Ancestors to the Missoula Floods

Total Page:16

File Type:pdf, Size:1020Kb

Ancestors to the Missoula Floods Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 1-5-2012 Ancient Cataclysmic Floods in the Pacific Northwest: Ancestors to the Missoula Floods Erica Medley Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, Paleontology Commons, and the Soil Science Commons Let us know how access to this document benefits ou.y Recommended Citation Medley, Erica, "Ancient Cataclysmic Floods in the Pacific Northwest: Ancestors to the Missoula Floods" (2012). Dissertations and Theses. Paper 581. https://doi.org/10.15760/etd.581 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Ancient Cataclysmic Floods in the Pacific Northwest: Ancestors to the Missoula Floods by Erica Medley A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: Scott F. Burns, Chair Christina Hulbe Jim O’Connor Portland State University ©2012 Abstract Ancient Cataclysmic Floods were the Ice Age Floods that left erosional and depositional features and preceded the Missoula Floods (15-18,000 ka) in the Pacific Northwest of the United States (Allen et al., 2009). All previously studied ancient sites were visited (14) and new sites (11) were found; four Missoula Flood quarries were also visited; a total of 29 sites were studied in this thesis. The use of calcrete paleosols to provide relative age dates for flood deposits was analyzed in this thesis. Missoula Flood gravel pits were sampled in order to examine the degree of calcrete development in flood deposits of known ages. All of the Missoula Flood deposits tested contain Stage 1 calcrete soil development. Calcrete paleosols at sites with evidence for older floods were all analyzed. Eight sites have paleosols with Stage II development (3-12% CaCO3): Rulo Outcrop, Potholes Coulee, Leslie Road, Benge, E. Callaway Road, Collier Coulee, Palouse, and Connell. Five sites have paleosols with Stage II+ development (12-17% CaCO3): Brown Road, Leslie Road, Benge, Reese Coulee, and Connell. Fourteen sites have paleosols with Stage III development (17-35% CaCO3): The Dalles, Rulo Outcrop, Winans Road 1, Poplar Heights, Yakima Bluffs, Canal Outcrop, Othello Canal, Reese Coulee, Potholes Coulee, E. Callaway Road, Frenchmen Coulee, Macall, Ritzville, and East Connell. One site has a paleosol with Stage III+ development (35-50% CaCO3): Othello Canal. Ancient Cataclysmic flooding initiated in the Early Pleistocene, at least 1.5 Myr. Sixteen field sites show evidence for Early Pleistocene flooding, preserved in all i six provinces: Othello Channels, Columbia River Gorge, Cheney-Palouse Scabland, Quincy Basin, Pasco Basin, and the Walla Walla Valley. There are 26 field sites with evidence for Middle Pleistocene flooding, present all regions except Othello Channels. Eleven of those 26 sites also show evidence for Early Pleistocene floods. Evidence for ancient flooding is present over dis. Evidence for Early and Middle Pleistocene floods is present over a wide distribution of elevations from 117 to 524 meters. ii Acknowledgements I would like to thank everyone who supported me and helped me through this process in some way. I could not have finished without the help and encouragement from others. Thanks to: My Mom and Dad, for supporting me not just through my thesis work but through everything leading up to that throughout my life; My sister, for motivating me with the things she has accomplished; My advisor, Scott Burns, for his inspiring enthusiasm and guidance; My committee members, Christina Hulbe and Jim O’Connor, whose input was extremely helpful; Giants that came before me, whose work was absolutely essential to this thesis: J.H. Bretz, V.R. Baker, D. Nummedal, B.N. Bjornstad, A.J. Busacca, K.R. Fecht, E.P. Kiver, M. Jaffee, P. Spencer, E.V. McDonald, R.B. Waitt, J. O’Connor; My field assistant and friend Kathryn Barnard, for driving all over eastern Washington with me and helping me find new field sites; My roommates and best friends Sarah Doliber, Skinny, and Chester, for providing lots of emotional support; Fellow graduate students at Portland State University, who took classes and progressed through the program with me; University Studies Program, for forcing me to become a public speaker and providing me with a job during this process; and the Avery Gravel Pit, for letting us access their property. iii Table of Contents Abstract ......................................................................................................................................... i Acknowledgements ................................................................................................................ iii List of Tables ............................................................................................................................. vi List of Figures .......................................................................................................................... vii Chapter 1: Introduction ........................................................................................................ 1 1.1 Missoula Floods ............................................................................................................................ 2 1.2 Ancient Cataclysmic Floods ..................................................................................................... 3 1.3 Aims and Objectives ................................................................................................................... 4 Chapter 2: Background ......................................................................................................... 7 2.1 Cenozoic Geologic History of the Study Area ..................................................................... 7 2.2 Pleistocene Ice Age History ..................................................................................................... 7 2.3 Missoula Floods-Most Famous of the Ice Age Floods ...................................................... 9 2.4 Ancient Cataclysmic Floods .................................................................................................. 10 2.5 Soil Development ..................................................................................................................... 15 2.6 Unconformities.......................................................................................................................... 17 2.7 Exotic Clasts ................................................................................................................................ 17 2.8 Truncated Clastic Dikes ......................................................................................................... 18 2.9 Reversed Magnetic Polarity .................................................................................................. 18 Chapter 3: Methods ............................................................................................................... 19 3.1 Literature Review..................................................................................................................... 19 3.2 Field Data Collection ............................................................................................................... 19 3.3 Laboratory Methods ................................................................................................................ 20 Chapter 4: Results ................................................................................................................. 23 4.1 Missoula Flood Gravel Pits .................................................................................................... 26 4.1.1 Avery Gravel Pit (Wishram, Washington) .............................................................................. 26 4.1.2 St. Petersburg Bar (The Dalles, Oregon) ................................................................................. 29 4.1.3 Fairbanks Farm (The Dalles, Oregon)...................................................................................... 31 4.1.4 Arlington (Arlington, Oregon) .................................................................................................... 33 4.2 Loess Sites ................................................................................................................................... 35 4.2.1 Washtucna (Washtucna, Washington) .................................................................................... 35 4.2.2 Benge (Benge, Washington) ........................................................................................................ 38 4.2.3 E. Callaway Road (Benge, Washington) .................................................................................. 41 4.2.4 Rulo Outcrop (Walla Walla, Washington) .............................................................................. 44 4.3 Flood deposits ........................................................................................................................... 47 4.3.1 Poplar Heights (Highland, Washington) ................................................................................. 47 4.3.2 Old Maid Coulee (Mesa, Washington) ...................................................................................... 50 4.3.3
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    RECONNAISSANCE SURFICIAL GEOLOGIC MAPPING OF THE LATE CENOZOIC SEDIMENTS OF THE COLUMBIA BASIN, WASHINGTON by James G. Rigby and Kurt Othberg with contributions from Newell Campbell Larry Hanson Eugene Kiver Dale Stradling Gary Webster Open File Report 79-3 September 1979 State of Washington Department of Natural Resources Division of Geology and Earth Resources Olympia, Washington CONTENTS Introduction Objectives Study Area Regional Setting 1 Mapping Procedure 4 Sample Collection 8 Description of Map Units 8 Pre-Miocene Rocks 8 Columbia River Basalt, Yakima Basalt Subgroup 9 Ellensburg Formation 9 Gravels of the Ancestral Columbia River 13 Ringold Formation 15 Thorp Gravel 17 Gravel of Terrace Remnants 19 Tieton Andesite 23 Palouse Formation and Other Loess Deposits 23 Glacial Deposits 25 Catastrophic Flood Deposits 28 Background and previous work 30 Description and interpretation of flood deposits 35 Distinctive geomorphic features 38 Terraces and other features of undetermined origin 40 Post-Pleistocene Deposits 43 Landslide Deposits 44 Alluvium 45 Alluvial Fan Deposits 45 Older Alluvial Fan Deposits 45 Colluvium 46 Sand Dunes 46 Mirna Mounds and Other Periglacial(?) Patterned Ground 47 Structural Geology 48 Southwest Quadrant 48 Toppenish Ridge 49 Ah tanum Ridge 52 Horse Heaven Hills 52 East Selah Fault 53 Northern Saddle Mountains and Smyrna Bench 54 Selah Butte Area 57 Miscellaneous Areas 58 Northwest Quadrant 58 Kittitas Valley 58 Beebe Terrace Disturbance 59 Winesap Lineament 60 Northeast Quadrant 60 Southeast Quadrant 61 Recommendations 62 Stratigraphy 62 Structure 63 Summary 64 References Cited 66 Appendix A - Tephrochronology and identification of collected datable materials 82 Appendix B - Description of field mapping units 88 Northeast Quadrant 89 Northwest Quadrant 90 Southwest Quadrant 91 Southeast Quadrant 92 ii ILLUSTRATIONS Figure 1.
    [Show full text]
  • Surficial Geologic Map of the Lenore Quadrangle, Nez Perce County, Idaho
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 14 MOSCOW-BOISE-POCATELLO OTHBERG, BRECKENRIDGE, AND WEISZ Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format S URFICIAL G EOLOGIC M AP OF THE L ENORE Q UADRANGLE, N EZ P ERCE C OUNTY, I DAHO may not conform to agency standards. Kurt L. Othberg, Roy M. Breckenridge, and Daniel W. Weisz 2003 Qac CORRELATION OF MAP UNITS Qls Qls Qcb Qcb Surficial Latah Columbia River QTlbr Deposits Formation Basalt Qls m Qac Qam Qoam Qas Qac HOLOCENE QTlbr Qad Qls Qcb Qcg Qm 13,000 years Qad Qag QUATERNARY PLEISTOCENE QTlbr QTlbr Qac Qls QTlbr Qac PLIOCENE TERTIARY Qac Tl Tcb MIOCENE Qcb QTlbr INTRODUCTION Qcg Colluvium from granitic and metamorphic rocks (Holocene and Pleistocene)— Primarily poorly sorted muddy gravel composed of angular and subangular pebbles, cobbles, and boulders in a matrix of sand, silt, and clay. Emplaced The surficial geologic map of the Lenore quadrangle identifies earth materials by gravity movements in Bedrock Creek canyon where there are outcrops on the surface and in the shallow subsurface. It is intended for those interested of pre-Tertiary granitic rocks and quartzite. Includes local debris-flow deposits in the area's natural resources, urban and rural growth, and private and and isolated rock outcrops. Includes colluvium and debris-flow deposits Qac public land development. The information relates to assessing diverse QTlbr from the upslope basalt section, and areas of thin loess (typically less than conditions and activities, such as slope stability, construction design, sewage 5 feet).
    [Show full text]
  • Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington by Wes Hildreth and Judy Fierstein
    Prepared in Cooperation with the Water Resources Program of the Yakama Nation Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington By Wes Hildreth and Judy Fierstein Pamphlet to accompany Scientific Investigations Map 3315 Photograph showing Mount Adams andesitic stratovolcano and Signal Peak mafic shield volcano viewed westward from near Mill Creek Guard Station. Low-relief rocky meadows and modest forested ridges marked by scattered cinder cones and shields are common landforms in Simcoe Mountains volcanic field. Mount Adams (elevation: 12,276 ft; 3,742 m) is centered 50 km west and 2.8 km higher than foreground meadow (elevation: 2,950 ft.; 900 m); its eruptions began ~520 ka, its upper cone was built in late Pleistocene, and several eruptions have taken place in the Holocene. Signal Peak (elevation: 5,100 ft; 1,555 m), 20 km west of camera, is one of largest and highest eruptive centers in Simcoe Mountains volcanic field; short-lived shield, built around 3.7 Ma, is seven times older than Mount Adams. 2015 U.S. Department of the Interior U.S. Geological Survey Contents Introductory Overview for Non-Geologists ...............................................................................................1 Introduction.....................................................................................................................................................2 Physiography, Environment, Boundary Surveys, and Access ......................................................6 Previous Geologic
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Sculpted by Floods Learning Resource Guide Overview
    Sculpted by Floods Learning Resource Guide Overview: KSPS’s Sculpted by Floods tells the story of the ice age floods in the Pacific Northwest. It is a story of the earth's power, scientific discovery and human nature - one touted by enthusiasts as the greatest story left untold. During the last ice age, floods flowing with ten times the volume of all the world's current rivers combined inundated the Northwest. What they left behind was a unique landscape that citizens of the Pacific Northwest call home. Subjects: Earth Science, Geology, History, Pacific Northwest History Grade Levels: 6-8 Materials: Lesson handouts, laptops/computers Learning Guide Objectives: Define the following vocabulary terms and use them orally and in writing: glacier, flood, cataracts, landform, canyon, dam. Analyze how floods can create landforms and shape a region’s landscape, using the Missoula Floods as a case study. Next Generation Science Standards MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. Washington State History Standards EALR 4: HISTORY: 3.1. Understands the physical characteristics, cultural characteristics, and location of places, regions, and spatial patterns on the Earth’s surface Common Core English Language Arts Anchor & Literacy in History/Social Studies Standards CCSS.ELA-LITERACY.CCRA.R.7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. CCSS.ELA-LITERACY.CCRA.W.4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
    [Show full text]
  • 2017-2022 Comprehensive Scheme of Harbor Improvements – Port of Clarkston
    Port of Clarkston 2017 – 2022 Harbor Improvements Comprehensive Scheme of PORT OF CLARKSTON COMPREHENSIVE SCHEME OF HARBOR IMPROVEMENTS (COMPREHENSIVE SCHEME) 2017 - 2022 Contributions by: Port of Clarkston Board of Commissioners Rick Davis, District 1, Chair Wayne Tippett, District 2 Marvin L. Jackson, District 3 Port Staff Wanda Keefer, Manager Jennifer Bly, Port Auditor Belinda Campbell, Economic Development Assistant Steve Pearson, Maintenance Lead Justin Turner, Maintenance Staff 849 Port Way Clarkston, WA 99403 (509) 758-5272 Port of Clarkston Comprehensive Scheme of Harbor Improvements Page i Port of Clarkston Comprehensive Scheme TABLE OF CONTENTS Page Title Page Cover Page i Table of Contents ii Introduction Mission of the Port 1 The Comprehensive Scheme of Harbor Improvements 2 History of Washington Ports 2 General Powers 3 Transportation 3 Economic Development 4 The Port of Clarkston 4 Characteristics of Asotin County 4 Port Properties 6 Port Planning Documents 8 Asotin Marina 10 Goals, Policies and Objectives for Port Development 12 Economic Development Initiatives 18 Preface 18 Industrial and Commercial Infrastructure 19 A – Development Overview 19 B -- Recent Development 20 Transportation Infrastructure 21 A -- Marine Related 21 B -- Non-Marine Related 22 Communications /Security Infrastructure 22 A -- Telecommunications 22 B -- Port Security System 23 Recreation and Tourism 23 Capacity Building and Other Broader Economic Development Initiatives 24 Planned Improvements 26 Near Term Recommendations 26 Medium Term Recommendations
    [Show full text]
  • Characterization of Ecoregions of Idaho
    1 0 . C o l u m b i a P l a t e a u 1 3 . C e n t r a l B a s i n a n d R a n g e Ecoregion 10 is an arid grassland and sagebrush steppe that is surrounded by moister, predominantly forested, mountainous ecoregions. It is Ecoregion 13 is internally-drained and composed of north-trending, fault-block ranges and intervening, drier basins. It is vast and includes parts underlain by thick basalt. In the east, where precipitation is greater, deep loess soils have been extensively cultivated for wheat. of Nevada, Utah, California, and Idaho. In Idaho, sagebrush grassland, saltbush–greasewood, mountain brush, and woodland occur; forests are absent unlike in the cooler, wetter, more rugged Ecoregion 19. Grazing is widespread. Cropland is less common than in Ecoregions 12 and 80. Ecoregions of Idaho The unforested hills and plateaus of the Dissected Loess Uplands ecoregion are cut by the canyons of Ecoregion 10l and are disjunct. 10f Pure grasslands dominate lower elevations. Mountain brush grows on higher, moister sites. Grazing and farming have eliminated The arid Shadscale-Dominated Saline Basins ecoregion is nearly flat, internally-drained, and has light-colored alkaline soils that are Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and America into 15 ecological regions. Level II divides the continent into 52 regions Literature Cited: much of the original plant cover. Nevertheless, Ecoregion 10f is not as suited to farming as Ecoregions 10h and 10j because it has thinner soils.
    [Show full text]
  • Washington's Channeled Scabland
    t\D l'llrl,. \·· ~. r~rn1 ,uR\fEY Ut,l\n . .. ,Y:ltate" tit1Washington ALBEIT D. ROSEWNI, Governor Department of Conservation EARL COE, Dlnctor DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By J HARLEN BRETZ 9TAT• PIUHTIHO PLANT ~ OLYMPIA, WASH., 1"511 State of Washington ALBERT D. ROSELLINI, Governor Department of Conservation EARL COE, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By .T HARLEN BRETZ l•or sate by Department or Conservation, Olympia, Washington. Price, 50 cents. FOREWORD Most travelers who have driven through eastern Washington have seen a geologic and scenic feature that is unique-nothing like it is to be found anywhere else in the world. This is the Channeled Scab­ land, a gigantic series of deeply cut channels in the erosion-resistant Columbia River basalt, the rock that covers most of the east-central and southeastern part of the state. Grand Coulee, with its spectac­ ular Dry Falls, is one of the most widely known features of this ex­ tensive set of dry channels. Many thousands of travelers must have wondered how this Chan­ neled Scabland came into being, and many geologists also have speculated as to its origin. Several geologists have published papers outlining their theories of the scabland's origin, but the geologist who has made the most thorough study of the problem and has ex­ amined the whole area and all the evidence having a bearing on the problem is Dr. J Harlen Bretz. Dr.
    [Show full text]
  • Chapter 85. the Example of the Lake Missoula Flood
    Chapter 85 The Example of the Lake Missoula Flood As already noted, uniformitarian hypotheses rarely, if ever, can be supported by extensive geological evidence. Part of this is due to the nature of the features, since they originated in the past. The same charge could be leveled against Flood explanations. However, geomorphological evidence for the Retreating Stage of the Flood is strong, as this ebook shows. Whereas uniformitarian scientists have to invent speculative secondary hypotheses to salvage their paradigm in the light of conflicting evidence, the Flood paradigm does not need to invent secondary hypotheses, because the evidence is consistent with the paradigm. Furthermore, the Flood paradigm has an example of how a well-substantiated catastrophic flood at the peak of the Ice Age created a water and wind gap.1 The Lake Missoula flood (earlier called the Spokane or the Bretz flood) demonstrates catastrophic floods can easily produce water and wind gaps. Figure 85.1. Glacial Lake Missoula as shown on a kiosk sign at Lake Pend Oreille. 1 Oard, M.J., 2004. The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ. The Lake Missoula Flood One of the largest lakes ever ponded by an ice dam was glacial Lake Missoula (Figure 85.1). After this lake deepened to 2,000 feet (610 m) at the dam site in northern Idaho, the bursting ice dam initiated one of the largest floods on earth, except that described in Genesis. Glacial Lake Missoula contained 540 mi3 (2,210 km3) of water and emptied in two days.
    [Show full text]
  • Ice Age Floods National Geologic Trail Foundation Document, 2012
    Ice Age Floods National Geologic Trail Foundation Statement February 2014 Cover (left to right): Lake Pend Oreille, Farragut State Park, Idaho, NPS Photo Moses Coulee, Washington, NPS Photo Palouse Falls, Washington, NPS Photo Ice Age Floods National Geologic Trail Table of Contents Introduction.........................................................................................................................................2 Purpose of this Foundation Statement.................................................................................2 Development of this Foundation Statement........................................................................2 Elements of the Foundation Statement...............................................................................3 Trail Description.......................................................................................................................4 Map..........................................................................................................................................6 Trail Purpose.......................................................................................................................................8 Trail Signifcance................................................................................................................................10 Fundamental Resources and Values.................................................................................................12 Primary Interpretive Themes............................................................................................................22
    [Show full text]
  • The Holocene
    The Holocene http://hol.sagepub.com The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman The Holocene 2009; 19; 143 DOI: 10.1177/0959683608098958 The online version of this article can be found at: http://hol.sagepub.com/cgi/content/abstract/19/1/143 Published by: http://www.sagepublications.com Additional services and information for The Holocene can be found at: Email Alerts: http://hol.sagepub.com/cgi/alerts Subscriptions: http://hol.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.co.uk/journalsPermissions.nav Citations http://hol.sagepub.com/cgi/content/refs/19/1/143 Downloaded from http://hol.sagepub.com at University of Missouri-Columbia on January 13, 2009 The Holocene 19,1 (2009) pp. 143–150 The Holocene history of bighorn sheep (Ovis canadensis) in eastern Washington state, northwestern USA R. Lee Lyman* (Department of Anthropology, 107 Swallow Hall, University of Missouri-Columbia, Columbia MO 65211, USA) Received 9 May 2008; revised manuscript accepted 30 June 2008 Abstract: Historical data are incomplete regarding the presence/absence and distribution of bighorn sheep (Ovis canadensis) in eastern Washington State. Palaeozoological (archaeological and palaeontological) data indicate bighorn were present in many areas there during most of the last 10 000 years. Bighorn occupied the xeric shrub-steppe habitats of the Channeled Scablands, likely because the Scablands provided the steep escape terrain bighorn prefer. The relative abundance of bighorn is greatest during climatically dry intervals and low during a moist period. Bighorn remains tend to increase in relative abundance over the last 6000 years.
    [Show full text]
  • The Missoula Flood
    THE MISSOULA FLOOD Dry Falls in Grand Coulee, Washington, was the largest waterfall in the world during the Missoula Flood. Height of falls is 385 ft [117 m]. Flood waters were actually about 260 ft deep [80 m] above the top of the falls, so a more appropriate name might be Dry Cataract. KEENAN LEE DEPARTMENT OF GEOLOGY AND GEOLOGICAL ENGINEERING COLORADO SCHOOL OF MINES GOLDEN COLORADO 80401 2009 The Missoula Flood 2 CONTENTS Page OVERVIEW 2 THE GLACIAL DAM 3 LAKE MISSOULA 5 THE DAM FAILURE 6 THE MISSOULA FLOOD ABOVE THE ICE DAM 6 Catastrophic Flood Features in Eddy Narrows 6 Catastrophic Flood Features in Perma Narrows 7 Catastrophic Flood Features at Camas Prairie 9 THE MISSOULA FLOOD BELOW THE ICE DAM 13 Rathdrum Prairie and Spokane 13 Cheny – Palouse Scablands 14 Grand Coulee 15 Wallula Gap and Columbia River Gorge 15 Portland to the Pacific Ocean 16 MULTIPLE MISSOULA FLOODS 17 AGE OF MISSOULA FLOODS 18 SOME REFERENCES 19 OVERVIEW About 15 000 years ago in latest Pleistocene time, glaciers from the Cordilleran ice sheet in Canada advanced southward and dammed two rivers, the Columbia River and one of its major tributaries, the Clark Fork River [Fig. 1]. One lobe of the ice sheet dammed the Columbia River, creating Lake Columbia and diverting the Columbia River into the Grand Coulee. Another lobe of the ice sheet advanced southward down the Purcell Trench to the present Lake Pend Oreille in Idaho and dammed the Clark Fork River. This created an enormous Lake Missoula, with a volume of water greater than that of Lake Erie and Lake Ontario combined [530 mi3 or 2200 km3].
    [Show full text]