The Lake Missoula Floods and the Channeled Scabland Author(S): J

Total Page:16

File Type:pdf, Size:1020Kb

The Lake Missoula Floods and the Channeled Scabland Author(S): J The Lake Missoula Floods and the Channeled Scabland Author(s): J. Harlen Bretz Source: The Journal of Geology, Vol. 77, No. 5 (Sep., 1969), pp. 505-543 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/30062250 . Accessed: 15/01/2015 10:22 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Geology. http://www.jstor.org This content downloaded from 128.193.164.203 on Thu, 15 Jan 2015 10:22:29 AM All use subject to JSTOR Terms and Conditions THE LAKE MISSOULA FLOODS AND THE CHANNELED SCABLAND1 J HARLEN BRETZ Department of the Geophysical Sciences, University of Chicago ABSTRACT This paper reviews the outstanding evidence for (1) repeated catastrophic outbursts of Montana's glacially dammed Lake Missoula, (2) consequent overwhelming in many places of the preglacial divide along the northern margin of the Columbia Plateau in Washington, (3) remaking of the plateau's preglacial drainage pattern into an anastomosing complex of floodwater channels (Channeled Scabland) locally eroded hundreds of feet into underlying basalt, (4) convergence of these flood-born rivers into the Columbia Valley at least as far as Portland, Oregon, and (5) deposition of a huge delta at Portland. Evidence that the major scabland rivers and the flooded Columbia were hundreds of feet deep exists in (1) gravel and boulder bars more than 100 feet high in mid-channels, (2) subfluvial cataract cliffs, alcoves, and plunge pools hundreds of feet in vertical dimension, (3) back-flooded silts high on slopes of preglacial valleys tributary to the scabland complex, and (4) the delta at Portland. Climatic oscillations of the Cordilleran ice sheet produced a succession of Lake Missoulas. Following studies by the writer, later investigators have correlated the Montana glacial record with recurrent scabland floods by soil profiles and a glacial and loessial stratigraphy, and have approximately dated some events by volcanic ash layers, peat deposits, and an archaeological site. Several unsolved problems are outlined in this paper. GENERAL STATEMENT bounding valley bottoms. Closed basins as Although paleo-Indians probably were deep as 135 feet were bitten out of the already in North America, no human ear underlying basalt. Dozens of short-lived heard the crashing tumult when the Lake cataracts and cascades were born, the Missoula glacial dam (the front of the Pend greatest of which left a recessional gorge, Oreille lobe of the Cordilleran ice sheet) Upper Grand Coulee, 25 miles long. The burst and the nearly 2,000-foot head of im- greatest cascade was 9 miles wide. The flood pounded water was free to escape from the rolled boulders many feet in diameter for Clark Fork River valley system of western miles and, subsiding, left river bars now Montana and across northern Idaho. It standing as mid-channel hills more than 100 catastrophically invaded the loess-covered feet high. Current ripples 10 feet and more Columbia Plateau in southeastern Washing- in height diversify some bar surfaces. A ton (Bretz et al. 1956, fig. 23) and reached gravel delta 200 square miles in area was Pacific Ocean levels via the Columbia built at the junction of Willamette and River, 430 miles or more from the glacial Columbia river valleys (Bretz 1925, figs. dam. So great a flood is unknown at present 16, 17). Portland, Oregon, and Vancouver, elsewhere in the world. It has been esti- Washington, now cover some of it. Almost mated to have run for 2 weeks. It was 800 2,000 square miles of the plateau's basaltic feet deep through the Wallula Gap on the bedrock lost its preflood loessial cover which Oregon-Washington line. otherwise is on record in the 100 or more On the Columbia Plateau in Washington, "islands" 40 acres to 40 square miles in it transformed a dendritic preglacial drain- area-tracts that stood high enough above, age pattern into the amazing plexus of the or far enough from, main spillways to have Channeled Scabland (fig. 1). It flooded escaped the tremendous erosional attack across stream divides of the plateau, some meted out to the plateau's preglacial valleys. of which stood 300-400 feet above today's Prevailingly, these "islands" have steep marginal slopes and prow points at their up- 1 Manuscript received February 6, 1969. stream ends (Bretz et al. 1956, fig. 22). [JOURNALOF GEOLOGY,1969, Vol. 77, p. 505-543] Back-flooding left deposits for dozens of © 1969. The University of Chicago. All rights reserved. miles in nonglacial valleys which entered the 505 This content downloaded from 128.193.164.203 on Thu, 15 Jan 2015 10:22:29 AM All use subject to JSTOR Terms and Conditions 506 J HARLEN BRETZ plateau from Idaho on the east (Bretz 1929, another lobe (Okanogan) of the Cordilleran fig. 1) and central Washington on the west. ice sheet. Two floods found no Okanogan The above statements are generalized, lobe in the way, and most of their water es- for there probably were at least seven caped around the north and west sides of the successive burstings of the dam, each (ex- plateau via the preglacial Columbia valley. cept the last) repaired by later glacial ad- The earliest flood outlined the anastomo- vances to again impound the valley system sis of the Channeled Scabland. Later ones of the Clark Fork River in western Mon- deepened and widened its main spillways tana and make another glacial Lake Mis- and thus left earlier high-lying and less soula. Five of these floods could only cross deeply eroded channels unrefreshed, to be- the plateau, because the westward-leading come obscured by interflood weathering, capacious valley of the Columbia River rain wash, and wind-made deposits. north of the plateau was then blocked by The satellite Nimbus I has confirmed FIG. 1.--Glaciated and flooded areas on the Columbia Plateau in southeastern Washington. Abbrevia- tions: BB, Bacon basin; B-WC, Bowers-Weber Coulee; CC, Crater cataract; CN, Chandler Narrows; DC, Devils Canyon; DHC, Drumheller Channels; EB, Evergreen-Babcock ridge; FH, Frenchman Hills; FSC, Frenchman Springs cataract; KC, Koontz Coulee; LC, Lind Coulee; OC, Othello Channels; PC, Palouse Canyon; PHC, Potholes cataract; PR, Palouse River; RC, Rocky Coulee; RP, Ringold plain; SG, Sentinel Gap; SM, Saddle Mountain; WC, Washtucna Coulee; WCR, Wilson Creek; WM, Withrow moraine; *, known occurrences of giant ripples. This content downloaded from 128.193.164.203 on Thu, 15 Jan 2015 10:22:29 AM All use subject to JSTOR Terms and Conditions LAKE MISSOULA FLOODS AND CHANNELED SCABLAND 507 this judgment. One of its pictures, made sible compromise by having numerous ice- from an altitude of about 500 miles (pl. 1), berg jams along the channels-thus lo- encompasses almost the whole plateau in cal pondings and divide crossings-with Washington and, despite some atmospheric subsequent bursting of such dams to pro- obscuration, has made possible a compari- duce repeated local flood conditions. But son with the scabland map. The satellite, no one has found field evidence for such which "saw" most of the bedrock floors dams of floating ice. Flint (1938) was far of the anastomosis clearly, failed to record more conservative. He asked for invading more than 200 miles of high-lying channel- glacial meltwater streams "no larger than ways already known as such from their berg- the Snake today" and for aggradation of carried erratic boulders, a few gravel de- spillways until the violated divides could be posits, and some scabby channel-bottom crossed. He argued that the scabland was basalt outcrops. made by "leisurely" streams during re- moval of the fills. The terms "channels," HISTORY OF INVESTIGATIONS "bars," and "floods" were repugnant to him. The writer's first study of the Washing- Other adverse comments made largely by ton portion of the Columbia Plateau (Bretz uniformitarian-minded geologists need not 1923a, 1923b) dealt in part with Grand be noted here (see Bretz 1928c and Bretz et Coulee and its origin. But the concept of al. 1956). flood origin of the coulee or the scabland In the meantime, the writer continued his complex waited for another year and was field studies and produced nearly a dozen then termed the "Spokane Flood," with no more papers that dealt with (1) specific suggestion for the source of the water. A tracts in the scabland, (2) local scabland preliminary map of the complex (Bretz making by the Columbia River at The 1923b, pi. 3) was entitled "Channeled Dalles (Bretz 1924), Oregon-Washington, Scabland," the adjective added to the local (3) back-flooding in valleys entering the term for the bare or almost bare rock of the disputed region from nonglacial drainages, drainageways, which Nimbus I "saw" from (4) the remarkable erosional and deposi- 500 miles above them. From that time on, tional features of the Columbia River valley the writer has insisted that these spillways from the plateau westward across the Cas- were not stream valleys in the ordinary cade Range to the huge delta at Portland, sense, that they had run essentially full dur- Oregon, and (5) various alternative hy- ing their erosion and were precisely what potheses. the name implied-river channels super- Pardee had earlier announced the former posed on greatly altered preglacial stream existence of glacial Lake Missoula (fig.
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    RECONNAISSANCE SURFICIAL GEOLOGIC MAPPING OF THE LATE CENOZOIC SEDIMENTS OF THE COLUMBIA BASIN, WASHINGTON by James G. Rigby and Kurt Othberg with contributions from Newell Campbell Larry Hanson Eugene Kiver Dale Stradling Gary Webster Open File Report 79-3 September 1979 State of Washington Department of Natural Resources Division of Geology and Earth Resources Olympia, Washington CONTENTS Introduction Objectives Study Area Regional Setting 1 Mapping Procedure 4 Sample Collection 8 Description of Map Units 8 Pre-Miocene Rocks 8 Columbia River Basalt, Yakima Basalt Subgroup 9 Ellensburg Formation 9 Gravels of the Ancestral Columbia River 13 Ringold Formation 15 Thorp Gravel 17 Gravel of Terrace Remnants 19 Tieton Andesite 23 Palouse Formation and Other Loess Deposits 23 Glacial Deposits 25 Catastrophic Flood Deposits 28 Background and previous work 30 Description and interpretation of flood deposits 35 Distinctive geomorphic features 38 Terraces and other features of undetermined origin 40 Post-Pleistocene Deposits 43 Landslide Deposits 44 Alluvium 45 Alluvial Fan Deposits 45 Older Alluvial Fan Deposits 45 Colluvium 46 Sand Dunes 46 Mirna Mounds and Other Periglacial(?) Patterned Ground 47 Structural Geology 48 Southwest Quadrant 48 Toppenish Ridge 49 Ah tanum Ridge 52 Horse Heaven Hills 52 East Selah Fault 53 Northern Saddle Mountains and Smyrna Bench 54 Selah Butte Area 57 Miscellaneous Areas 58 Northwest Quadrant 58 Kittitas Valley 58 Beebe Terrace Disturbance 59 Winesap Lineament 60 Northeast Quadrant 60 Southeast Quadrant 61 Recommendations 62 Stratigraphy 62 Structure 63 Summary 64 References Cited 66 Appendix A - Tephrochronology and identification of collected datable materials 82 Appendix B - Description of field mapping units 88 Northeast Quadrant 89 Northwest Quadrant 90 Southwest Quadrant 91 Southeast Quadrant 92 ii ILLUSTRATIONS Figure 1.
    [Show full text]
  • Surficial Geologic Map of the Lenore Quadrangle, Nez Perce County, Idaho
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 14 MOSCOW-BOISE-POCATELLO OTHBERG, BRECKENRIDGE, AND WEISZ Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format S URFICIAL G EOLOGIC M AP OF THE L ENORE Q UADRANGLE, N EZ P ERCE C OUNTY, I DAHO may not conform to agency standards. Kurt L. Othberg, Roy M. Breckenridge, and Daniel W. Weisz 2003 Qac CORRELATION OF MAP UNITS Qls Qls Qcb Qcb Surficial Latah Columbia River QTlbr Deposits Formation Basalt Qls m Qac Qam Qoam Qas Qac HOLOCENE QTlbr Qad Qls Qcb Qcg Qm 13,000 years Qad Qag QUATERNARY PLEISTOCENE QTlbr QTlbr Qac Qls QTlbr Qac PLIOCENE TERTIARY Qac Tl Tcb MIOCENE Qcb QTlbr INTRODUCTION Qcg Colluvium from granitic and metamorphic rocks (Holocene and Pleistocene)— Primarily poorly sorted muddy gravel composed of angular and subangular pebbles, cobbles, and boulders in a matrix of sand, silt, and clay. Emplaced The surficial geologic map of the Lenore quadrangle identifies earth materials by gravity movements in Bedrock Creek canyon where there are outcrops on the surface and in the shallow subsurface. It is intended for those interested of pre-Tertiary granitic rocks and quartzite. Includes local debris-flow deposits in the area's natural resources, urban and rural growth, and private and and isolated rock outcrops. Includes colluvium and debris-flow deposits Qac public land development. The information relates to assessing diverse QTlbr from the upslope basalt section, and areas of thin loess (typically less than conditions and activities, such as slope stability, construction design, sewage 5 feet).
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Sculpted by Floods Learning Resource Guide Overview
    Sculpted by Floods Learning Resource Guide Overview: KSPS’s Sculpted by Floods tells the story of the ice age floods in the Pacific Northwest. It is a story of the earth's power, scientific discovery and human nature - one touted by enthusiasts as the greatest story left untold. During the last ice age, floods flowing with ten times the volume of all the world's current rivers combined inundated the Northwest. What they left behind was a unique landscape that citizens of the Pacific Northwest call home. Subjects: Earth Science, Geology, History, Pacific Northwest History Grade Levels: 6-8 Materials: Lesson handouts, laptops/computers Learning Guide Objectives: Define the following vocabulary terms and use them orally and in writing: glacier, flood, cataracts, landform, canyon, dam. Analyze how floods can create landforms and shape a region’s landscape, using the Missoula Floods as a case study. Next Generation Science Standards MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. Washington State History Standards EALR 4: HISTORY: 3.1. Understands the physical characteristics, cultural characteristics, and location of places, regions, and spatial patterns on the Earth’s surface Common Core English Language Arts Anchor & Literacy in History/Social Studies Standards CCSS.ELA-LITERACY.CCRA.R.7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. CCSS.ELA-LITERACY.CCRA.W.4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
    [Show full text]
  • Megaflood Adventure Section 3
    Gingko Petrifed Forest Vantage, Washington Petrifcation is a process where trees and wood are turned to stone. The trees are buried and protected from natural forces, transforming the wood to solid rock over huge amounts of time. Most of the wood you see at Gingko is from the Missoula Floods, so you can see how the trees looked 13,000 years ago! Take the The Trees of Stone Interpretive Trail 2 miles west of the Visitor Center. On the trail you’ll see lots of fossils, erratics, and petrifed logs. Pick your favorite thing and draw it! BONUS: Gingko Petrifed Forest has its own Junior Ranger program. Complete it to earn another badge! Palouse Falls State Park Lacrosse, Washington Long before the foods, tectonic forces stressed the basalt bedrock and opened deep fractures. The megafoods took advantage of these weakened areas and used them to change the course of the river. Palouse Falls has many of these cracks in the canyon walls. How many can you fnd? Columbia River Gorge NationalCascade Locks,Scenic Oregon Area Ev en t ho ug h t h e lan ds ca pe loo ks di˛ er en t fr o m t he par k s in W as hin gt o n an d M o n t an a, t he I ce Ag e FloodsTumbl a es along types o f w a terf a lls! Cascade car v ed o u t t his s pec t acu lar g o r ge, t oo . As yserif o u’res orock e dri steps.
    [Show full text]
  • Washington's Channeled Scabland
    t\D l'llrl,. \·· ~. r~rn1 ,uR\fEY Ut,l\n . .. ,Y:ltate" tit1Washington ALBEIT D. ROSEWNI, Governor Department of Conservation EARL COE, Dlnctor DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By J HARLEN BRETZ 9TAT• PIUHTIHO PLANT ~ OLYMPIA, WASH., 1"511 State of Washington ALBERT D. ROSELLINI, Governor Department of Conservation EARL COE, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By .T HARLEN BRETZ l•or sate by Department or Conservation, Olympia, Washington. Price, 50 cents. FOREWORD Most travelers who have driven through eastern Washington have seen a geologic and scenic feature that is unique-nothing like it is to be found anywhere else in the world. This is the Channeled Scab­ land, a gigantic series of deeply cut channels in the erosion-resistant Columbia River basalt, the rock that covers most of the east-central and southeastern part of the state. Grand Coulee, with its spectac­ ular Dry Falls, is one of the most widely known features of this ex­ tensive set of dry channels. Many thousands of travelers must have wondered how this Chan­ neled Scabland came into being, and many geologists also have speculated as to its origin. Several geologists have published papers outlining their theories of the scabland's origin, but the geologist who has made the most thorough study of the problem and has ex­ amined the whole area and all the evidence having a bearing on the problem is Dr. J Harlen Bretz. Dr.
    [Show full text]
  • Top 26 Trails in Grant County 2020
    and 12 Watchable Wildlife Units For more information, please contact: Grant County Tourism Commission P.O. Box 37, Ephrata, WA 98823 509.765.7888 • 800.992.6234 In Grant County, Washington TourGrantCounty.com TOP TRAILS Grant County has some of the most scenic and pristine vistas, hiking trails and outdoor 26 recreational opportunities in Washington State. and 12 Watchable Wildlife Units Grant County is known for its varied landscapes on a high desert plateau with coulees, lakes, in Grant County Washington reservoirs, sand dunes, canals, rivers, creeks, and other waterways. These diverse ecosystems Grant County Tourism Commission For Additional copies please contact: support a remarkable variety of fish and PO Box 37 Jerry T. Gingrich wildlife species that contribute to the economic, Ephrata, Washington 98837 Grant County Tourism Commission recreational and cultural life of the County. www.tourgrantcounty.com Grant County Courthouse PO Box 37 Ephrata, WA 98837 No part of this book may be reproduced in (509) 754-2011, Ext. 2931 any form, or by any electronic, mechanical, or other means, without permission in For more information on writing from the Grant County Tourism Grant County accommodations Commission. www.tourgrantcounty.com © 2019, Grant County Tourism Commission Second printing, 10m Trails copy and photographs Book, map and cover design by: provided by: Denise Adam Graphic Design Cameron Smith, Lisa Laughlin, J. Kemble, Veradale, WA 99037 Shawn Cardwell, Mark Amara, (509) 891-0873 Emry Dinman, Harley Price, [email protected] Sebastian Moraga and Madison White Printed by: Rewriting and editing by: Mark Amara Pressworks 2717 N. Perry Street Watchable Wildlife copy and Spokane, Washington 99207 photographs provided by: (509) 462-7627 Washington Department of [email protected] Fish and Wildlife Photograph by Lisa Laughlin CONTENTS CONTENTS Grant County Trails and Hiking Grant County Watchable Wildlife Viewing Upper Grand Coulee Area 1.
    [Show full text]
  • 1 Reply to Comments 1 We Would Like to Thank the Three Anonymous
    1 Reply to comments 2 We would like to thank the three anonymous reviewers and Marco Jorge for their comments. We are 3 particularly pleased that three of the four reviews thought it was an important paper that should be 4 published, and their constructive criticisms have really helped to improve it. We are disappointed that 5 reviewer #2 thinks that we cannot extract information and meaning from the geomorphological 6 signature of tunnel valleys. But we strongly disagree with this view and our argument is laid out below. 7 That they ignore a large body of literature spanning many disciplines that has shown the importance of 8 geomorphology for investigating landforms genesis we find rather perplexing. The reviewer comments 9 are in black and our replies and revisions in blue. 10 - Stephen Livingstone and Chris Clark 11 12 Short Comment by Marco Jorge 13 INTRODUCTION 14 L80-84 (statement of objective): Consider rephrasing sentence (perhaps revise whole paragraph). 15 Suggest to remove “To rectify this” (to correct this error), because it is about the lack of data rather 16 than error. Scale -> geographic scale; Pattern -> spatial arrangement; Rectify “. .mapping of the size, 17 shape, pattern and [spatial] distribution to better understand spatial properties. .” L84: “constitution” 18 -> Composition? 19 We have replaced “to rectify this” with “Based on previous studies and the availability of DEMs, we 20 are now able to undertake…” (as suggested by reviewer #3), changed “pattern” to “spatial 21 arrangement” and “constitutes” to “is”. 22 Reword the rationale for study area selection; e.g., that the landforms can be mapped from a DEM is 23 unrelated to the study area.
    [Show full text]
  • COULEE CORRIDOR Scenic Byway
    COULEE CORRIDOR SCENIC BYWAY INDEX Sites Page Sites Page INFO KEY 1 1 Corfu Woods and Lower 2 28 Audubon Kiosk Overlook 7 Crab Creek 29 Rocky Ford Creek 2 Royal Lake Overlook 30 Oasis Park 3 Drumheller Overlook 31 Martin Road Russian-Olives 4 Crab Creek Access 32 Norton Road Shrub-Steppe 5 McManamon Lake 33 Jameson Lake 6 Frog Lake, Crab Creek 3 34 Eastern Douglas County 8 and Marsh Trails 35 SW Banks Lake/Ankeny Access 7 Unit 1 Marsh Overlook 36 Dry Falls Overlook 8 Soda and Migraine Lakes 37 Sun Lakes State Park 9 Pillar Wigeon Lakes Area 38 Blue Lake Rest Area 10 Lind Coulee Overview 39 Lake Lenore 9 11 O’Sullivan Dam 4 40 West Beach Park 12 Potholes State Park 41 Gloyd Seeps 13 Desert Wildlife Area - Road 42 Brook Lake C SE 43 Crab Lake/Wilson Creek 14 Birder’s Corner 15 Desert Wildlife Area – Road 44 Old Coulee Highway 10 ‘I’ SW Route 16 Beda Lake 45 Crescent Bay Lake 46 Fiddle Creek 17 Dodson Road - 5 47 Barker Canyon Winchester Wasteway 48 North Dam Park 18 Audubon Dodson Road 49 Osborn Bay Campground Nature Trail 19 Crab Creek Overlook 50 Northrup Point Access 11 20 Potholes Reservoir Peninsula 51 Northrup Canyon Overlook 52 Steamboat Rock Peninsula 53 Coulee City Community Park 21 North Potholes Reserve/ 6 Job Corps Dike 54 Sinlahekin Wildlife Area 12 22 Moses Lake Community Park 23 Moses Lake Outlets CREDITS 12 24 Snowy Owl Route 25 Montlake Park 26 Three Ponds Loggerhead Shrike © Ed Newbold, 2003 27 Neppel Landing Park The Great Washington State Birding Trail 1 COULEE CORRIDOR INFO KEY MAp Icons Best seasons for birding (spring, summer, fall, winter) Developed camping available, including restrooms; fee required Restroom available at day-use site Handicapped restroom and handicapped trail or viewing access Site located in an Important Bird Area Fee required.
    [Show full text]
  • MOSES LAKE CITY COUNCIL Brent Reese Bill Ecret Joseph K
    MOSES LAKE CITY COUNCIL Brent Reese Bill Ecret Joseph K. Gavinski David Curnel Jason Avila Mayor City Manager Karen Liebrecht Jon Lane Dick Deane MOSES LAKE July 9, 2013 AGENDA Civic Center - Council Chambers Sophia Guerrero, Executive Secretary 7:00 p.m. 1. ROLLCALL 2. PLEDGE OF ALLEGIANCE 3. IDENTIFICATION OF CITIZENS WANTING TO DISCUSS AGENDA ITEMS IDENTIFICATION OF CITIZENS WANTING TO DISCUSS NON-AGENDA ITEMS 4. PRESENTA TIONS AND AWARDS - None 5. CONSENT AGENDA A. Approval of Minutes - June 25, 2013 B. Approval of Bills and Checks Issued C. Accept Work - Tree Replacement Project 6. COMMISSION APPOINTMENTS - None A. Lodging Tax Advisory Committee 7. CONSIDERATION OF BIDS AND QUOTES - None 8. PETITIONS, COMMUNICATIONS, OR PUBLIC HEARINGS A. Resolution - Six Year Street Program - Public Hearing B. Request to Use Close Streets - Tsunami Sushi 9. ORDINANCES AND RESOLUTIONS A. Resolution - Accept Donation - Columbia Basin Walleye Club B. Resolution - Build on Unplatted Property - Crab Creek Homestead, LLC 10. REQUEST TO CALL FOR BIDS - None 11. REFERRALS FROM COMMISSIONS - None 12. OTHER ITEMS FOR COUNCIL CONSIDERATION A. Request for City Water - Stienmetz Finance Municipal Police Chief Parks & Recreation Fire C hief Community City Attorney w. Robert Services Dave Ru ffin Spencer Grigg Tom Taylor Development Katherine L. Taylor Gary Harer Gilbert Alvarado Kenison Page 2 - Moses Lake City Council Meeting, July 9, 2013 13. NON-AGENDA ITEMS AND PUBLIC QUESTIONS AND COMMENTS 14. COUNCIL QUESTIONS AND COMMENTS 15. CITY MANAGER REPORTS AND COMMENTS A. Census Update B. Well City Award C. Staff Reports 1. Ambulance Report 2. Building Activity Report 3. Quarterly Financial Report 4.
    [Show full text]
  • Chapter 85. the Example of the Lake Missoula Flood
    Chapter 85 The Example of the Lake Missoula Flood As already noted, uniformitarian hypotheses rarely, if ever, can be supported by extensive geological evidence. Part of this is due to the nature of the features, since they originated in the past. The same charge could be leveled against Flood explanations. However, geomorphological evidence for the Retreating Stage of the Flood is strong, as this ebook shows. Whereas uniformitarian scientists have to invent speculative secondary hypotheses to salvage their paradigm in the light of conflicting evidence, the Flood paradigm does not need to invent secondary hypotheses, because the evidence is consistent with the paradigm. Furthermore, the Flood paradigm has an example of how a well-substantiated catastrophic flood at the peak of the Ice Age created a water and wind gap.1 The Lake Missoula flood (earlier called the Spokane or the Bretz flood) demonstrates catastrophic floods can easily produce water and wind gaps. Figure 85.1. Glacial Lake Missoula as shown on a kiosk sign at Lake Pend Oreille. 1 Oard, M.J., 2004. The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ. The Lake Missoula Flood One of the largest lakes ever ponded by an ice dam was glacial Lake Missoula (Figure 85.1). After this lake deepened to 2,000 feet (610 m) at the dam site in northern Idaho, the bursting ice dam initiated one of the largest floods on earth, except that described in Genesis. Glacial Lake Missoula contained 540 mi3 (2,210 km3) of water and emptied in two days.
    [Show full text]
  • Dry Falls Visitor Center Due to the Fact That Many Travelers Saw These Unusual Landforms in the Landscape As They Drove the Coulee Corridor
    Interactive Design Approach IMMERSIVE Theater Topo Model The design approach for the exhibits is closely integrated with the Seating architecture. The layering of massive, linear building walls pro- for 50-60 EXHIBIT vides a direction for the design and layout of exhibit components. Gallery Real ‘Today’ erratic OUTDOOR Terrace Building walls are cut open at strategic points to accommodate WITH EXhibits specific exhibits and to allow for circulation. Smaller, wall-panel exhibits are used for supports and dividers. Equipment ‘Volcanic ‘Ice Age Floods’ Room Period’ Approaching the center, visitors are forced to walk around a mas- sive erratic – these huge boulders are seemingly deposited directly Gallery Animal Modelled erratic Lava flow overhead Freestanding time line animal cutouts on the path to the front door. The displaced rock serves as a strong Welcome in floor icon of the violent events that occurred during the Ice Age Floods. Through the Visitor Center’s front doors, visitors are startled to see another massive erratic precariously wedged overhead between W M Retail / cafe the two parallel building walls. Just out of reach it makes an un- usual photo opportunity for visitors who puzzle over how the rock terrace stays in place. From an interpretive standpoint, it is important to Outdoor Classroom realize no actual erratics are present in the Sun Lakes-Dry Falls with Amphitheater State Park landscape. During the floods, water was moving too quickly for erratics to be deposited at Dry Falls - they were car- ried downstream and deposited in the Quincy and Pasco basins many miles away. However, the results of the visioning workshop determined that erratics are an important and exciting flood fea- ture to display at the Dry Falls Visitor Center due to the fact that many travelers saw these unusual landforms in the landscape as they drove the Coulee Corridor.
    [Show full text]