Sculpted by Floods Learning Resource Guide Overview

Total Page:16

File Type:pdf, Size:1020Kb

Sculpted by Floods Learning Resource Guide Overview Sculpted by Floods Learning Resource Guide Overview: KSPS’s Sculpted by Floods tells the story of the ice age floods in the Pacific Northwest. It is a story of the earth's power, scientific discovery and human nature - one touted by enthusiasts as the greatest story left untold. During the last ice age, floods flowing with ten times the volume of all the world's current rivers combined inundated the Northwest. What they left behind was a unique landscape that citizens of the Pacific Northwest call home. Subjects: Earth Science, Geology, History, Pacific Northwest History Grade Levels: 6-8 Materials: Lesson handouts, laptops/computers Learning Guide Objectives: Define the following vocabulary terms and use them orally and in writing: glacier, flood, cataracts, landform, canyon, dam. Analyze how floods can create landforms and shape a region’s landscape, using the Missoula Floods as a case study. Next Generation Science Standards MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. Washington State History Standards EALR 4: HISTORY: 3.1. Understands the physical characteristics, cultural characteristics, and location of places, regions, and spatial patterns on the Earth’s surface Common Core English Language Arts Anchor & Literacy in History/Social Studies Standards CCSS.ELA-LITERACY.CCRA.R.7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. CCSS.ELA-LITERACY.CCRA.W.4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. CCSS.ELA-LITERACY.RH.6-8.2. Determine the central ideas or information of a primary or secondary source; provide an accurate summary of the source distinct from prior knowledge or opinions. CCSS.ELA-LITERACY.RH.6-8.7. Integrate visual information (e.g., in charts, graphs, photographs, videos, or maps) with other information in print and digital texts. Lessons & Handouts Before the Film 1. Warm-up – Mapping Activity: Students locate and color Washington, Oregon, Idaho, and Montana on a U.S. map that displays landforms. Tell students where Missoula, Montana is located and have them label the city on the map. Next, students answer the following questions about the landform map and share their responses with a partner: What do you notice about the map? What things do the four states have in common? Why do you think they have these things in common? Do you think the geological features of these states were formed quickly or slowly? 2. Vocabulary: Ask students if they are familiar with landforms in the region (i.e., Palouse Falls, Lake Missoula, Grand Coulee, etc.). Explain that the class will soon watch segments from a documentary entitled Sculpted by Floods and explore how glaciers formed during the last ice age period and the floods they caused helped shape the landforms of the Pacific Northwest. Add that before viewing the documentary, the class will define and analyze key vocabulary terms. Using classroom dictionaries and/or online dictionaries, students complete vocabulary charts to preview and define six key vocabulary words: glacier, flood, cataracts, landform, canyon, dam. To extend this activity, have students create posters of their vocabulary charts and post them around the room for students to refer to in future lessons. 3. Pair Reading: In pairs, students read “Background on Glacial Missoula,” an informational text from the Montana Natural History Center. Afterward, they write 5 important facts they learned. Students then share their findings in a class discussion, novel ideas only. Write students’ findings on a chart paper or flip chart and post in the room for future reference. 4. Wrap-up: On sticky notes, students write the most interesting/important thing they learned in today’s lesson. Name: ________________________________________________Date: ________________________ Sculpted by Floods: Before the Film A. Warm-up: Mapping Activity Below is a landforms map of the United States. Locate the following states and color them red: Washington, Oregon, Idaho, and Montana. In Montana, label the city of Missoula. 1. What do notice about this map? _____________________________________________________________________________ ______________________________________________________________________________ 2. What do the states of Washington, Oregon, Idaho, and Montana seem to have in common? ______________________________________________________________________________ ______________________________________________________________________________ 3. Why do you think they have these things in common? ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ 4. Do you think the geological features of these states were formed quickly or slowly? ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ B. Vocabulary For each vocabulary word below, complete a “vocabulary analysis” chart. After, write a definition of each vocabulary word in your own words. 1. Glacier:__________________________________________________________________ 2. Flood:____________________________________________________________________ 3. Landform:________________________________________________________________ 4. Cataract:________________________________________________________________ 5. Canyon: _________________________________________________________________ 6. Dam: _____________________________________________________________________ C. Pair Reading Read “Background on Glacial Lake Missoula” with your partner. Then, write 5 important facts. Name: ________________________________________________Date: ________________________ Vocabulary Charts Name: ________________________________________________Date: ________________________ Vocabulary Charts During the Film Provide students with laptops or computers. In pairs, students view the video segments for Sculpted by Floods and work together to complete the comprehension questions. Encourage students to view the segments multiple times if needed to form their responses. Rather than having pair groups answer all questions, you could have groups focus on a specific number of questions. They could then share their responses with groups who answered a different set of questions. Comprehension Questions 1. When did the last ice age occur? (12-15,000 years ago) 2. At its peak, how many cubic miles of water did Glacial lake Missoula hold? (520 cubic miles of water) 3. With how much force did the flood waters of Glacial Lake Missoula burst through the valley above Lake Pend Oreille? (Ten times greater than all the world’s present rivers combined) 4. How high did the flood waters rise? What did the waters look like? (2,200 feet, dirty—filled with sediment, ice, & jumbles of rock) 5. Where did the flood waters crash through? How many miles of land did this cover? (Northern Idaho, Washington, Columbia Gorge, Portland, Oregon, Willamette Valley, Vancouver, Oregon, Astoria, Oregon to the Pacific Ocean; 1,000 miles) 6. What are three specific ways that the ice age floods left a “unique signature” on the landscape of the Northwest? (Creation of cataracts, carving of new channels, creation of dry falls, quarried gullies and canyons—i.e., the Grand Coulee). 7. Who was J Harlen Bretz? What theory did he develop? 8. Why didn’t Bretz’s colleagues support his theory? 9. In geology, what is the difference between uniformitarianism and catastrophism? What category did Bretz’s theory fall under? 10. Who was Joseph Pardee? How is he connected to J Harlen Bretz and the story of the Missoula ice age floods? 11. How long did it take for Bretz’s theory of the floods to be accepted in the scientific community? Why did it take so long for the scientific community to accept his theory? 12. Based on your viewing of Sculpted by Floods, describe how Glacial Lake Missoula caused the flooding in the Pacific Northwest and shaped the region’s landforms. Name: ________________________________________________Date: ________________________ Sculpted by Floods: During the Film Comprehension Questions 1. When did the last ice age occur? ___________________________________________________________________________ 2. At its peak, how many cubic miles of water did Glacial lake Missoula hold? ___________________________________________________________________________ 3. With how much force did the flood waters of Glacial Lake Missoula burst through the valley above Lake Pend Oreille? ___________________________________________________________________________ 4. How high did the flood waters rise? What did the waters look like? ___________________________________________________________________________ ___________________________________________________________________________ 5. Where did the flood waters crash through? How many miles of land did this cover? ___________________________________________________________________________ ___________________________________________________________________________ 6. What are three specific ways that the ice age floods left a “unique signature” on the landscape of the Northwest?
Recommended publications
  • Surficial Geologic Map of the Lenore Quadrangle, Nez Perce County, Idaho
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 14 MOSCOW-BOISE-POCATELLO OTHBERG, BRECKENRIDGE, AND WEISZ Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format S URFICIAL G EOLOGIC M AP OF THE L ENORE Q UADRANGLE, N EZ P ERCE C OUNTY, I DAHO may not conform to agency standards. Kurt L. Othberg, Roy M. Breckenridge, and Daniel W. Weisz 2003 Qac CORRELATION OF MAP UNITS Qls Qls Qcb Qcb Surficial Latah Columbia River QTlbr Deposits Formation Basalt Qls m Qac Qam Qoam Qas Qac HOLOCENE QTlbr Qad Qls Qcb Qcg Qm 13,000 years Qad Qag QUATERNARY PLEISTOCENE QTlbr QTlbr Qac Qls QTlbr Qac PLIOCENE TERTIARY Qac Tl Tcb MIOCENE Qcb QTlbr INTRODUCTION Qcg Colluvium from granitic and metamorphic rocks (Holocene and Pleistocene)— Primarily poorly sorted muddy gravel composed of angular and subangular pebbles, cobbles, and boulders in a matrix of sand, silt, and clay. Emplaced The surficial geologic map of the Lenore quadrangle identifies earth materials by gravity movements in Bedrock Creek canyon where there are outcrops on the surface and in the shallow subsurface. It is intended for those interested of pre-Tertiary granitic rocks and quartzite. Includes local debris-flow deposits in the area's natural resources, urban and rural growth, and private and and isolated rock outcrops. Includes colluvium and debris-flow deposits Qac public land development. The information relates to assessing diverse QTlbr from the upslope basalt section, and areas of thin loess (typically less than conditions and activities, such as slope stability, construction design, sewage 5 feet).
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Washington's Channeled Scabland
    t\D l'llrl,. \·· ~. r~rn1 ,uR\fEY Ut,l\n . .. ,Y:ltate" tit1Washington ALBEIT D. ROSEWNI, Governor Department of Conservation EARL COE, Dlnctor DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By J HARLEN BRETZ 9TAT• PIUHTIHO PLANT ~ OLYMPIA, WASH., 1"511 State of Washington ALBERT D. ROSELLINI, Governor Department of Conservation EARL COE, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By .T HARLEN BRETZ l•or sate by Department or Conservation, Olympia, Washington. Price, 50 cents. FOREWORD Most travelers who have driven through eastern Washington have seen a geologic and scenic feature that is unique-nothing like it is to be found anywhere else in the world. This is the Channeled Scab­ land, a gigantic series of deeply cut channels in the erosion-resistant Columbia River basalt, the rock that covers most of the east-central and southeastern part of the state. Grand Coulee, with its spectac­ ular Dry Falls, is one of the most widely known features of this ex­ tensive set of dry channels. Many thousands of travelers must have wondered how this Chan­ neled Scabland came into being, and many geologists also have speculated as to its origin. Several geologists have published papers outlining their theories of the scabland's origin, but the geologist who has made the most thorough study of the problem and has ex­ amined the whole area and all the evidence having a bearing on the problem is Dr. J Harlen Bretz. Dr.
    [Show full text]
  • Chapter 85. the Example of the Lake Missoula Flood
    Chapter 85 The Example of the Lake Missoula Flood As already noted, uniformitarian hypotheses rarely, if ever, can be supported by extensive geological evidence. Part of this is due to the nature of the features, since they originated in the past. The same charge could be leveled against Flood explanations. However, geomorphological evidence for the Retreating Stage of the Flood is strong, as this ebook shows. Whereas uniformitarian scientists have to invent speculative secondary hypotheses to salvage their paradigm in the light of conflicting evidence, the Flood paradigm does not need to invent secondary hypotheses, because the evidence is consistent with the paradigm. Furthermore, the Flood paradigm has an example of how a well-substantiated catastrophic flood at the peak of the Ice Age created a water and wind gap.1 The Lake Missoula flood (earlier called the Spokane or the Bretz flood) demonstrates catastrophic floods can easily produce water and wind gaps. Figure 85.1. Glacial Lake Missoula as shown on a kiosk sign at Lake Pend Oreille. 1 Oard, M.J., 2004. The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ. The Lake Missoula Flood One of the largest lakes ever ponded by an ice dam was glacial Lake Missoula (Figure 85.1). After this lake deepened to 2,000 feet (610 m) at the dam site in northern Idaho, the bursting ice dam initiated one of the largest floods on earth, except that described in Genesis. Glacial Lake Missoula contained 540 mi3 (2,210 km3) of water and emptied in two days.
    [Show full text]
  • The Man of Scorn
    By Jeff Reich The Man of Scorn f I asked you where the world’s largest waterfall is located, how would you reply? Would it be Inga or Kisangani Falls, both located in the Congo, or Niagara Falls, or Imaybe Victoria Falls located on the Zambezi River in Zimbabwe? Well, those are some great answers. But would you believe it is located in central Washington State in America? “What?” you might exclaim. But it is true. The only problem is, this falls has not had water running over it for centuries; thus the reason for its name — Dry Falls. Here is what Wikipedia tells us: As stated, it is around 400 feet high which at one point was estimated to “Dry Falls is a 3.5 mile long scalloped and over 3 miles long, which makes it have been up to 1,000 feet deep! More precipice in central Washington on the almost fi ve times the width of Niagara than 2,000 square miles of central opposite side of the Upper Grand Cou- Falls and over twice as high. What must Washington State were scrubbed bare, lee from the Columbia River, and at the the falls have looked like with its full forming what is called “the scablands.” head of the Lower Grand Coulee. At fi ve volume of water thundering over it? It And nearly 1,000 square miles of the times the width of Niagara, Dry Falls would have shaken the ground for miles scablands contain gravel deposits from is thought to be the greatest known around.
    [Show full text]
  • The Missoula Flood
    THE MISSOULA FLOOD Dry Falls in Grand Coulee, Washington, was the largest waterfall in the world during the Missoula Flood. Height of falls is 385 ft [117 m]. Flood waters were actually about 260 ft deep [80 m] above the top of the falls, so a more appropriate name might be Dry Cataract. KEENAN LEE DEPARTMENT OF GEOLOGY AND GEOLOGICAL ENGINEERING COLORADO SCHOOL OF MINES GOLDEN COLORADO 80401 2009 The Missoula Flood 2 CONTENTS Page OVERVIEW 2 THE GLACIAL DAM 3 LAKE MISSOULA 5 THE DAM FAILURE 6 THE MISSOULA FLOOD ABOVE THE ICE DAM 6 Catastrophic Flood Features in Eddy Narrows 6 Catastrophic Flood Features in Perma Narrows 7 Catastrophic Flood Features at Camas Prairie 9 THE MISSOULA FLOOD BELOW THE ICE DAM 13 Rathdrum Prairie and Spokane 13 Cheny – Palouse Scablands 14 Grand Coulee 15 Wallula Gap and Columbia River Gorge 15 Portland to the Pacific Ocean 16 MULTIPLE MISSOULA FLOODS 17 AGE OF MISSOULA FLOODS 18 SOME REFERENCES 19 OVERVIEW About 15 000 years ago in latest Pleistocene time, glaciers from the Cordilleran ice sheet in Canada advanced southward and dammed two rivers, the Columbia River and one of its major tributaries, the Clark Fork River [Fig. 1]. One lobe of the ice sheet dammed the Columbia River, creating Lake Columbia and diverting the Columbia River into the Grand Coulee. Another lobe of the ice sheet advanced southward down the Purcell Trench to the present Lake Pend Oreille in Idaho and dammed the Clark Fork River. This created an enormous Lake Missoula, with a volume of water greater than that of Lake Erie and Lake Ontario combined [530 mi3 or 2200 km3].
    [Show full text]
  • Caves of Missouri
    CAVES OF MISSOURI J HARLEN BRETZ Vol. XXXIX, Second Series E P LU M R I U BU N S U 1956 STATE OF MISSOURI Department of Business and Administration Division of GEOLOGICAL SURVEY AND WATER RESOURCES T. R. B, State Geologist Rolla, Missouri vii CONTENT Page Abstract 1 Introduction 1 Acknowledgments 5 Origin of Missouri's caves 6 Cave patterns 13 Solutional features 14 Phreatic solutional features 15 Vadose solutional features 17 Topographic relations of caves 23 Cave "formations" 28 Deposits made in air 30 Deposits made at air-water contact 34 Deposits made under water 36 Rate of growth of cave formations 37 Missouri caves with provision for visitors 39 Alley Spring and Cave 40 Big Spring and Cave 41 Bluff Dwellers' Cave 44 Bridal Cave 49 Cameron Cave 55 Cathedral Cave 62 Cave Spring Onyx Caverns 72 Cherokee Cave 74 Crystal Cave 81 Crystal Caverns 89 Doling City Park Cave 94 Fairy Cave 96 Fantastic Caverns 104 Fisher Cave 111 Hahatonka, caves in the vicinity of 123 River Cave 124 Counterfeiters' Cave 128 Robbers' Cave 128 Island Cave 130 Honey Branch Cave 133 Inca Cave 135 Jacob's Cave 139 Keener Cave 147 Mark Twain Cave 151 Marvel Cave 157 Meramec Caverns 166 Mount Shira Cave 185 Mushroom Cave 189 Old Spanish Cave 191 Onondaga Cave 197 Ozark Caverns 212 Ozark Wonder Cave 217 Pike's Peak Cave 222 Roaring River Spring and Cave 229 Round Spring Cavern 232 Sequiota Spring and Cave 248 viii Table of Contents Smittle Cave 250 Stark Caverns 256 Truitt's Cave 261 Wonder Cave 270 Undeveloped and wild caves of Missouri 275 Barry County 275 Ash Cave
    [Show full text]
  • 1. Geologic Background
    Ice Age Floods Study of Alternatives Background section d BACKGROUND 1. Geologic Background n recent geological history, portions of the United States have been the site of several Imassive flooding events caused by the abrupt drainage of glacial lakes. The most dramatic of these are the Ice Age Floods, which covered parts of Montana, Idaho, Washington, and Oregon. For a better understanding of the Floods, perhaps a good place to start is to first look at the geological and climatic changes that led up to these cataclysmic floods. NPS Photo Today’s travelers to the Northwest are witnesses Generally accepted scientific evidence extinct 65 million years ago, and about to a story that puzzled geologists for years. indicates that the earth is around 4.5 to 20 million years ago, in late Cenozoic 4.6 billion years old. Glaciation can be Era, the Pacific Northwest started to look traced all the way back to the Proterozoic much as it does today, with its Era, approximately 2.3 billion years ago, mountains, valleys, and shorelines. when the earth was covered with ice. Near the end of the Proterozoic Era, Ice Ages have occurred sporadically summary between 850 and 600 million years ago, throughout the earth’s history, although his section presents a brief overview of the rock records indicate another global they represent a relatively small part of TGlacial Lake Missoula Floods story, two of the glaciation period. geologic time. Many of the still visible key people involved with discovering the Floods effects of the great ice sheets that and the glacial lake from which the Floods About 200 million years ago the Atlantic periodically covered parts of North originated, and events that led up to the initiation Ocean began to open up and the America were produced during the last of the Ice Age Floods Alternatives Study.
    [Show full text]
  • Philosophical Perspective the Spokane Flood Debates
    Geological Society, London, Special Publications The Spokane Flood debates: historical background and philosophical perspective Victor R. Baker Geological Society, London, Special Publications 2008; v. 301; p. 33-50 doi:10.1144/SP301.3 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 18 August 2008 © 2008 Geological Society of London The Spokane Flood debates: historical background and philosophical perspective VICTOR R. BAKER Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721–0011, USA (e-mail: [email protected]) Abstract: The 1920s–1930s debates over the origin of the ‘Channeled Scabland’ landscape of eastern Washington, northwestern USA, focused on the cataclysmic flooding hypothesis of J Harlen Bretz. During the summer of 1922, Bretz began leading field parties of advanced University of Chicago students into the region. In his first paper, published in the Bulletin of the Geological Society of America, Bretz took special care not to mention cataclysmic origins. However, in a subsequent paper in the Journal of Geology, to the editorial board of which he had recently been added, Bretz formally described his hypothesis that an immense late Pleistocene flood, which he named the ‘Spokane Flood’, had derived from the margins of the nearby Cordilleran Ice Sheet. This cataclysm neatly accounted for numerous interrelated aspects of the Channeled Scabland landscape and nearby regions.
    [Show full text]
  • Memorial to John Everts Lamar 1897-1979
    Memorial to John Everts Lamar 1897-1979 H. B. WILLMAN Illinois State Geological Survey, Champaign, Illinois 61820 John Everts Lamar was recognized internationally as a geologist and specialist in industrial minerals. For nearly 50 years he provided the people of Illinois, through their State Geological Survey, with informa­ tion about the availability and use of the industrial minerals of the State. After his retirement in 1966, he continued to share his broad knowledge of the geology of Illinois with those who followed in his footsteps, until only a few months before his death in Urbana, Illinois, on August 24, 1979, at the age of 81. “J. E.,” as he was known to associates and friends throughout the country, was an active member in several professional and scientific organizations, in­ cluding the Industrial Minerals Division and the Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers, the Society of Economic Geologists, the Illinois Society of Engineers, the American Ceramic Society, Sigma Xi, and the Illinois Academy of Science. He was a charter member of the Geochemical Society and a Fellow of the Geological Society of America. He received the Hal Williams Hardinge Award of the AIME in 1971. The citation reads “ For creatively conducting and directing basic and applied research directed to enhancing the utilization and development of industrial minerals, especially those native to the State of Illinois.” He also received the Distinguished Member Award of the Society of Mining Engineers and a certificate of appreciation for his participation in the development of plans showing the contribution of science to industrial development at the Chicago World’s Fair Centennial Celebration in 1933.
    [Show full text]
  • Processing the Papers of EWU Professor Dale F. Stradling John C
    Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2012 Eastern Washington University and the Ice Age flood debate: processing the papers of EWU Professor Dale F. Stradling John C. Moudy Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the History Commons Recommended Citation Moudy, John C., "Eastern Washington University and the Ice Age flood debate: processing the papers of EWU Professor Dale F. Stradling" (2012). EWU Masters Thesis Collection. 61. http://dc.ewu.edu/theses/61 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. EASTERN WASHINGTON UNIVERSITY AND THE ICE AGE FLOOD DEBATE: PROCESSING THE PAPERS OF EWU PROFESSOR EMERITUS DALE F. STRADLING ________________________________________________________________________ A Thesis Presented To Eastern Washington University Cheney, Washington ________________________________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts ________________________________________________________________________ By John C. Moudy Spring 2012 1 EASTERN WASHINGTON UNIVERSITY AND THE ICE AGE FLOOD DEBATE: PROCESSING THE PAPERS OF EWU PROFESSOR EMERITUS DALE F. STRADLING A Thesis by John Chase
    [Show full text]
  • Websites Maps Ice Age Floods
    Maps Websites NOVA—Mystery of the Megaflood Glacial Lake Allison in Oregon’s Willamette Valley http://www.pbs.org/wgbh/nova/megaflood/ at the Height of the Lake Missoula Flood Explore the Channeled Scablands through an Reference Map interactive map, read an interview with geologist, The Ice Age Floods caused massive dams that Ice Age take a quiz, visit the teacher's guide, and more. forced water to temporarily pool into lakes throughout the Northwest. This map shows the Ice Age Floods Institute Floods most recent theories on the boundaries and depths http://www.iceagefloodsinstitute.org/ of Lake Allison, the glacial lake that was located in The Ice Age Flood Institute is a non-profit the Willamette Valley. organization of citizens throughout Montana, Idaho, Washington, and Oregon committed to tell the Ice Age Floods in the Pacific Northwest story of the Channeled Scablands. Reference Map Produced by the Ice Age Floods Institute, this map University of Wisconsin, Green Bay— shows clear evidence of the nearly unimaginable Channeled Scablands: Overview floods that scoured channels throughout the http://www4.uwsp.edu/geo/projects/geoweb/ Northwest contributing to the unique geological participants/dutch/vtrips/scablands0.htm formations seen throughout the states of Montana, Field trip pages follow the floodwaters of Glacial Idaho, Washington, and Oregon. Lake Missoula. Lots of pictures & some nice maps. CVO Website - Glacial Lake Missoula Lake Missoula Flood Path from Missoula, Montana http://vulcan.wr.usgs.gov/Glossary/Glaciers/Ic to Portland, Oregon eSheets/description_lake_missoula.html Reference Map US Geological Survey web site, with information Paired with smaller versions of the panorama and links about Glacial Lake Missoula.
    [Show full text]