KEYWORD INDEX 1 5 a B C D E F G H I L M N O P Ii

Total Page:16

File Type:pdf, Size:1020Kb

KEYWORD INDEX 1 5 a B C D E F G H I L M N O P Ii Journal of Nematology 33(4):ii–iv. 2001. © The Society of Nematologists 2001. KEYWORD INDEX 1 Diaprepes abbreviatus 142 I Diplogasteroidea 83 1,3-dichloropropene (1,3-D) 289, 311, 318, Diploscapteroides 27 identification 191 325 Diptera 239 Ilex 332 16S rDNA 110 diversity 208 integrity 161 Dolichodorus heterocephalus 285 internal transcribed spacer (ITS) 73, 104, 5 dormancy 121 183 drought 142 irrigation 294 5.8S gene 183 ITS region 73, 104 E ITS1 183 A ITS2 183 Afrina wevelli 191 ecology 52, 161 Agaonidae 91 egg 203 L agricultural management 208 electron microscopy 203 endoparasitic bacterium 227 Lactuca 137 agroecosystem 208 Lantana 332 alfalfa callus 147 entomopathogenic nematode 73, 297 equivalence 178 leptoderan bursa 46 allergen 178 lesion nematode 294 Anguina agrostis 191 ethoprop 318, 325 ‘‘Eurhabditis’’ 26, 39 lettuce 137 Anguina tritici 191 life history 239 antibiotic resistance 178 European chafer 297 evolution 63, 73, 153 lipid 121 Aphelenchoididae 91 Longidorus africanus 137 Arabidopsis thaliana 147 Lycopersicon esculentum 116, 289 Arachis hypogaea 208 F arbuscular mycorrhizae 306 fecundity 121 M asceptic culture 147 fenamiphos 318, 325 Australia 239 Macrosiphum euphorbiae 116 Fergusobia 239 management 214, 285 Fergusonina 239 maturity index 161, 208 B Ficus 91 Medicago sativa 147 fig 91 bacterium 227 Meloidogyne 116, 203, 294 Florida 91, 285 Belgium 83 Meloidogyne arenaria 318, 325, 332 flue-cured tobacco 132 Belonolaimus longicaudatus 110, 227, 285 Meloidogyne incognita 126, 285, 289, 311, 318, fly 239 biodiversity 161 325, 332 food safety 178 biological control 142, 203, 239, 297 Meloidogyne javanica 318, 325 fumigation 289 biology 52 Mesocriconema 285 fungus 306 biomonitor 161 Mesorhabditis 14 Bolivia 121 metasomal structure 45 boxwood 332 G method 147 Bt corn 173 Mi 116 Burkholderia cepacia 203 gall development 239 gelatinous matrix 203 microparasite 110 burrowing nematode 147 modeling 285 bursa formation 46 gene expression 116 genetic engineering 173, 178 molecular systematics 73 bursa papilla 49 monitoring 161 Buxus microphylla 332 Globodera pallida 195 Globodera rostochiensis 121, 195 morphology 7, 54, 83 Mortierella 203 C Globodera tabacum solanacearum 132 Glomus mosseae 306 Mucuna pruriens 285 Caenorhabditis 24 Glycine max 214, 306, 314 Musa 147 carrot 137 glycoalkaloid 195 mutualism 239 caudal papillae 63 Gossypium 318 Myrtaceae 239 Cephaloboides 28 Gossypium hirsutum 126, 311 character evolution 45 N China 83 H needle nematode 137 citrus 142 hatching factor 195 nematicide 289, 311, 318, 325 compost-amended soil 289 nematode community 161, 208 copulation 52 hatching inhibitor 195 Hawaii 294 nematode-mycorrhizal interaction 306 corn 173, 318 new species 83, 91 cotton 126, 311, 318 Helicotylenchus 294 Hemicycliophora 285 Nicotiana tabacum 132, 318, 325 cover crop 285 North Carolina 126 Criconema 294 Heterodera 183 Heterodera carotae 183 crop loss 126 O cropping sequence 285 Heterodera ciceri 183 Crustorhabditis 17 Heterodera fici 183 obligate endoparasite 227 Cruznema 18 Heterodera glycines 214, 219, 306 Operculorhabditis 17 Heterodera hordecalis 183 ornamental 332 D Heterodera mediterranea 183 Oscheius 104 Heterorhabditis bacteriophora 297 overwintering 219 dagger nematode 294 history 5 oviposition 239 damage 137 holly 332 Daucus carota 137 homology 63 P decline rate 121 host suitability 314 deep sand soil 289 host-parasite relationship 302 parasitism 91, 132 development 132, 227 host-plant resistance 126 Parasitorhabditis 8 diagnostics 191 hydraulic lift 142 Paratrichodorus minor 285 ii Key Word Index iii Paratylenchus 294 Rhabpanus 19 Steinernema riobrave 142 Pasteuria 110 Rhizotrogus majalis 297 sting nematode 110, 227, 285 Pasteuria sp.(S-1 strain) 227 ribosomal DNA (rDNA) 73, 183 stubby-root nematode 285 Pasteuria penetrans 110 ribosomal RNA (rRNA) 104 survival 219 pathogenicity 302 ring nematode 294 systematics 1, 73, 104, 153 PCR-RFLP 104, 191 root-knot nematode 116, 203, 285, 289, 294, pea 214 311, 318, 325, 332 T peach 302 root-lesion nematode 302 tail tip 63 peanut 208 rootstock 302 taxonomy 73, 83, 91, 110, 153 Pegoscapus 91 rotation 121, 314, 318 temperature 132 Pellioditis 35 Rotylenchulus 294 Teratorhabditis 23 Pelodera 20 Rotylenchulus reniformis 311, 314 tobacco 318, 325 peloderan bursa 46 RT-PCR 116 tobacco cyst nematode 132 perennial 332 rye 318 tolerance 137 pest management 121, 173, 325 tomato 289 phoresy 91 S toxicant 178 phylogenetic analysis 183 safety assessment 178 transgenic crop adoption 173 phylogeny 1, 8, 54, 73, 110, 153 scanning electron microscopy (SEM) 91 trap crop 214 pin nematode 294 Schistonchus aureus n. sp. 91 trophic diversity 161 Pisum sativum 214 Schistonchus laevigatus n. sp. 91 turfgrass pest 297 population dynamics 219, 285 screening 132 Tylenchida 239 population model 121 Secale cereale 318 Tylenchorhynchus 285 potato 121, 285 seed gall nematode 191 Tylopharynx clariamphida n. sp. 83 potato cyst nematode 121, 195 signal transduction 116 Tylopharynx foetida 83 potato root diffusate 195 soil health 161, 169 potato root leachate 195 soil moisture 142 Pratylenchus 294 U soil organic matter 169 Pratylenchus vulnus 302 ultrastructure 227 soil quality 169 Prodontorhabditis 13 Solanum tuberosum 121, 285 Protorhabditis 10 Sorghum 318 V Prunus persica 302 Sorghum bicolor 285 velvetbean 285 R sorghum-sudangrass 285 vesicular-arbuscular mycorrhizae 306 southern root-knot nematode 126 Radopholus similis 147 soybean 214, 306, 314 W regulatory nematology 191 soybean cyst nematode 214, 219, 306 relationship 39, 42 speciation 153 water potential 142 reniform nematode 294, 311, 314 species concept 153 watershed 294 reproductive index 314 species delimitation 73, 153 resistance 132, 302, 332 species diagnosis 73 X Rhabditella 27 spiral nematode 294 Xiphinema 294 Rhabditidae 1 sporogenesis 227 Xylorhabditis 20 Rhabditinae 8, 42, 45, 52 Steinernema 73 Rhabditis 13, 30 Steinernema carpocapsae 297 Z Rhabditis (Oscheius) pseudodolichura 104 Steinernema feltiae 297 Rhabditoides 26 Steinernema glaseri 297 Zea mays 318 AUTHOR INDEX A D Goolsby, J. 239 Griesbach, J. A. 191 Adams, B. J. 73, 153 Davies, K. A. 239 Allen, L. H., Jr. 289 Davis, R. F. 332 H De Ley, P. 83 Atkinson, H. J. 121 Harris, T. S. 191 De Waele, D. 147 Hewlett, T. E. 227 DeCrappeo, N. 91 Holz, R. A. 121 B Dickson, D. W. 227, 285, 289 Huang, X. 137 Dombek, D. G. 314 Barker, K. R. 126 Hyde, J. 173 Becker, J. O. 110, 227 Duncan, L. W. 142 J Bekal, S. 110, 227 E Be´lair, G. 297 Jackson, L. E. 314 Bertozzi, T. 191 Eisenback, J. D. 132 Johnson, A. W. 318, 325 Borneman, J. 110 Elsen, A. 147 Johnson, C. S. 132 Bowman, D. T. 126 Erbe, E. F. 203 Jones, P. W. 195 Brodeur, J. 297 Broos, S. 147 F K Byrne, J. T. 195 Fe´lix, M.-A. 104 Kaloshian, I. 116 Ferris, V. R. 183 Kinloch, R. A. 219, 311 C Fitch, D. 1 Klossner, L. D. 214 Fortnum, B. A. 318, 325 Koenning, S. R. 126 Center, B. J. 239 Franco, J. 121 Kritzman, G. 203 Center, T. D. 239 Chen, S. Y. 214 G L Chitwood, D. J. 203 Gbur, E. E. 314 Lavian, I. 208 Crow, W. T. 285 Giblin-Davis, R. M. 91, 110, 227, 239 Lens, K. 147 iv Journal of Nematology, Volume 33, No. 4, December 2001 Lewis, S. A. 318, 325 O Springer, M. S. 110 Liang, W. 208 Steinberger, Y. 208 Liang, Y. 83 Orion, D. 203 Stienstra, W. C. 214 Oros, R. 121 Stoffelen, R. 147 M Sudhaus, W. 1 P Szalanski, A. L. 191 MacGuidwin, A. E. 219 Peterson, L. G. 289 T Magdoff, F. 169 Pinochet, J. 302 Taylor, G. S. 239 Maher, N. J. 195 Ploeg, A. T. 137 Taylor, S. L. 178 Main, G. 121 Porter, P. M. 214 Todd, T. C. 306 Makinson, J. 239 Powers, T. O. 191 Martin, M. A. 173 Purcell, M. 239 V Martinez de Ilarduya, O. 116 Vanfleteren, J. 104 Maruniak, J. 73 R Vierstraete, A. 104 Mauromoustakos, A. 219 Vovlas, N. 183 McCoy, C. W. 142 Rakes, L. 219, 314 McSorley, R. 285 Reese, C. D. 214 W Meyer, S. L. F. 203 Rich, J. R. 311 Riegel, C. 289 Wang, J. 132 Mullin, P. G. 191 Riga, E. 121 Weingartner, D. P. 285 Riggs, R. D. 219 Wergin, W. P. 227 N Robbins, R. T. 314 Williams, D. S. 227 Williams-Woodward, J. L. 332 Neher, D. A. 161 S Wilson, G. W. T. 306 Nelson, S. D. 289 Winkler, H. E. 306 Nguyen, K. B. 73 Sabo, A. 183 Wu, J. 83 Nguyet, D. T. M. 147 Scheffer, S. J. 239 Niblack, T. L. 219 Schmitt, D. P. 294 Z Nyczepir, A. P. 302 Simard, L. 297 Zhang, F. 294.
Recommended publications
  • Rapid Pest Risk Analysis (PRA) For: Stage 1: Initiation
    Rapid Pest Risk Analysis (PRA) for: Globodera tabacum s.I. November 2014 Stage 1: Initiation 1. What is the name of the pest? Preferred scientific name: Globodera tabacum s.l. (Lownsbery & Lownsbery, 1954) Skarbilovich, 1959 Other scientific names: Globodera tabacum solanacearum (Miller & Gray, 1972) Behrens, 1975 syn. Heterodera solanacearum Miller & Gray, 1972 Heterodera tabacum solanacearum Miller & Gray, 1972 (Stone, 1983) Globodera Solanacearum (Miller & Gray, 1972) Behrens, 1975 Globodera Solanacearum (Miller & Gray, 1972) Mulvey & Stone, 1976 Globodera tabacum tabacum (Lownsbery & Lownsbery, 1954) Skarbilovich, 1959 syn. Heterodera tabacum Lownsbery & Lownsbery, 1954 Globodera tabacum (Lownsbery & Lownsbery, 1954) Behrens, 1975 Globodera tabacum (Lownsbery & Lownsbery, 1954) Mulvey & Stone, 1976 Globodera tabacum virginiae (Miller & Gray, 1968) Stone, 1983 syn. Heterodera virginiae Miller & Gray, 1968 Heterodera tabacum virginiae Miller & Gray, 1968 (Stone, 1983) Globodera virginiae (Miller & Gray, 1968) Stone, 1983 Globodera virginiae (Miller & Gray, 1968) Behrens, 1975 Globodera virginiae (Miller & Gray, 1968) Mulvey & Stone, 1976 Preferred common name: tobacco cyst nematode 1 This PRA has been undertaken on G. tabacum s.l. because of the difficulties in separating the subspecies. Further detail is given below. After the description of H. tabacum, two other similar cyst nematodes, colloquially referred to as horsenettle cyst nematode and Osbourne's cyst nematode, were later designated by Miller et al. (1962) from Virginia, USA. These cyst nematodes were fully described and named as H. virginiae and H. solanacearum by Miller & Gray (1972), respectively. The type host for these species was Solanum carolinense L.; other hosts included different species of Nicotiana, Physalis and Solanum, as well as Atropa belladonna L., Hycoscyamus niger L., but not S.
    [Show full text]
  • Morphometrics of Globodera Tabacum Tabacum, G. T. Virginiae, and G. T
    Journal of Nematology 25(2):148-160. 1993. © The Society of Nematologists 1993. Morphometrics of Globodera tabacum tabacum, G. t. virginiae, and G. t. solanacearum (Nemata: Heteroderinae) MANUEL M. MOTA AND JONATHAN D. EISENBACK 2 Abstract: A morphometric evaluation of second-stage juveniles (J2), males, females, cysts, and eggs of several isolates of the tobacco cyst nematode (TCN) complex, Globodera tabacum tabacum (GTT), G. t. virginiae (GTV), and G. t. solanacearum (GTS) is presented. Morphometrics of eggs, J2, and males are considerably less variable than of females and cysts. No measurements of eggs and J2 are useful for identification of the three subspecies. Distance from the median bulb and excretory pore to the head end in J2 and males is quite stable. Stylet knob width of males is useful for identifying GTV isolates and tail length in separating males of GTT isolates from GTV and GTS. Body length/width (L/W) ratio of females and cysts discriminates GTT from GTV and GTS; stylet knob width is an auxiliary character for identifying GTV. This subspecies complex has a continuum of values for the other characters. Data suggest a close relationship between GTV and GTS, which also occur in close proximity in Virginia. Key words: Cyst, Globodera tabacum tabacum, G. t. solanacearum, G. t. virginiae, morphometrics, nema- tode, tobacco cyst nematode, species complex, subspecies, variability. Morphometrics has been used exten- No major morphological differences sively in the taxonomy of cyst nematodes, were reported among J2 and males of sev- subfamily Heteroderinae sensu lato Luc et eral isolates of this complex (13). Some dif- al.
    [Show full text]
  • KEYWORD INDEX 1 5 a B C D E F G H I Ii
    Journal of Nematology 34(4):ii–v. 2002. © The Society of Nematologists 2002. KEYWORD INDEX 1 corky ringspot disease 66 G correlation 80 18S rDNA 319 cotton 115, 232 Galleria mellonella 23, 351 cover crop 106, 289 gene expression 71 5 cranberry 207 gene sequence 71 crop loss 370 genetic resource 358 5.8S rRNA gene 263 crop model 200 Geographical Information System (GIS) crop risk 200 200, 207 A crop rotation 289, 378 geostatistics 80, 189, 232 Crotalaria juncea 106 Global Positioning System (GPS) 194, 200 Adelges tsugae 213 Cucumis melo 43 Globodera 263, 319 aldicarb 115 Cucurbitaceae 140 Globodera pallida 194, 319 alfalfa 66 cultivar 378 Globodera rostochiensis 194 Alternaria solani 189 culture 343 Globodera tabacum 34 amphid 50 cyanide 16 Glycine max 239, 370, 378 Ananas comosus 106 cyst 250 glycine-rich protein 75 anisotropy 80 cyst nematode 12, 312 glyphosate 370 antagonist 405 Gossypium hirsutum 115, 232 antagonistic interaction 267 D grape rootstock 28, 143 Arabidopsis thaliana 75 green manure 16, 289 Arachis hypogaea 98 Arizona 200 damage function 38 Aspergillus 98 database 296 H database analysis 207 defoliation 213 harvest forecast 200 B degree day 200 hatch 146 bacterium 1, 23, 120 detection 185, 222 head 50 behavior 135, 239, 328 development 28, 143 Hederodera glycines 9 benzaldehyde 362 diagnostic compendium 250 Helicotylenchus 88 bioactive 358 Diaprepes abbreviatus 159 hemicellulose 362 biocontrol agent 1 discriminant analysis 213 hemlock 213 biogeography 390 discriminating 213 hemlock woolly adelgid 213 biological control 1, 16, 120, 130, 171, 246, disease forecast 200 herbal remedy 124 332, 405 disease modeling 200 herbicide-resistant crop 370 biological control fungus 351 disease risk 200 Heterodera avenae group 250 black root rot 351, 409 disease suppression 16 Heterodera glycines 12, 185, 222, 279 botanical 124 distribution pattern 185 Heterodera glycines (HG) type 279 Brassica napus 106 disturbance 88 Heterodera goldeni n.
    [Show full text]
  • Hatch and Reproduction of Globodera Tabacum Tabacum in Response to Tobacco, Tomato, Or Black Nightshade J
    Journal of Nematology 27(3):382-386. 1995. © The Society of Nematologists 1995. Hatch and Reproduction of Globodera tabacum tabacum in Response to Tobacco, Tomato, or Black Nightshade J. A. LAMONDIA 1 Abstract: The effects of broadleaf tobacco, tomato, and black nightshade on juvenile hatch and reproduction of Globodera tabacum tabacum were determined in laboratory and greenhouse experi- ments. Root exudates from nightshade stimulated greater egg hatch than those from either 'Rutgers' tomato or '86-4' tobacco. Hatch was greater at higher proportions of root exudates for all three plant species. Root exudates from plants greater than 3 weeks old stimulated more hatch than younger plants. No regression relationships existed between plant age and nematode batch. In other exper- iments, hatch from eggs in cysts was higher for tomato and nightshade after 10 weeks in greenhouse pots compared to tobacco and bare soil. Numbers of second-stage juveniles in eggs in cysts produced from a previous generation on the same host were highest on nightshade and less on tomato and tobacco. Cysts of variable age recovered from field soil had increased hatch in both root exudates or water compared to recently produced cysts from plants in growth chambers. Globodera t. tabacum may be subject to both host and environmentally mediated diapause. Key words: hatch stimulation, Nicotiana tabacum, Lycopersicon esculentum, nematode, root exudates, Solanum nigrum, tobacco cyst nematode. The tobacco cyst nematode, Globodera experiments. G. t. tabacum, however, can tabacum tabacum (Lownsbery and Lowns- persist in soil for many years in the absence bery) Behrens, is an important parasite of of a host (1), suggesting some form of dor- shade (9,13) and broadleaf (11) tobacco in mancy with survival value.
    [Show full text]
  • Diversity of Root-Knot Nematodes in Moroccan Olive Nurseries and Orchards
    Aït Hamza et al. BMC Ecol (2017) 17:41 https://doi.org/10.1186/s12898-017-0153-9 BMC Ecology RESEARCH ARTICLE Open Access Diversity of root‑knot nematodes in Moroccan olive nurseries and orchards: does Meloidogyne javanica disperse according to invasion processes? Mohamed Aït Hamza1,2* , Nadine Ali2,3, Johannes Tavoillot2, Odile Fossati‑Gaschignard2, Hassan Boubaker4, Abdelhamid El Mousadik1† and Thierry Mateille2† Abstract Background: Root-knot nematodes (RKN) are major pest of olive tree (Olea europaea ssp. europaea), especially in nurseries and high-density orchards. Soil samples were collected from main olive growing areas of Morocco, to char‑ acterize Meloidogyne species and to discuss the contribution of biotic and abiotic factors in their spatial distribution. Results: RKN were found in 159 soil samples out of 305 from nurseries (52.1% occurrence) and in 11 out of 49 soil samples from orchards (23.2% occurrence). Biochemical and molecular characterisation (PAGE esterase and SCAR) revealed the dominance of M. javanica both in nurseries and orchards with minor presence of M. incognita only in nurseries, and M. arenaria in only one nursery. RKN were distributed on aggregated basis. Frequent presence of M. javanica in orchards might have come from nurseries. In contrast, the detection of M. incognita in nurseries alone sug‑ gests that this species could not reproduce in orchards because of either the competition with other plant-parasitic nematodes or unft local habitats. The impact of environmental variables (climate, habitat origin and physicochemical characteristics of the substrates) on the distribution of Meloidogyne species is also discussed. Conclusion: Olive nurseries in Morocco are not able to guarantee the safety of rooted plants.
    [Show full text]
  • PM 7/40 (4) Globodera Rostochiensis and Globodera Pallida
    Bulletin OEPP/EPPO Bulletin (2017) 47 (2), 174–197 ISSN 0250-8052. DOI: 10.1111/epp.12391 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/40 (4) Diagnostics Diagnostic PM 7/40 (4) Globodera rostochiensis and Globodera pallida Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Approved as an EPPO Standard in 2003-09. Globodera rostochiensis and Globodera pallida.1 Revisions approved in 2009-09, 2012-09 and 2017-02. Terms used are those in the EPPO Pictorial Glossary of Morphological Terms in Nematology.2 This Standard should be used in conjunction with PM 7/ 76 Use of EPPO diagnostic protocols. of imported material for potential quarantine or damaging 1. Introduction nematodes or new infestations, identification by morpholog- Globodera rostochiensis and Globodera pallida (potato cyst ical methods performed by experienced nematologists is nematodes, PCNs) cause major losses in Solanum more suitable (PM 7/76 Use of EPPO diagnostic tuberosum (potato) crops (van Riel & Mulder, 1998). The protocols). infective second-stage juveniles only move a maximum of A flow diagram describing the diagnostic procedure for about 1 m in the soil. Most movement to new localities is G. rostochiensis and G. pallida is presented in Fig. 1. by passive transport. The main routes of spread are infested seed potatoes and movement of soil (e.g. on farm machin- 2. Identity ery) from infested land to other areas. Infestation occurs when the second-stage juvenile hatches from the egg and Name: Globodera rostochiensis (Wollenweber, 1923), enters the root near the growing tip by puncturing the epi- Skarbilovich, 1959.
    [Show full text]
  • Downloaded from Brill.Com09/24/2021 11:38:23AM Via Free Access 228 Lax Et Al
    Contributions to Zoology, 83 (4) 227-243 (2014) Morphology and DNA sequence data reveal the presence of Globodera ellingtonae in the Andean region Paola Lax1, 5, Juan C. Rondan Dueñas2, Javier Franco-Ponce3, Cristina N. Gardenal4, Marcelo E. Doucet1 1 Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Centro de Zoología Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Rondeau 798, 5000 Córdoba, Argentina 2 Laboratorio de Biología Molecular, Pabellón CEPROCOR, Santa María de Punilla, X5164 Córdoba, Argentina 3 PROINPA Foundation, Av. Meneces, Km 4, El Paso, Cochabamba, Bolivia 4 Instituto de Diversidad y Ecología Animal (CONICET-UNC) and Facultad de Ciencias Exactas, Físicas y Natu- rales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, 5000 Córdoba, Argentina 5 E-mail: [email protected] Key words: Andean potato, Argentina, diagnosis, Hsp90 gene, morphology, potato cyst nematode Abstract Results ............................................................................................. 231 Morphological data ............................................................... 231 Potato cyst nematodes, G. rostochiensis and G. pallida, are the Host-plant relationship ........................................................ 232 most economically important nematode pests of potatoes world- Molecular analysis ................................................................ 232 wide and are subject to strict quarantine regulations in many Discussion .....................................................................................
    [Show full text]
  • Plant–Nematode Interactions Valerie M Williamson and Cynthia a Gleason
    1 Plant–nematode interactions Valerie M Williamsonà and Cynthia A Gleason Root-knot nematodes and cyst nematodes are obligate, Cyst nematodes enter roots and move to the vascular biotrophic pathogens of numerous plant species. These cylinder, piercing cell walls with their stylets and dis- organisms cause dramatic changes in the morphology and rupting cells as they go [3]. Upon reaching the vascular physiology of their hosts. The molecular characterization of cylinder, they establish a feeding site, apparently by inject- induced plant genes has provided insight into the plant ing stylet secretions. The formation of a feeding site is processes that are usurped by nematodes as they establish their characterized by the breakdown of the cell walls between specialized feeding cells. Recently, several gene products have the initial feeding site cell and its neighboring cells, been identified that are secreted by the nematode during resulting in the development of a multinucleate syncytium parasitism. The corresponding genes have strong similarity to [4]. Cyst nematodes undergo three molts inside the root microbial genes or to genes that are found in nematodes that before becoming adults. They generally reproduce sexu- parasitize animals. New information on host resistance genes ally, and once fertilized, the female becomes full of eggs. and nematode virulence genes provides additional insight After the female dies, its body becomes a protective cyst for into this complex interaction. the eggs. Addresses In contrast to the cyst nematode, the juvenile of the root- ÃDepartment of Nematology, One Shields Avenue, knot nematode moves intercellularly after penetrating University of California, Davis, California 95616, USA the root, migrating down the plant cortex towards the e-mail: [email protected] root tip.
    [Show full text]
  • Resistance Based Integrated Pest Management Strategy for Globodera Rostochiensis and Globodera Pallida in Potato Cropping Systems
    Resistance Based Integrated Pest Management Strategy for Globodera rostochiensis and Globodera pallida in Potato Cropping Systems Dissertation Zur Erlangung des Akademischen Grades eines Doktors der Agrarwissenschaften (Dr. agr.) Eingereicht am Fachbereich Ökologische Agrarwissenschaften der Universität Kassel Von James Maina Mwangi Witzenhausen, October 2019 Mwangi, J.M. (2019). Resistance based integrated pest management strategy for Globodera rostochiensis and Globodera pallida in potato cropping systems. PhD Thesis, University of Kassel. doi:10.17170/kobra-20191212863 Defence date: 9th December 2019 Place: University of Kassel, Witzenhausen, Germany. Supervisors: 1. Prof. Dr. Maria R. Finckh, Department of Ecological Protection, University of Kassel, Germany. 2. Dr. Sebastian Kiewnick, Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants, Germany. II Table of Content Table of Contents List of Abbreviations and Acronyms ...................................................................................... VII List of Figures .............................................................................................................................. IX List of Tables ............................................................................................................................. XII Chapter 1: General Introduction .............................................................................................. 13 1.1 Introduction to Potato Cyst Nematodes
    [Show full text]
  • Intraspecific Variability Within Globodera Tabacum Solanacearum and Selection for Virulence Against Flue-Cured Tobacco
    Intraspecific Variability within Globodera tabacum solanacearum and Selection for Virulence Against Flue-Cured Tobacco by Aaron James Syracuse Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Masters of Science in Plant Pathology, Physiology, and Weed Science Approved: ______________________________ ______________________________ Dr. Charles S. Johnson, Co-chairman Dr. Jonathan D. Eisenback, Co-chairman ______________________________ ______________________________ Dr. Craig L. Nessler, Department Head Dr. Carol A. Wilkinson October, 2002 Blacksburg, Virginia Key Words: Globodera tabacum solanacearum, Tobacco Cyst Nematode, RAPD, Virulence Intraspecific Variability within Globodera tabacum solanacearum and Selection for Virulence against Flue-Cured Tobacco by Aaron James Syracuse C. S. Johnson and J. D. Eisenback, Co-chairmen Plant Pathology, Physiology, and Weed Science (ABSTRACT) The tobacco cyst nematode (TCN), Globodera tabacum solanacearum [(Miller and Gray, 1972) Behrens 1975] Stone 1983, is one of the most economically important pests of flue-cured tobacco (Nicotiana tabacum L.) in Virginia. Although TCN has been reported from other countries, the geographical distribution of G. t. solanacearum within the United States is limited to Virginia, North Carolina, and one county in Maryland. Approximately 30% of the tobacco acreage in Virginia is infested; average yield reduction is 15%, but complete crop failure can occur. The objectives of this research were to examine intraspecific variability within G. t. solanacearum and to evaluate the relative adaptability of G. t. solanacearum on a resistant (NC567) and a susceptible (K326) flue-cured tobacco cultivar. Nineteen geographic isolates of G. t. solanacearum, one isolate each of G. t. virginiae and the Mexican cyst nematode (G.
    [Show full text]
  • Nematodes of Agricultural Importance in North and South Carolina
    Chapter 10 Nematodes of Agricultural Importance in North and South Carolina Weimin Ye 10.1 Introduction North Carolina’s agricultural industry including food, fiber, ornamentals and for- estry, contributes $84 billion to the state’s annual economy, accounts for more than 17% of the state’s income, and employs 17% of the work force. North Carolina is one of the most diversified agricultural states in the nation. Approximately, 50,000 farmers grow over 80 different commodities in North Carolina utilizing 8.2 million of the state 12.5 million hectares to furnish consumers a dependable and affordable supply of food and fiber. North Carolina produces more tobacco and sweet potatoes than any other state, ranks second in Christmas tree and third in tomato production. The state ranks nineth nationally in farm cash receipts of over $10.8 billion (NCDA Agricultural Statistics 2017). Plant parasitic nematodes are recognized as one of the greatest threat to crops throughout the world. Nematodes alone or in combination with other soil microor- ganisms have been found to attack almost every part of the plant including roots, stems, leaves, fruits and seeds. Crop damage caused worldwide by plant nematodes has been estimated at $US80 billion per year (Nicol et al. 2011). All crops are dam- aged by at least one species of nematode. Most plant parasitic nematodes live in soil and damage plants by feeding in large numbers on roots impairing the plant’s ability to take up water and nutrients. Severe root damage caused by nematodes typically results in aboveground symptoms that may include stunting, yellowing of leaves, incipient wilt, loss of plant vigor and/or an overall general decline in plant perfor- mance.
    [Show full text]
  • Taxonomy, Morphological and Molecular Identification of The
    plants Review Taxonomy, Morphological and Molecular Identification of the Potato Cyst Nematodes, Globodera pallida and G. rostochiensis John Wainer * and Quang Dinh Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3086, Australia; [email protected] * Correspondence: [email protected] Abstract: The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species. Keywords: PCN; potato cyst nematode; Globodera; taxonomy; detection; morphology; molecular identification; PCR 1. Introduction Potato cyst nematodes (PCN) are damaging soilborne quarantine pests of potato and other solanaceous crops worldwide [1,2]. The two most damaging species, G. pallida (Stone, 1973) Behrens, 1975, the pale or white cyst nematode, and G. rostochiensis (Wollenweber, Citation: Wainer, J.; Dinh, Q. 1923) Behrens, 1975, the golden cyst nematode, have proved to be highly adaptive at Taxonomy, Morphological and exploiting new environments, being passively transported, undetected across borders, in Molecular Identification of the Potato intimate association with tubers of their major host, the potato. Globodera species feeding on Cyst Nematodes, Globodera pallida potato also include G. ellingtonae, restricted to Chile, Argentina, and two states in northwest and G. rostochiensis. Plants 2021, 10, USA [3–5] and G. leptonepia (Cobb and Taylor, 1953) Skarbilovich, 1959 found only once in 184.
    [Show full text]