Cb256o Web Only
Total Page:16
File Type:pdf, Size:1020Kb
articles PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. human phospholipase D1 wild-type and deletion mutants: is there evidence for an interaction of Cell Biol. 143, 65–79 (1998). phosphatidylinositol 4,5-bisphosphate with the putative pleckstrin homology domain? Biochim. 6. Cooke, F. T. et al. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential Biophys. Acta 1481, 189–201 (2000). for vacuole function in S. cerevisiae. Curr. Biol. 8, 1219–1222 (1998). 25. Hodgkin, M. N. et al. Phospholipase D regulation and localisation is dependent upon a phos- 7. Stack, J. H., DeWald, D. B., Takegawa, K. & Emr, S. D. Vesicle-mediated protein transport: regulato- phatidylinositol 4,5-bisphosphate-specific PH domain. Curr. Biol. 10, 43–46 (2000). ry interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for pro- 26. Kim, Y. et al. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: tein sorting to the vacuole in yeast. J. Cell Biol. 129, 321–334 (1995). determination of multiple phosphorylation sites. Biochemistry 38, 10344–10351 (1999). 8. Weimbs, T. et al. A conserved domain is present in different families of vesicular fusion proteins: a 27. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. new superfamily. Proc. Natl Acad. Sci. USA 94, 3046–3051 (1997). Science 291, 1793–1796 (2001). 9. Fasshauer, D., Eliason, W. K., Brunger, A. T. & Jahn, R. Identification of a minimal core of the 28. Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phos- synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, phatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994). 10354–10362 (1998). 29. Ferguson, K. M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin 10. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex homology domains. Mol. Cell 6, 373–384 (2000). involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998). 30. Sutton, R. B., Ernst, J. A. & Brunger, A. T. Crystal structure of the cytosolic C2A–C2B domains of 11. Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a synaptotagmin III. Implications for Ca2+-independent snare complex interaction. J. Cell. Biol. 147, novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997). 589–598 (1999). 12. Burd, C. G. & Emr, S. D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding 31. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and to RING FYVE domains. Mol. Cell 2, 157–162 (1998). endocytosis. Science 291, 1047–1051 (2001). 13. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998). 32. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation 14. Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding of clathrin lattices on membranes. Science 291, 1051–1055 (2001). motif. Nature 394, 433–434 (1998). 33. Kay, L. E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure 15. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. and dynamics in solution. Prog. Biophys. Mol. Biol. 63, 277–299 (1995). EMBO J. 19, 4577–4588 (2000). 34. Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of 16. Dowler, S., Currie, R. A., Downes, C. P. & Alessi, D. R. DAPP1: a dual adaptor for phosphotyrosine protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994). and 3-phosphoinositides. Biochem. J. 342, 7–12 (1999). 35. Vuister, G. W. & Bax, A. Quantitative J correlation – a new approach for measuring homonuclear 3- 15 17. Kutateladze, T. G. et al. Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol. bond JHNHα coupling constants in N enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993). Cell 3, 805–811 (1999). 36. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. 18. Gaullier, J. M., Ronning, E., Gillooly, D. J. & Stenmark, H. Interaction of the EEA1 FYVE finger Biomol. NMR 6, 277–293 (1995). with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J. Biol. 37. Lukin, J. A., Gove, A. P., Talukdar, S. N. & Ho, C. Automated probabilistic method for assigning 13 15 Chem. 275, 24595–24600 (2000). backbone resonances of ( C, N)-labeled proteins. J. Biomol. NMR 9, 151–166 (1997). 19. Phillips, S. A., Barr, V. A., Haft, D. H., Taylor, S. I. & Renfrew, C. Identification and characterization of 38. Cowles, C. R., Odorizzi, G., Payne, G. S. & Emr, S. D. The AP-3 adaptor complex is essential for SNX15, a novel sorting nexin involved in protein trafficking. J. Biol. Chem. 276, 5074–5084 (2001). cargo-selective transport to the yeast vacuole. Cell 91, 109–118 (1997). 20. Kurten, R. C. et al. Self-assembly and binding of a sorting nexin to sorting endosomes. J. Cell. Sci. 39. Grzesiek, S. et al. The solution structure of HIV-1 Nef reveals an unexpected fold and permits 114, 1743–1756 (2001). delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nature 21. Liu, D., Yang, X. & Songyang, Z. Identification of CISK, a new member of the SGK kinase family Struct. Biol. 3, 340–345 (1996). that promotes IL-3-dependent survival. Curr. Biol. 10, 1233–1236 (2000). 22. Domin, J., Gaidarov, I., Smith, M. E., Keen, J. H. & Waterfield, M. D. The class II phosphoinositide ACKNOWLEDGEMENTS α 3-kinase PI3K-C2 is concentrated in the trans-Golgi network and present in clathrin-coated vesi- We thank D. G. S. Capelluto, J. L. Enmon, D. N. M. Jones and A. E. Wurmser for discussions and L. E. cles. J. Biol. Chem. 275, 11943–11950 (2000). Kay for pulse sequences. We also thank C. Sette, P. Iaquinta, J. Thorner, X. Song, W. Xu, A. Zhang, G. 23. Yokozeki, T., Kuribara, H., Katada, T., Touhara, K. & Kanaho, Y. Partially purified RhoA-stimulated Huang, X. Liang, J. V. Virbasius, M. P. Czech and G. W. Zhou for sharing unpublished data. We are sup- phospholipase D activity specifically binds to phosphatidylinositol 4,5-bisphosphate. J. Neurochem. ported by the Pew Scholars Program, University of Colorado Cancer Center and University of 66, 1234–1239 (1996). Colorado Health Sciences Center NMR Facility. 24. Hoer, A., Cetindag, C. & Oberdisse, E. Influence of phosphatidylinositol 4,5-bisphosphate on Correspondence and requests for materials should be addressed to M.O. Errata In the figure 4 legend, the sentence: “The structure of DPC is above the panel.” should be replaced by “The structure of DPC is inset into the panel, and the secondary structure is shown above the panel.” Also, in the figure 5 legend, “The conservation of structurally and functional- ly important PX domain residues are shown ...” should be replaced by “The conservation of structurally and functionally important PX domain residues is shown ...” This PDF posted on 4 June 2001 replaces the one originally posted on 24 May 2001. The cor- rected version of this paper will appear in the July issue of the journal. 618 NATURE CELL BIOLOGY VOL 3 JULY 2001 http://cellbio.nature.com © 2001 Macmillan Magazines Ltd.