B., Erac, B., Kaynar, E., Kaya, G. I., Onur, M. A., Demirci, B., Başer, K. H. C. (2015). Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Salvia pinnata L. Records of Natural Products, 9(4), 614-618. Tabanca, N., Demirci, B., Başer, K. H. C., Aytac, Z., Ekici, M., Khan, S. I., Jacob, M. R., Wedge, D. E. (2006). Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils. Journal of Agricultural Food Chemistry, 54(18), 6593-6597.

Tan, N., Satana, D., Sen, B., Tan, E., Altan, H. B., Demirci, B., & Uzun, M. (2016). Antimycobacterial and Antifungal Activities of Selected Four Salvia Species. Records of Natural Products, 10(5), 593-603.

Tan, N., Yazici-Tutunis, S., Yesil, Y., Demirci, B., & Tan, E. (2017). Antibacterial Activities and Composition of the Essential Oils of Salvia sericeo-tomentosa Varieties. Records of Natural Products, 11(5), 456-461.

Telci, I., Bayram, E., Yılmaz, G., & Avcı, B. (2006). Variability in essential oil composition of Turkish (Ocimum basilicum L.). Biochemical Systematics and Ecology, 34(6), 489-497.

Temel, H. E., Demirci, B., Demirci, F., Celep, F., Kahraman, A., Dogan, M., & Başer, K. H. C. (2016). Chemical characterization and anticholinesterase effects of essential oils derived from Salvia species. Journal of Essential Oil Research, 28(4), 322-331. Temel, M., Başer, K.H.C., Tınmaz, A. B. (2018). Production and Foreign Trade of Medicinal and Aromatic Plants of Turkey, 4th International Symposium on Medicinal and Aromatic Plants, 2-4 October 2018, Çeşme, Izmir, Turkey Tonk, F. A., Yüce, S., Bayram, E., Giachino, R. R. A., Sönmez, Ç., Telci, İ., & Furan, M. A. (2010). Chemical and genetic variability of selected Turkish oregano (Origanum onites L.) clones. Plant systematics and evolution, 288(3-4), 157-165. Topcu, G., Ozturk, M., Kusman, T., Barla Demirkoz, A. A., Kolak, U., & Ulubelen, A. (2013). Terpenoids, essential oil composition and fatty acids profile, and biological activities of Anatolian Salvia fruticosa Mill. Turkish Journal of Chemistry, 37(4), 619-632.

Topçu, G., Gören, A.C., Yıldız, Y.K. & Tümen, G. (1999). Ent-Kaurene diterpenes from Sideritis athoa. Natural Products Letters. 14, 123-129

Tozlu, E., Cakir, A., Kodali, S., Tozlu, G., OZer, H.,Aytas Akcin, T. (2011). Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Scientia Horticulturae, 130, 9-17. TUIK (2016). Crop production Statistics, Turkish Statistical Institute. http://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul Accessed 6 April 2019. Ulukanli, Z., Karaborklu, S., Cenet, M., Sagdic, O., Ozturk, I., & Balcilar, M. (2013). Essential oil composition, insecticidal and antibacterial activities of Salvia tomentosa Miller. Medicinal Chemistry Research, 22(2), 832-840.

Uysal, B., Sozmen, F., Kose, E. O., Deniz, I. G., & Oksal, B. S. (2010). Solvent-free microwave extraction and hydrodistillation of essential oils from endemic Origanum husnucanbaseri H. Duman, Aytac A. Duran: comparison of antibacterial activity and contents. Natural Product Research, 24(17), 1654-1663. Yasar, S., Fakir, H., Erbas, S., & Karakus, B. (2011). Volatile Constituents of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) PW Ball. and Calamintha nepeta (L.) Savi subsp. nepeta from Mediterranean Region in Turkey. Asian Journal of Chemistry, 23(8), 3765-3766.

Yayli, B., Tosun, G., Karakse, M., Renda, G., & Yayli, N. (2014). SPME/GC-MS Analysis of Volatile Organic Compounds from three Lamiaceae Species (Nepeta conferta Hedge & Lamond, Origanum onites L. and Satureja cuneifolia Ten.) Growing in Turkey. Asian Journal of Chemistry, 26(9), 2541-2544.

27

Nat. Volatiles & Essent. Oils, 2018; 5(4):1-28 Başer & Kırımer

Yesil Celiktas, O., Hames Kocabas, E. E., Bedir, E., Vardar Sukan, F., Ozek, T.,& Baser, K.H.C. (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry 100, 553–559. Yilar, M., Bayan, Y., Aksit, H., Onaran, A., Kadioglu, I., & Yanar, Y. (2013). Bioherbicidal Effects of Essential Oils Isolated from Thymus fallax F., Mentha dumetorum Schult. and Origanum vulgare L. Asian Journal of Chemistry, 25(9), 4807- 4811.

Yildirmis, S., Aliyazicioglu, R., Eyupoglu, O. E., Ozgen, U., & Karaoglu, S. A. (2017). Biological Activity and Characterization of Volatile Compounds of Teucrium orientale var. glabrescens by Spme and Gc-Fid/Ms. Journal of Food Biochemistry, 41(1). Yilmaz, H., Carikci, S., Kilic, T., Dirmenci, T., Arabaci, T., & Goren, A. C. (2017). Screening of Chemical Composition, Antioxidant and Anticholinesterase Activity of Section Brevifilamentum of Origanum (L.) Species. Records of Natural Products, 11(5), 439-455.

28

Nat. Volatiles & Essent. Oils, 2018; 5(4):29-34 Al-Massarani et al.

RESEARCH ARTICLE Headspace-SPME/GC-MS Analysis of the Anethum graveolens L. volatiles from Saudi Arabia with different fiber coatings

Shaza Al-Massarani1*, Nurhayat Tabanca2, Nida Nayyar Farshori1

1 Department of Pharmacognosy, Pharmacy College, King Saud University, PO Box 2457, Riyadh 11451, SAUDI ARABIA 2 USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158 USA

*Corresponding author. Email: [email protected]

Abstract Anethum graveolens L. () commonly known as dill is widely used as a crop and medicinal herb worldwide. The aim of the study was to extract and compare the volatile constituents present in the of Anethum graveolens by headspace solid phase microextraction (HS-SPME) using three fiber coatings [polydimethylsiloxane/divinylbenzene (PDMS/DVB), polydimethylsiloxane (PDMS), and divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS)]. The volatile compounds were characterized by gas chromatography-mass spectrometry (GC-MS) on the DB-5 column. A total of 15 constituents representing around 94-98% of the total components were identified. Carvone (26-35%), limonene (14-42%), dillapiole (9-34%) and cis-dihydrocarvone (8-14%) were found as the predominant constituents. The results showed that the relative abundances of the extracted compounds from dill seeds varied depending on the nature of SPME fibers.

Keywords: Anethum graveolens, dill seeds, Headspace-SPME/GC-MS, carvone, dillapiole

Introduction

Genus Anethum L., belonging to the Apiaceae family, is represented by only one species as Anethum graveolens L. (dill), which is locally known as “Shabat” or “Ein Jaradeh” in the Arabian Peninsula (Bailer, 2001). Dill is an important food crop in the world and it originated in the Mediterranean and South- west Asia and South-east Europe regions, however, it is, now, cultivated all around the world (Singh, 2005). The leaves are incorporated as a spice in salads, soups and many Asian and Middle East cuisines, while the seeds are widely used to prepare tea, in pickling and baking. The plant is globally appraised for its medicinal and aromatic uses. In Ayurvedic medicine, Anethum is a major constituent of over 60 ayurvedic preparations; the tea prepared from the seed is commonly used for colics and to ease digestion (Jana & Shekhawat, 2010). The native people in Saudi Arabia use the seeds as an appetizer, , mouth wash, anthelmintic, antispasmodic and aphrodisiac (Youssef, 2013). Other compounds isolated from dill seeds are coumarins, flavonoids, phenolic acids, and steroids. The essential oil can be obtained from different parts of the plant including the leaves, flowers, , and seeds with different percentages and varying contents depending on the part investigated, the geographic region, seasonal variations and the method of extraction used (Hussein et al., 2015). Previous works carried out in different countries around the world revealed that carvone and limonene are the major components of the dill seed essential oil. A. graveolens have been described to have antibacterial, antifungal, insecticidal, anti- inflammatory, antioxidant, antidiabetic, anticancer, antispasmodic, adaptogenic, diuretic and antihypercholesterolemic (Dahiya and Purkayastha, 2012, Chahal et al., 2016; Babri et al., 2012; Naseri et al., 2012; Panda et al., 2008; Zheng et al., 1992). A clinical study on 40 pregnant women showed that drinking

29

Nat. Volatiles & Essent. Oils, 2018; 5(4):29-34 Al-Massarani et al.

dill seeds infusion enhanced the release of oxytocin and shortened the duration of the first stage of labor (Monsefi et al., 2006). It was reported that limonene, one of the main constituents of the seed oil showed a contractive effect on uterine myometrium (Ma et al., 2015). The present study was carried out to develop a quick and easy method to analysis of volatile composition of dill seeds using three different SPME headspace analysis and gas chromatography-mass spectrometry (GC- MS). Materials and Methods Sample The seeds of A. graveolens were purchased from a local market in Riyadh city and, kindly, identified by a taxonomist in the Pharmacognosy Department, Faculty of Pharmacy, King Saud University. A voucher specimen was deposited in the Herbarium of the Pharmacognosy Department, Faculty of Pharmacy, King Saud University. Headspace-solid phase microextraction (HS-SPME) The headspace solid-phase microextraction was used to isolate the volatile compounds of A. graveolens seeds. Three types of fibers, 65 µm polydimethylsiloxane/divinylbenzene (PDMS/DVB), 100 µm polydimethylsiloxane (PDMS), and 50/30 µm divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS) (Supelco Inc., Bellefonte, PA, USA), were chosen for the determination of volatile components from A. graveolens seeds. About 2 grams of uncrushed seeds was transferred to 30 mL beaker that covered with aluminium foil for 30 min at 35 to 45 °C. The each fiber separately was exposed to the sample headspace for 30 min, prior to thermal desorption. After the collection process SPME fibres needle directly inserted into the splitless injection port of the GC-MS system for thermal desorption for 2 min. Gas chromatography-mass spectrometry (GC-MS) The volatile compounds extracted from A. graveolens seeds by HS-SPME fibers were subsequently analysed by GC-MS using an Agilent 5975B (Agilent Technologies, Santa Clara, CA, USA) system (Figure 1). An apolar column DB-5 (30 m x 0.25 mm inner diameter with 0.25 m film thickness, Agilent Technologies) was used with helium as carrier gas (1.3 mL min-1). GC oven temperature was 1.3 min at 60 °C and then 3 °C min-1 to 246 °C. The PTV injector temperature was 200 °C. Mass spectra were recorded at 70 eV. Mass range was m/z 35 to 450, ion source temperature was 230 °C and the scan rate was 2.8 sec-1. Compound identification The volatile composition of the samples was identified by comparison of their arithmetic indices (Dool &

Kratz, 1963) relative to a homologous series of C5-C25 alkanes on DB-5 capillary column and mass spectra to published data and the mass spectra database (MassFinder (2004), Adams Library (2007), Flavours and Fragrances of Natural and Synthetic Compounds 3 (2015), NIST 2017 and Wiley 11/NIST 2017), and our own library “SHRS Essential Oil Constituents-DB-5” which was built up from authentic standards and components of known essential oils. Authentic standards used in this study were purchased from Sigma-Aldrich Ltd, St. Louis, MO, USA [limonene (Cas # 5989-27-5), -terpineol (Cas #10482-56-1), carvone (Cas # 6485-40-1), 2- undecanone (Cas # 112-12-9), -caryophyllene (Cas # 87-44-5)].

30

Nat. Volatiles & Essent. Oils, 2018; 5(4):29-34 Al-Massarani et al.

Figure 1. SPME/GC-MS in analysis of dill seeds of volatile compounds using three different SPME fibers

Anethum graveolens SPME-PDMS/DVB carvone dillapiole cis-dihydrocarvone 2-undecanone limonene

Anethum graveolens SPME-PDMS

Anethum graveolens SPME-DVB/CAR/PDMS

Anethum graveolens seeds Chromatographic profile of A. graveolens on DB-5 column HS-SPME experiments

PDMS/DVB PDMS DVB/CAR/PDMS GC-MS, Agilent 5975B system, DB-5 column

Results and Discussion

The present study shows the preliminary investigation of the volatile constituents in A. graveolens seeds using HS-SPME-GC/MS analysis with three fibers including polydimethylsiloxane/divinylbenzene (PDMS/DVB), polydimethylsiloxane (PDMS) and divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). The chemical composition of the dill seeds is shown in Table 1, where the compounds are listed in the order of their elution. A total of fifteen compounds, representing 94-98% of the total composition of dill seeds, were identified. The relative percentages of the predominant constituents were found as carvone (26-35%), limonene (14-42%), dillapiole (9-34%) and cis-dihydrocarvone (8-14%).

Table 1. Volatile compounds of Anethum graveolens seeds using three different SPME fibers (PDMS/DVB, PDMS, DVB/CAR/PDMS) by GC-MS on DB-5 column

a b AI extperiment AI literature Compound name PDMS/DVB PDMS DVB/CAR/PDMS 1030 1024 limonene 20.7 14.0 42.0 1187 1186 -terpineol 0.5 0.4 <0.1 1193 1191 cis-dihydrocarvone 13.9 7.7 10.9 1200 1200 trans-dihydrocarvone 6.8 4.2 1.0 1239 1279 carvone 35.0 28.7 26.1 1288 1293 2-undecanone 5.9 5.6 4.7 1407 1417 -caryophyllene 0.4 0.4 <0.1 1415 1432 trans--bergamotene 0.8 0.5 <0.1 1438 1453 geranyl acetone <0.1 0.6 <0.1

31

Nat. Volatiles & Essent. Oils, 2018; 5(4):29-34 Al-Massarani et al.

1470 1489 -selinene 0.5 <0.1 <0.1 1479 1498 -selinene 0.5 0.4 <0.1 1507 1513 -cadinene 0.9 1.3 0.6 1502 1517 myristicin <0.1 0.4 <0.1 1506 1522 -cadinene <0.1 0.4 <0.1 1600 1620 dillapiole 11.4 33.8 8.9 Total <97.3 <98.4 <93.6 aExperimental arithmetic indices calculated against n-alkanes using DB-5 apolar column. bArithmetic retention indices from Adams Library (2007)

The results showed that the relative abundances of extracted compounds from dill seeds varied based on the nature of SPME fibers. Among the fibers tested, PDMS fiber coating showed the highest total amount of volatile compounds detected in dill, followed by PDMS/DVB and lastly, DVB/CAR/PDMS. Dill seeds, as an aromatic plant, is qualified based on carvone content (Zawirska‐Wojtasiak & Wasowicz). Limonene (fresh- citrus like) and carvone (spicy-) are responsible for the dill aroma (Jirovetz et al., 2013) high content of carvone can be related to quality of dill seeds (Zawirska‐Wojtasiak & Wasowicz). The PDMS/DVB fiber extracted the highest carvone among the three tested fibers. We found that the PDMS/DVB fiber might be the most suitable fiber coating for the quality control of dill seeds.

Figure 2. Structure of the main compounds identified in the sample

OCH3 O O CH H3CO 2

O

O Dillapiole Limonene Carvone Dihydrocarvone

Comparing our results with earlier published data on the volatile composition of A. graveolens seeds revealed some similarities as well as some differences. In the study performed by Hussein et al., 2015, carvone (62.48%), dillapiole (19.51%) and limonene (14.61%) were identified as the major compounds in the seed essential oil. Limonene was the dominant compound in an Indian (83.0%) and Egyptian (30.3%) samples. On the other hand, carvone was the major constituent of the seed volatiles in samples analyzed from Pakistan (55.2%), India (41.5%), Tajikistan (51.7%), China (41.51%) and Thailand (45.16%); reaching 73.6% of the oil composition in a study from Uzbekistan (Babri et al., 2012, Khaldi et al., 2015, Chahal et al., 2016, Sharopov et al., 2013, Ma et al., 2015, Yilli et al., 2009). Conclusions The objective of the present investigation was to analyze the chemical profile of the volatile compounds responsible for the characteristic flavor of dill seeds by SPME using three different fibers. The highest amount of carvone was extracted with PDMS/DVB fiber which suggest that it can be used as a quality control tool for dill seeds.

32

Nat. Volatiles & Essent. Oils, 2018; 5(4):29-34 Al-Massarani et al.

Headspace solid-phase microextraction (HS-SPME) coupled with GC-MS technique can be a simple, fast and sensitive method for the analysis of volatile compounds from agriculturally important crops. Compared to traditional methods, SPME is fast, easy to use, inexpensive, and solvent-free technique that can be suitable for various applications samples from medicinal and aromatic crops. Sampling from headspace-SPME can be extended from volatile to non-volatile compounds depending on the affinity of the fiber coatings. This technique also successfully allows the detection of volatile collection from small amounts of samples in the headspace mode. The SPME technique can be, routinely, used in combination with wide range of analytical instruments such as gas chromatography-flame ionization detector (GC-FID), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LC-MS). The SPME technology is expected to be widely used in the future for chemical analysis and chemical profiling of plant extracts. ACKNOWLEDGMENT

Special thank to Elena Q. Schnell, USDA, ARS, SHRS, Miami, FL, USA for technical assistance. Conflict of interest: The authors declare that they have no conflict of interest. REFERENCES

Adams, R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed. Allured Publishing Corp., Carol Stream, Illinois, USA. Babri, R. A., Khokhar, I., Mahmood, Z., & Mahmud S. (2012), Chemical composition and insecticidal activity of the essential oil of Anethum graveolens L. Science International, 24(4), 453-455 Bailer, J., Aichinger, T., Hackl, G., de Hueber, K., & Dachler, M. (2001). Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Industrial Crops and Products, 14(3), 229- 239. Chahal, K. K., Monika, K. D., & Singh, R. (2016). Antifungal potential of dill seed essential oil and its constituents. Indian Journal of Ecology, 43 (Special issue 2), 903-906. Chahal, K. K., Monika, A. K., Kumar, A., Bhardwaj, U., & R Kaur, R. (2017). Chemistry and biological activities of Anethum graveolens L. (dill) essential oil: A review. Journal of Pharmacognosy and Phytochemistry, 6(2), 295-306. Dahiya, P. & Purkayastha, S. (2012). Phytochemical analysis and antibacterial efficacy of dill seed oil against multi-drug resistant clinical isolates. Asian Journal of Pharmaceutical and Clinical Research, 5(2), 62-64. FFNSC 3 (2015) Flavors and fragrances of natural and synthetic compounds 3, mass spectral database, Scientific Instrument Services Inc., New Jersey, USA. Jana, S. & Shekhawat, G. S. (2010). Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacognosy Reviews, 4(8), 179-184. Jirovetz, L., Buchbauer, G., Stoyanova, A. S., Georgiev, E. V., Damianova, S. T. (2003). Composition, Quality Control, and Antimicrobial Activity of the Essential Oil of Long-Time Stored Dill (Anethum graveolens L.) Seeds from Bulgaria. Journal of Agricultural and Food Chemistry, 51, 3854-3857. Hussein, A. H., Said-Al Ahl A. M., Abou Dahab, M., El-Shahat, N., Abou-Zeid, M.S., Nabila, A. Y., & Naguib, M. A. (2015). Essential oils of Anethum graveolens L. Chemical composition and their antimicrobial activities at

33

Nat. Volatiles & Essent. Oils, 2018; 5(4):29-34 Al-Massarani et al.

vegetative, flowering and fruiting stages of development. International Journal of Plant Science and Ecology, 1(3), 98-102. Khaldi, A., Meddah, B., Moussaoui, A., Sonnet, P., & Akermy, M.M (2015). Chemical composition and antifungal activity of essential oil of Anethum graveolens L. from South western Algeria (Bechar). Journal of Chemical and Pharmaceutical Research, 7(9), 615-620. Ma, B., Ban, X., Huang, B., He, J., Tian, J., Zeng, H., Chen, Y., & Wang Y (2015). Interference and mechanism of dill seed essential oil and contribution of carvone and limonene in preventing sclerotinia rot of rapeseed. PLoS ONE, 10(7), 1-15. Monsefi, M., Ghasemi, M., & Bahaoddini, A. (2006). The effects of Anethum graveolens L. on female reproductive system. Phytotherapy Research, 20(10), 865-868 Naseri, M., Mojab, F., Khodadoost, M., Kamalinejad, M., Davati, A., Choopani, R., Hasheminejad, A., Bararpoor, Z., Shariatpanahi, S., & Emtiazy, M. (2012). The study of anti-inflammatory activity of oil-based dill (Anethum graveolens L.) extract used topically in formalin-induced inflammation male rat paw. Iranian Journal of Pharmaceutical Research, 11(4), 1169-1174. Panda, S. (2008). The effect of Anethum graveolens L. (dill) on corticosteroid induced Diabetes mellitus: Involvement of thyroid hormones. Phytotherapy Research, 22(12), 1695-1697. Singh, G., Maurya, S., de Lampasona, M. P., & Catalan, C. (2005). Chemical constituents, antimicrobial investigations, and antioxidative potentials of Anethum graveolens L. essential oil and acetone extract. Journal of Food Science, 70(4), 208-215. Sharopov, S. F., Wink, M., Gulmurodov, I. S., Isupov, S. J., Zhang, H., & Setzer, W.N. (2013). Composition and bioactivity of the essential oil of Anethum graveolens L. from Tajikistan. International Journal of Medicinal and Aromatic Plants, 3(2), 125-130. The NIST 17 Mass Spectrometer database, Scientific Instrument Services Inc., New Jersey, USA. van den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471. Wiley Registry of Mass Spectral Data, 11th edition, Scientific Instrument Services, Inc., New Jersey, USA. Yili, A., Aisa, H. A., Maksimov, V. V., Veshkurova, O. N., & Salikhov, S. H. L. (2009). Chemical composition and antimicrobial activity of essential oil from seeds of Anethum graveolens growing in Uzbekistan. Chemistry of Natural Compounds, 45(2), 280-281 Youssef, R. S. A. (2013). Medicinal and non-medicinal uses of some plants found in the middle region of Saudi Arabia. Journal of Medicinal Plants Research, 7(34), 2501-2513. Zawirska‐Wojtasiak, R. and Wasowicz, E. (2002). Estimation of the main dill seeds odorant carvone by solid- phase microextraction and gas chromatography. Nahrung/Food, 46(5), 357-359. Zheng, G.Q., Kenney, P. M., Lam, L. K. (1992). Anethofuran, carvone and limonene: Potential cancer chemoprotective agents from dill weed oil and caraway oil. Planta Medica, 58(4), 338-341.

34

Nat. Volatiles & Essent. Oils, 2018; 5(4): 35-38 Karadağ et al.

RESEARCH ARTICLE Characterization of Opuntia ficus-indica (L.) Mill. fruit volatiles and antibacterial evaluation

Ayse Esra Karadağ1,2*, Betül Demirci3, Derya Çiçek Polat4 , Mehmet Evren Okur5

1 Department of Pharmacognosy, Faculty of Pharmacy, Medipol University, 34810, Istanbul, TURKEY 2 Depatment of Pharmacognosy, Graduate School of Health Sciences, Anadolu University, Eskişehir, TURKEY 3 Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, TURKEY 4 Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Istanbul, TURKEY 5 Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, TURKEY

*Corresponding author. Email:[email protected]

Abstract Opuntia ficus-indica (L.) Mill. fruits known as prickly pear cactus are used in folk medicine as well as food. In the present study it was aimed to extract the volatile constituents of O. ficus-indica fruits by n-hexane. The volatiles were subsequently analyzed by GC-FID and GC-MS, where a total of 14 compounds were identified. The main components were characterized as hexadecanoic acid 39.4%, heptacosane 12.3%, and methyl linoleate 6.8%, respectively. Further antimicrobial evaulation using a broth microdilution assay (Clinical and Laboratory Standards Institute method) against human pathogenic Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Escherichia coli NRLL B-3008, and Pseudomonas aeruginosa ATCC 10145. The minimum non-reproductive concentrations were determined as MIC, where S. aureus showed the most potent inhibition by 500 µg/mL.

Keywords: Opuntia ficus-indica, volatile compounds, chemical characterization, Cactaceae

Introduction

The genus Opuntia L. is represented by more than 1500 species in the world and this genus is an important member of the Cactaceae family. It is distributed in the Mediterranean and Aegean Region and consumed as food due to its unique taste and its natural antioxidants (Lee et al., 2002; Kabas et al., 2006)). The fruits and stems are used traditionally in folk medicine against burns, wounds, edema, bronchial asthma, diabetes, and indigestion (Ahn, 1998). It is also reported that fruit and stems extracts exhibit anti-inflammatory, analgesic, hypoglycemic, anti-ulcer, and anti-allergic actions (Ibanoz et al., 1979; Trejo-Gonzales et al, 1996; Galati et al., 2001; Lee et al., 2002; Lee et al., 2000; Park et al., 1998; Park et al., 2001). The aim of the present study was to elucidate the in vitro antimicrobial activity of O. ficus-indica fruit volatiles and aroma components. The phytochemical composition was analyzed by GC-FID and GC/MS after lipophylic extraction. To the best of our knowledge, this is the first report on the volatiles of O. ficus-indica fruits. Materials and Methods Chemicals and plant material O. ficus-indica fruits were collected from Turunç, Marmaris (Date: 04.08.2017), which was indentified by Derya Çiçek Polat, voucher specimens were deposited at Ankara University Herbarium. Pinkish fruits were thinly cut and dried. Samples were powdered and extracted with n-hexane on a magnetic stirrer where 200 g sample, was extracted 2 x 200 mL, followed by filtration. The n-hexane removed by vacuo by using a rotary evaporator.

35

Nat. Volatiles & Essent. Oils, 2018; 5(4): 35-38 Karadağ et al.

GC-MS analysis The GC-MS analysis was carried out with an Agilent 5975 GC-MSD system. Innowax FSC column (60 m x 0.25 mm, 0.25 µm film thickness) was used with helium as carrier gas (0.8 mL/min). GC oven temperature was kept at 60°C for 10 min and programmed to 220°C at a rate of 4°C/min, and kept constant at 220°C for 10 min and then programmed to 240°C at a rate of 1°C/min. Split ratio was adjusted at 40:1. The injector temperature was set at 250°C. Mass spectra were recorded at 70 eV. Mass range was from m/z 35 to 450 (McLafferty, 1989). GC analysis The GC analysis was carried out using an Agilent 6890N GC system. FID detector temperature was 300°C. To obtain the same elution order with GC-MS, simultaneous auto-injection was done on a duplicate of the same column applying the same operational conditions. Relative percentage amounts of the separated compounds were calculated from FID chromatograms. The analysis results are given in Table I. Identification of the volatile components were carried out by comparison of their relative retention times with those of authentic samples or by comparison of their relative retention index (RRI) to series of n-alkanes. Computer matching against commercial (Wiley GC/MS Library, MassFinder Software 4.0) (1,2) and in-house “Başer Library of Essential Oil Constituents” built up by genuine compounds and components of known oils. Antimicrobial activity The antimicrobial activity was determined using the broth microdilution assay following the methods described by the Clinical and Laboratory Standards Institute (CLSI, 2006) to determine the minimum inhibitory concentrations (MIC) against the human pathogenic standard strains; Pseudomonas aeruginosa ATCC 10145, Escherichia coli NRLL B-3008, Enterococcus faecalis ATCC 29212, Escherichia coli NRLL B-3008, and Staphylococcus aureus ATCC 6538. All strains were grown in Mueller Hinton Broth (MHB, Merck, Germany) at 37°C in aerobic conditions for 24 h and standardized to 1 × 108 CFU/mL using McFarland No: 0.5 in sterile saline (0.85%). Test samples stock solution was prepared in dimethylsulfoxide (DMSO) and serial dilutions were prepared for each sample, antibaterial evaluations were in triplicates and reported as mean in Table 2. Results and Discussion

The phytochemical constituents of the n-hexane extract were analyzed using GC-FID and GC-MS which led to the identification of a total of fourteen different compounds. The main components characterized were hexadecanoic acid 39.4%, heptacosane 12.3%, methyl linoleat 6.8%, hexacosane 5.8%, tricosane 5.1%, methyl hexadecanoate 4.2%, camphor 2.8%, borneol 2.5%, verbenone 1.8%, pentacosane 1.7%, -terpineol 1.1%, respectively. To the best of our knowledge, this is the first report on the volatiles of O. ficus-indica n- hexane extract.

Table 1. The Volatile Composition of Opuntia ficus-indica n-hexane extract RRI Compound % Identification Method 1203 1,8-cineole 1.0 tR, MS 1400 Camphor 2.8 tR, MS 1466 Linalool 0.8 MS 1495 Isopinocamphone 0.4 MS 1497 α-terpineol 1.1 tR, MS

36

Nat. Volatiles & Essent. Oils, 2018; 5(4): 35-38 Karadağ et al.

1535 Borneol 2.5 MS 1553 Verbenone 1.8 tR, MS 1868 Methyl Hexadecanoate 4.2 MS 1933 Tricosane 5.1 tR, MS 1957 Pentacosane 1.7 MS 1958 Methyl linoleate 6.8 tR, MS 2037 Hexacosane 5.8 MS 2041 Heptacosane 12.3 MS 2050 Hexadecanoic acid 39.4 MS Total 85.7 RRI Relative retention indices calculated against n-alkanes. % calculated from FID data. tr Trace (< 0.1 %). tR, identification based on the retention times (tR) of genuine standard compounds on the HP Innowax column; MS, tentatively identified on the basis of computer matching of the mass spectra with those of the Wiley and MassFinder libraries and comparison with literature data. Table 2. Antimicrobial activity of O. ficus-indica fruit n-hexane extract (MICs in μg/mL)

Sample E. coli S. aureus P. aeruginosa E. faecalis n-hexane extract >1000 500 >1000 >1000 Chloramphenicol 8 8 >32 16 Tetracycline 16 0.25 >16 0.025

O. ficus-indica fruit volatiles (n-hexane extract) against bacterial strains were listed, in Table 2. The results revealed that n-hexane extract is effective on S. aureus at 500 µg/mL. However, the evaluated extract showed no inhibitory activity on bacteria at the tested concentrations suggesting further detailed biological evaluations. To the best of our knowledge, this is the first report on the volatiles and antibacterial evaluation of O. ficus-indica fruits. Our studies on Opuntia sp. species are ongoing. REFERENCES

Ahn, D. K. (1998). Illustrated book of Korean medicinal . Seoul (Korea): Kyo-hak Publishing Co, 107.

Clinical and Laboratory Standards Institute M7-A7, 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Seventh Edition, CLSI document A. Wayne, Pa. USA. 26(2).

Galati, E. M., Monforte, M. T., Tripodo, M. M., d'Aquino, A., & Mondello, M. R. (2001). Antiulcer activity of Opuntia ficus indica (L.) Mill.(Cactaceae): ultrastructural study. Journal of Ethnopharmacology, 76(1), 1-9.

Ibanez-Camacho, R., & Roman-Ramos, R. (1979). Hypoglycemic effect of Opuntia cactus. Archivos de investigacion medica, 10(4), 223-230.

Kabas, O., Ozmerzi, A., & Akinci, I. (2006). Physical properties of cactus pear (Opuntia ficus india L.) grown wild in Turkey. Journal of Food Engineering, 73(2), 198–202.

Lee, J.-C., Kim, H.-R., Kim, J., & Jang, Y.-S. (2002). Antioxidant property of an ethanol extract of the stem of Opuntia ficus- indica var. saboten. Journal of Agricultural and Food Chemistry, 50(22), 6490–6496.

Lee, N., Yoon, J., Lee, B., Choi, B., & Park, K. (2000). Screening of the radical scavenging effects, tyrosinase inhibition and anti-allergic activities using Opuntia ficus-indica. Korean Journal of Pharmacognosy, 31(4), 412-415.

McLafferty, F.W., Stauffer D.B. (1989). The Wiley/NBS Registry of Mass Spectral Data, J Wiley and Sons: New York. Park, E. H., Kahng, J. H., & Paek, E. A. (1998). Studies on the pharmacological actions of cactus: identification of its anti- inflammatory effect. Archives of pharmacal research, 21(1), 30-34.

37

Nat. Volatiles & Essent. Oils, 2018; 5(4): 35-38 Karadağ et al.

Park, E. H., Kahng, J. H., Lee, S. H., & Shin, K. H. (2001). An anti-inflammatory principle from cactus. Fitoterapia, 72(3), 288-290.

Trejo-González, A., Gabriel-Ortiz, G., Puebla-Pérez, A. M., Huízar-Contreras, M. D., del Rosario Munguia-Mazariegos, M., Mejía-Arreguín, S., & Calva, E. (1996). A purified extract from prickly pear cactus (Opuntia fuliginosa) controls experimentally induced diabetes in rats. Journal of Ethnopharmacology, 55(1), 27-33.

38