Isolation of Beta-1,4-Endoglucanase Genes from Globodera Tabacumand Their Expression During Parasitism M

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Beta-1,4-Endoglucanase Genes from Globodera Tabacumand Their Expression During Parasitism M Plant Pathology and Microbiology Publications Plant Pathology and Microbiology 6-2000 Isolation of Beta-1,4-Endoglucanase Genes from Globodera tabacumand their Expression During Parasitism M. Goellner North Carolina State University G. Smant Wageningen University J. M. De Boer Iowa State University T. J. Baum Iowa State University, [email protected] E. L. Davis NForltloh wCa thirolisn aa ndStat ae ddUnitiverionsitaly works at: http://lib.dr.iastate.edu/plantpath_pubs Part of the Agricultural Science Commons, Agriculture Commons, Genetics and Genomics Commons, Plant Breeding and Genetics Commons, and the Plant Pathology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ plantpath_pubs/188. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Plant Pathology and Microbiology at Iowa State University Digital Repository. It has been accepted for inclusion in Plant Pathology and Microbiology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Journal of Nematology 32(2):154–165. 2000. © The Society of Nematologists 2000. Isolation of Beta-1,4-Endoglucanase Genes from Globodera tabacum and their Expression During Parasitism1 M. Goellner,2 G. Smant,3 J. M. De Boer,4 T. J. Baum,4 and E. L. Davis2 Abstract: Two beta-1,4-endoglucanase (EGase) cDNAs were isolated from Globodera tabacum, the to- bacco cyst nematode, and have been designated as GT-eng-1 and GT-eng-2. GT-eng-1 and GT-eng-2 encode precursor proteins with a predicted secretion signal sequence, cellulolytic catalytic domain, and a linker domain. The protein product GT-ENG-1 contains an additional 95 amino acid carboxy terminal se- quence with strong similarity to type II cellulose binding domains. Riboprobes and polyclonal antibodies raised to recombinant cyst nematode EGases were used to follow expression patterns of EGase tran- scripts and proteins throughout the nematode life cycle. EGase transcripts and proteins were specifically detected within the subventral esophageal gland cells of G. tabacum second-stage juveniles (J2) within eggs prior to hatching, in preparasitic J2, and in parasitic J2 that had invaded tobacco roots. EGase transcripts and proteins were not detected in G. tabacum after the molt to the sedentary J3, J4, and adult female life stages. Interestingly, EGase transcription and translation resumed in the subventral esoph- ageal glands of late J4 males. It is hypothesized that secreted EGases play a major role to facilitate intracellular migration of G. tabacum within tobacco roots. Key words: beta-1,4-endoglucanases, EGase, esophageal gland cells, Globodera tabacum, Nicotiana taba- cum, stylet secretions, tobacco, tobacco cyst nematode. Beta-1,4-endoglucanases (EGases) are a plant cell contents (Barras et al., 1994; Rob- class of hydrolytic enzymes produced by a erts et al., 1988). diverse group of organisms including bacte- Until recently, no direct evidence existed ria, fungi, insects, and plants (Brummel et for the endogenous production of cellulo- al., 1994; Davis et al., 2000; Henrissat and lytic enzymes in animals. Smant et al. (1998) Bairoch, 1993). EGases function in the hy- isolated and cloned the first EGases of ani- drolysis of the beta-1,4-glucan backbone of mal origin from the plant-parasitic cyst polymers such as cellulose and xyloglucan, nematodes Globodera rostochiensis and Het- which are two of the major carbohydrate erodera glycines. This discovery is the first di- components of the plant cell wall (McNeil et rect evidence in support of earlier biochemi- al., 1984). An ensemble of endogenous hy- cal studies that suggested that nematodes drolytic enzymes, including EGases, pro- produced cellulolytic enzymes (Bird et al., motes the degradation of cell walls to serve 1975; Deubert and Rohde, 1971). Genes for as a primary carbon source for many micro- EGases with and without a predicted cellu- organisms (Beguin and Aubert, 1994). Ad- lose-binding domain (CBD) were cloned ditionally, cellulolytic enzymes function as from both species of cyst nematode and pathogenicity factors for many phytopatho- named eng-1 and eng-2, respectively (Smant genic fungi and bacteria by facilitating entry et al., 1998). It was demonstrated that the into host tissue and enhancing access to EGases are produced endogenously within the two subventral esophageal gland (SvG) cells of cyst nematodes and are secreted through the nematode stylet into plant tis- Received for publication 9 January 2000. sue (De Boer et al., 1999; Smant et al., 1997; 1The research reported in this publication was supported by funding provided by the North Carolina Agricultural Research Smant et al., 1998; Wang et al., 1999). Ex- Service, and North Carolina Tobacco Research Commission pression of EGases in the SvG of H. glycines under grant 6-64855. 2Department of Plant Pathology, North Carolina State Uni- ends in the early parasitic J3 stage and, in- versity, 1515 Gardner Hall, Raleigh, NC 27695. terestingly, resumes only in males as they 3Laboratory of Nematology, Wageningen University (WUR), 6709 PD Wageningen, The Netherlands. develop to adults (De Boer et al., 1999). It is 4Department of Plant Pathology, Iowa State University, 351 hypothesized that these enzymes may facili- Bessey Hall, Ames, IA 50011. Email: eric–[email protected] tate penetration and intracellular migration This paper was edited by B. C. Hyman. of root tissue by nematodes during parasit- 154 Globodera tabacum Beta-1,4-Endoglucanases: Goellner et al. 155 ism. In addition, cyst nematode EGases fresh J2 and other life stages of G. tabacum could contribute to the partial cell wall dis- were used for protein and nucleic acid ex- solution that occurs among neighboring tractions, and some were fixed for localiza- cells of developing feeding sites (syncytia; tion analyses. Jones and Dropkin, 1975; Jones, 1981), al- For in situ hybridization and immunolo- though this has not been definitively dem- calization analyses, eggs were fixed in 2% onstrated. paraformaldehyde in M9 buffer (42 mM The monoclonal antibody (MGR48) used Na2HPO4,22mMKH2PO4, 85 mM NaCl, 1 ⅐ to immunopurify EGases from G. rostochien- mM MgSO4 7H2O, pH 7.0) plus 10% su- sis, and H. glycines (Smant et al., 1988) also crose for 5 days at 4 °C. Preparasitic J2 were recognized SvG antigens of other cyst nema- fixed in 2% paraformaldehyde in M9 buffer tode species including G. tabacum, the to- overnight at 4 °C. Mixed parasitic stages of bacco cyst nematode (De Boer et al., 1996). G. tabacum were collected from infected to- Globodera tabacum is a sedentary endopara- bacco roots that were washed, cut into 2.5- site with a host range limited to tobacco and cm pieces, suspended in water, and some solanaceous weeds (Miller and Gray, chopped in a blender for 30 seconds. An 1972). If cellulase production is a common equal volume of 2× fixative (4% paraform- mechanism used by plant-parasitic nema- aldehyde in 2× M9 buffer) was added to the todes to invade roots and to establish feed- root suspension and incubated at room tem- ing sites, then this may be a feasible target perature for 1 hour for initial fixation to for developing transgenic strategies to im- reduce mRNA degradation. The root sus- prove plant disease resistance. The G. taba- pension was poured over a stack of sieves, cum-tobacco interaction provides a geneti- and parasitic nematodes were collected on a cally amenable model system, which can be 25-µm sieve and rinsed in water. Fixed para- used to test transgenic approaches that tar- sitic nematodes were separated from root get nematode cellulases for resistance to debris by mixing the slurry 1:1 with 70% su- plant-parasitic nematodes. In this paper, we crose and overlaid with a 1/4 volume of wa- describe the isolation of two G. tabacum beta- ter. The sucrose suspension was centrifuged 1,4-endoglucanase cDNAs, GT-eng-1 and GT- at 1,000g for 5 minutes, nematodes were pi- eng-2, and monitor their expression during peted from the upper 2/3 of the suspension, the parasitic cycle. and rinsed with water. Distinct nematode developmental stages were identified under Materials and Methods a dissecting microscope, separated by hand, and fixed further in 2% paraformaldehyde Nematode cultures: Globodera tabacum sub- in M9 buffer. Parasitic J2 and adult males species solanacearum (Miller and Gray, 1972) were fixed overnight at 4 °C in 2% para- was propagated on greenhouse-grown to- formaldehyde in M9 buffer. All other para- bacco (Nicotiana tabacum ‘NC95’). Cysts of sitic life stages were fixed overnight at room G. tabacum were extracted from infested soil temperature. Fixed nematodes were col- by flotation in water and collected on a 250- lected, rinsed in M9 buffer, and stored at µm sieve. The cysts were transferred to cen- −80 °C. trifuge tubes and mixed with 70% (w/v) su- Isolation of Globodera tabacum EGase cDNA’s: crose in a 1:1 ratio. Cysts were separated Total RNA was isolated from preparasitic J2 from contaminating debris by centrifugal using the Pharmacia Biotech (Piscataway, flotation at 1,000g for 5 minutes. Subse- NJ) Cs-TFA RNA extraction kit according to quently, the cysts were gently crushed in a the manufacturer’s protocol. Globodera taba- glass homogenizer to release nematode cum EGase cDNAs were amplified using 3Ј eggs, which were collected on a 25-µm sieve. and 5Ј random amplification of cDNA ends To collect preparasitic second-stage juve- (RACE) PCR systems (GibCo BRL, Rock- niles (J2), eggs were hatched over water at ville, MD). Globodera tabacum mRNA was con- 28 °C on a Baermann pan. Some aliquots of verted into cDNA using reverse transcriptase 156 Journal of Nematology, Volume 32, No. 2, June 2000 and the supplied oligo-dT primer.
Recommended publications
  • Rapid Pest Risk Analysis (PRA) For: Stage 1: Initiation
    Rapid Pest Risk Analysis (PRA) for: Globodera tabacum s.I. November 2014 Stage 1: Initiation 1. What is the name of the pest? Preferred scientific name: Globodera tabacum s.l. (Lownsbery & Lownsbery, 1954) Skarbilovich, 1959 Other scientific names: Globodera tabacum solanacearum (Miller & Gray, 1972) Behrens, 1975 syn. Heterodera solanacearum Miller & Gray, 1972 Heterodera tabacum solanacearum Miller & Gray, 1972 (Stone, 1983) Globodera Solanacearum (Miller & Gray, 1972) Behrens, 1975 Globodera Solanacearum (Miller & Gray, 1972) Mulvey & Stone, 1976 Globodera tabacum tabacum (Lownsbery & Lownsbery, 1954) Skarbilovich, 1959 syn. Heterodera tabacum Lownsbery & Lownsbery, 1954 Globodera tabacum (Lownsbery & Lownsbery, 1954) Behrens, 1975 Globodera tabacum (Lownsbery & Lownsbery, 1954) Mulvey & Stone, 1976 Globodera tabacum virginiae (Miller & Gray, 1968) Stone, 1983 syn. Heterodera virginiae Miller & Gray, 1968 Heterodera tabacum virginiae Miller & Gray, 1968 (Stone, 1983) Globodera virginiae (Miller & Gray, 1968) Stone, 1983 Globodera virginiae (Miller & Gray, 1968) Behrens, 1975 Globodera virginiae (Miller & Gray, 1968) Mulvey & Stone, 1976 Preferred common name: tobacco cyst nematode 1 This PRA has been undertaken on G. tabacum s.l. because of the difficulties in separating the subspecies. Further detail is given below. After the description of H. tabacum, two other similar cyst nematodes, colloquially referred to as horsenettle cyst nematode and Osbourne's cyst nematode, were later designated by Miller et al. (1962) from Virginia, USA. These cyst nematodes were fully described and named as H. virginiae and H. solanacearum by Miller & Gray (1972), respectively. The type host for these species was Solanum carolinense L.; other hosts included different species of Nicotiana, Physalis and Solanum, as well as Atropa belladonna L., Hycoscyamus niger L., but not S.
    [Show full text]
  • Morphometrics of Globodera Tabacum Tabacum, G. T. Virginiae, and G. T
    Journal of Nematology 25(2):148-160. 1993. © The Society of Nematologists 1993. Morphometrics of Globodera tabacum tabacum, G. t. virginiae, and G. t. solanacearum (Nemata: Heteroderinae) MANUEL M. MOTA AND JONATHAN D. EISENBACK 2 Abstract: A morphometric evaluation of second-stage juveniles (J2), males, females, cysts, and eggs of several isolates of the tobacco cyst nematode (TCN) complex, Globodera tabacum tabacum (GTT), G. t. virginiae (GTV), and G. t. solanacearum (GTS) is presented. Morphometrics of eggs, J2, and males are considerably less variable than of females and cysts. No measurements of eggs and J2 are useful for identification of the three subspecies. Distance from the median bulb and excretory pore to the head end in J2 and males is quite stable. Stylet knob width of males is useful for identifying GTV isolates and tail length in separating males of GTT isolates from GTV and GTS. Body length/width (L/W) ratio of females and cysts discriminates GTT from GTV and GTS; stylet knob width is an auxiliary character for identifying GTV. This subspecies complex has a continuum of values for the other characters. Data suggest a close relationship between GTV and GTS, which also occur in close proximity in Virginia. Key words: Cyst, Globodera tabacum tabacum, G. t. solanacearum, G. t. virginiae, morphometrics, nema- tode, tobacco cyst nematode, species complex, subspecies, variability. Morphometrics has been used exten- No major morphological differences sively in the taxonomy of cyst nematodes, were reported among J2 and males of sev- subfamily Heteroderinae sensu lato Luc et eral isolates of this complex (13). Some dif- al.
    [Show full text]
  • KEYWORD INDEX 1 5 a B C D E F G H I Ii
    Journal of Nematology 34(4):ii–v. 2002. © The Society of Nematologists 2002. KEYWORD INDEX 1 corky ringspot disease 66 G correlation 80 18S rDNA 319 cotton 115, 232 Galleria mellonella 23, 351 cover crop 106, 289 gene expression 71 5 cranberry 207 gene sequence 71 crop loss 370 genetic resource 358 5.8S rRNA gene 263 crop model 200 Geographical Information System (GIS) crop risk 200 200, 207 A crop rotation 289, 378 geostatistics 80, 189, 232 Crotalaria juncea 106 Global Positioning System (GPS) 194, 200 Adelges tsugae 213 Cucumis melo 43 Globodera 263, 319 aldicarb 115 Cucurbitaceae 140 Globodera pallida 194, 319 alfalfa 66 cultivar 378 Globodera rostochiensis 194 Alternaria solani 189 culture 343 Globodera tabacum 34 amphid 50 cyanide 16 Glycine max 239, 370, 378 Ananas comosus 106 cyst 250 glycine-rich protein 75 anisotropy 80 cyst nematode 12, 312 glyphosate 370 antagonist 405 Gossypium hirsutum 115, 232 antagonistic interaction 267 D grape rootstock 28, 143 Arabidopsis thaliana 75 green manure 16, 289 Arachis hypogaea 98 Arizona 200 damage function 38 Aspergillus 98 database 296 H database analysis 207 defoliation 213 harvest forecast 200 B degree day 200 hatch 146 bacterium 1, 23, 120 detection 185, 222 head 50 behavior 135, 239, 328 development 28, 143 Hederodera glycines 9 benzaldehyde 362 diagnostic compendium 250 Helicotylenchus 88 bioactive 358 Diaprepes abbreviatus 159 hemicellulose 362 biocontrol agent 1 discriminant analysis 213 hemlock 213 biogeography 390 discriminating 213 hemlock woolly adelgid 213 biological control 1, 16, 120, 130, 171, 246, disease forecast 200 herbal remedy 124 332, 405 disease modeling 200 herbicide-resistant crop 370 biological control fungus 351 disease risk 200 Heterodera avenae group 250 black root rot 351, 409 disease suppression 16 Heterodera glycines 12, 185, 222, 279 botanical 124 distribution pattern 185 Heterodera glycines (HG) type 279 Brassica napus 106 disturbance 88 Heterodera goldeni n.
    [Show full text]
  • Hatch and Reproduction of Globodera Tabacum Tabacum in Response to Tobacco, Tomato, Or Black Nightshade J
    Journal of Nematology 27(3):382-386. 1995. © The Society of Nematologists 1995. Hatch and Reproduction of Globodera tabacum tabacum in Response to Tobacco, Tomato, or Black Nightshade J. A. LAMONDIA 1 Abstract: The effects of broadleaf tobacco, tomato, and black nightshade on juvenile hatch and reproduction of Globodera tabacum tabacum were determined in laboratory and greenhouse experi- ments. Root exudates from nightshade stimulated greater egg hatch than those from either 'Rutgers' tomato or '86-4' tobacco. Hatch was greater at higher proportions of root exudates for all three plant species. Root exudates from plants greater than 3 weeks old stimulated more hatch than younger plants. No regression relationships existed between plant age and nematode batch. In other exper- iments, hatch from eggs in cysts was higher for tomato and nightshade after 10 weeks in greenhouse pots compared to tobacco and bare soil. Numbers of second-stage juveniles in eggs in cysts produced from a previous generation on the same host were highest on nightshade and less on tomato and tobacco. Cysts of variable age recovered from field soil had increased hatch in both root exudates or water compared to recently produced cysts from plants in growth chambers. Globodera t. tabacum may be subject to both host and environmentally mediated diapause. Key words: hatch stimulation, Nicotiana tabacum, Lycopersicon esculentum, nematode, root exudates, Solanum nigrum, tobacco cyst nematode. The tobacco cyst nematode, Globodera experiments. G. t. tabacum, however, can tabacum tabacum (Lownsbery and Lowns- persist in soil for many years in the absence bery) Behrens, is an important parasite of of a host (1), suggesting some form of dor- shade (9,13) and broadleaf (11) tobacco in mancy with survival value.
    [Show full text]
  • Diversity of Root-Knot Nematodes in Moroccan Olive Nurseries and Orchards
    Aït Hamza et al. BMC Ecol (2017) 17:41 https://doi.org/10.1186/s12898-017-0153-9 BMC Ecology RESEARCH ARTICLE Open Access Diversity of root‑knot nematodes in Moroccan olive nurseries and orchards: does Meloidogyne javanica disperse according to invasion processes? Mohamed Aït Hamza1,2* , Nadine Ali2,3, Johannes Tavoillot2, Odile Fossati‑Gaschignard2, Hassan Boubaker4, Abdelhamid El Mousadik1† and Thierry Mateille2† Abstract Background: Root-knot nematodes (RKN) are major pest of olive tree (Olea europaea ssp. europaea), especially in nurseries and high-density orchards. Soil samples were collected from main olive growing areas of Morocco, to char‑ acterize Meloidogyne species and to discuss the contribution of biotic and abiotic factors in their spatial distribution. Results: RKN were found in 159 soil samples out of 305 from nurseries (52.1% occurrence) and in 11 out of 49 soil samples from orchards (23.2% occurrence). Biochemical and molecular characterisation (PAGE esterase and SCAR) revealed the dominance of M. javanica both in nurseries and orchards with minor presence of M. incognita only in nurseries, and M. arenaria in only one nursery. RKN were distributed on aggregated basis. Frequent presence of M. javanica in orchards might have come from nurseries. In contrast, the detection of M. incognita in nurseries alone sug‑ gests that this species could not reproduce in orchards because of either the competition with other plant-parasitic nematodes or unft local habitats. The impact of environmental variables (climate, habitat origin and physicochemical characteristics of the substrates) on the distribution of Meloidogyne species is also discussed. Conclusion: Olive nurseries in Morocco are not able to guarantee the safety of rooted plants.
    [Show full text]
  • PM 7/40 (4) Globodera Rostochiensis and Globodera Pallida
    Bulletin OEPP/EPPO Bulletin (2017) 47 (2), 174–197 ISSN 0250-8052. DOI: 10.1111/epp.12391 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/40 (4) Diagnostics Diagnostic PM 7/40 (4) Globodera rostochiensis and Globodera pallida Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved as an EPPO Standard in 2003-09. Globodera rostochiensis and Globodera pallida.1 Revisions approved in 2009-09, 2012-09 and 2017-02. Terms used are those in the EPPO Pictorial Glossary of Morphological Terms in Nematology.2 This Standard should be used in conjunction with PM 7/ 76 Use of EPPO diagnostic protocols. of imported material for potential quarantine or damaging 1. Introduction nematodes or new infestations, identification by morpholog- Globodera rostochiensis and Globodera pallida (potato cyst ical methods performed by experienced nematologists is nematodes, PCNs) cause major losses in Solanum more suitable (PM 7/76 Use of EPPO diagnostic tuberosum (potato) crops (van Riel & Mulder, 1998). The protocols). infective second-stage juveniles only move a maximum of A flow diagram describing the diagnostic procedure for about 1 m in the soil. Most movement to new localities is G. rostochiensis and G. pallida is presented in Fig. 1. by passive transport. The main routes of spread are infested seed potatoes and movement of soil (e.g. on farm machin- 2. Identity ery) from infested land to other areas. Infestation occurs when the second-stage juvenile hatches from the egg and Name: Globodera rostochiensis (Wollenweber, 1923), enters the root near the growing tip by puncturing the epi- Skarbilovich, 1959.
    [Show full text]
  • Downloaded from Brill.Com09/24/2021 11:38:23AM Via Free Access 228 Lax Et Al
    Contributions to Zoology, 83 (4) 227-243 (2014) Morphology and DNA sequence data reveal the presence of Globodera ellingtonae in the Andean region Paola Lax1, 5, Juan C. Rondan Dueñas2, Javier Franco-Ponce3, Cristina N. Gardenal4, Marcelo E. Doucet1 1 Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Centro de Zoología Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Rondeau 798, 5000 Córdoba, Argentina 2 Laboratorio de Biología Molecular, Pabellón CEPROCOR, Santa María de Punilla, X5164 Córdoba, Argentina 3 PROINPA Foundation, Av. Meneces, Km 4, El Paso, Cochabamba, Bolivia 4 Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Facultad de Ciencias Exactas, Físicas y Natu- rales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina 5 E-mail: [email protected] Key words: Andean potato, Argentina, diagnosis, Hsp90 gene, morphology, potato cyst nematode Abstract Results ............................................................................................. 231 Morphological data ............................................................... 231 Potato cyst nematodes, G. rostochiensis and G. pallida, are the Host-plant relationship ........................................................ 232 most economically important nematode pests of potatoes world- Molecular analysis ................................................................ 232 wide and are subject to strict quarantine regulations in many Discussion .....................................................................................
    [Show full text]
  • Plant–Nematode Interactions Valerie M Williamson and Cynthia a Gleason
    1 Plant–nematode interactions Valerie M Williamsonà and Cynthia A Gleason Root-knot nematodes and cyst nematodes are obligate, Cyst nematodes enter roots and move to the vascular biotrophic pathogens of numerous plant species. These cylinder, piercing cell walls with their stylets and dis- organisms cause dramatic changes in the morphology and rupting cells as they go [3]. Upon reaching the vascular physiology of their hosts. The molecular characterization of cylinder, they establish a feeding site, apparently by inject- induced plant genes has provided insight into the plant ing stylet secretions. The formation of a feeding site is processes that are usurped by nematodes as they establish their characterized by the breakdown of the cell walls between specialized feeding cells. Recently, several gene products have the initial feeding site cell and its neighboring cells, been identified that are secreted by the nematode during resulting in the development of a multinucleate syncytium parasitism. The corresponding genes have strong similarity to [4]. Cyst nematodes undergo three molts inside the root microbial genes or to genes that are found in nematodes that before becoming adults. They generally reproduce sexu- parasitize animals. New information on host resistance genes ally, and once fertilized, the female becomes full of eggs. and nematode virulence genes provides additional insight After the female dies, its body becomes a protective cyst for into this complex interaction. the eggs. Addresses In contrast to the cyst nematode, the juvenile of the root- ÃDepartment of Nematology, One Shields Avenue, knot nematode moves intercellularly after penetrating University of California, Davis, California 95616, USA the root, migrating down the plant cortex towards the e-mail: [email protected] root tip.
    [Show full text]
  • Resistance Based Integrated Pest Management Strategy for Globodera Rostochiensis and Globodera Pallida in Potato Cropping Systems
    Resistance Based Integrated Pest Management Strategy for Globodera rostochiensis and Globodera pallida in Potato Cropping Systems Dissertation Zur Erlangung des Akademischen Grades eines Doktors der Agrarwissenschaften (Dr. agr.) Eingereicht am Fachbereich Ökologische Agrarwissenschaften der Universität Kassel Von James Maina Mwangi Witzenhausen, October 2019 Mwangi, J.M. (2019). Resistance based integrated pest management strategy for Globodera rostochiensis and Globodera pallida in potato cropping systems. PhD Thesis, University of Kassel. doi:10.17170/kobra-20191212863 Defence date: 9th December 2019 Place: University of Kassel, Witzenhausen, Germany. Supervisors: 1. Prof. Dr. Maria R. Finckh, Department of Ecological Protection, University of Kassel, Germany. 2. Dr. Sebastian Kiewnick, Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants, Germany. II Table of Content Table of Contents List of Abbreviations and Acronyms ...................................................................................... VII List of Figures .............................................................................................................................. IX List of Tables ............................................................................................................................. XII Chapter 1: General Introduction .............................................................................................. 13 1.1 Introduction to Potato Cyst Nematodes
    [Show full text]
  • Intraspecific Variability Within Globodera Tabacum Solanacearum and Selection for Virulence Against Flue-Cured Tobacco
    Intraspecific Variability within Globodera tabacum solanacearum and Selection for Virulence Against Flue-Cured Tobacco by Aaron James Syracuse Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Masters of Science in Plant Pathology, Physiology, and Weed Science Approved: ______________________________ ______________________________ Dr. Charles S. Johnson, Co-chairman Dr. Jonathan D. Eisenback, Co-chairman ______________________________ ______________________________ Dr. Craig L. Nessler, Department Head Dr. Carol A. Wilkinson October, 2002 Blacksburg, Virginia Key Words: Globodera tabacum solanacearum, Tobacco Cyst Nematode, RAPD, Virulence Intraspecific Variability within Globodera tabacum solanacearum and Selection for Virulence against Flue-Cured Tobacco by Aaron James Syracuse C. S. Johnson and J. D. Eisenback, Co-chairmen Plant Pathology, Physiology, and Weed Science (ABSTRACT) The tobacco cyst nematode (TCN), Globodera tabacum solanacearum [(Miller and Gray, 1972) Behrens 1975] Stone 1983, is one of the most economically important pests of flue-cured tobacco (Nicotiana tabacum L.) in Virginia. Although TCN has been reported from other countries, the geographical distribution of G. t. solanacearum within the United States is limited to Virginia, North Carolina, and one county in Maryland. Approximately 30% of the tobacco acreage in Virginia is infested; average yield reduction is 15%, but complete crop failure can occur. The objectives of this research were to examine intraspecific variability within G. t. solanacearum and to evaluate the relative adaptability of G. t. solanacearum on a resistant (NC567) and a susceptible (K326) flue-cured tobacco cultivar. Nineteen geographic isolates of G. t. solanacearum, one isolate each of G. t. virginiae and the Mexican cyst nematode (G.
    [Show full text]
  • Nematodes of Agricultural Importance in North and South Carolina
    Chapter 10 Nematodes of Agricultural Importance in North and South Carolina Weimin Ye 10.1 Introduction North Carolina’s agricultural industry including food, fiber, ornamentals and for- estry, contributes $84 billion to the state’s annual economy, accounts for more than 17% of the state’s income, and employs 17% of the work force. North Carolina is one of the most diversified agricultural states in the nation. Approximately, 50,000 farmers grow over 80 different commodities in North Carolina utilizing 8.2 million of the state 12.5 million hectares to furnish consumers a dependable and affordable supply of food and fiber. North Carolina produces more tobacco and sweet potatoes than any other state, ranks second in Christmas tree and third in tomato production. The state ranks nineth nationally in farm cash receipts of over $10.8 billion (NCDA Agricultural Statistics 2017). Plant parasitic nematodes are recognized as one of the greatest threat to crops throughout the world. Nematodes alone or in combination with other soil microor- ganisms have been found to attack almost every part of the plant including roots, stems, leaves, fruits and seeds. Crop damage caused worldwide by plant nematodes has been estimated at $US80 billion per year (Nicol et al. 2011). All crops are dam- aged by at least one species of nematode. Most plant parasitic nematodes live in soil and damage plants by feeding in large numbers on roots impairing the plant’s ability to take up water and nutrients. Severe root damage caused by nematodes typically results in aboveground symptoms that may include stunting, yellowing of leaves, incipient wilt, loss of plant vigor and/or an overall general decline in plant perfor- mance.
    [Show full text]
  • Taxonomy, Morphological and Molecular Identification of The
    plants Review Taxonomy, Morphological and Molecular Identification of the Potato Cyst Nematodes, Globodera pallida and G. rostochiensis John Wainer * and Quang Dinh Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3086, Australia; [email protected] * Correspondence: [email protected] Abstract: The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species. Keywords: PCN; potato cyst nematode; Globodera; taxonomy; detection; morphology; molecular identification; PCR 1. Introduction Potato cyst nematodes (PCN) are damaging soilborne quarantine pests of potato and other solanaceous crops worldwide [1,2]. The two most damaging species, G. pallida (Stone, 1973) Behrens, 1975, the pale or white cyst nematode, and G. rostochiensis (Wollenweber, Citation: Wainer, J.; Dinh, Q. 1923) Behrens, 1975, the golden cyst nematode, have proved to be highly adaptive at Taxonomy, Morphological and exploiting new environments, being passively transported, undetected across borders, in Molecular Identification of the Potato intimate association with tubers of their major host, the potato. Globodera species feeding on Cyst Nematodes, Globodera pallida potato also include G. ellingtonae, restricted to Chile, Argentina, and two states in northwest and G. rostochiensis. Plants 2021, 10, USA [3–5] and G. leptonepia (Cobb and Taylor, 1953) Skarbilovich, 1959 found only once in 184.
    [Show full text]