P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis

Total Page:16

File Type:pdf, Size:1020Kb

P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis Cindy Hodakoski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2012 Cindy Hodakoski All rights reserved ABSTRACT P-REX2 PH Domain Inhibition of PTEN Regulates Transformation, Insulin Signaling, and Glucose Homeostasis Cindy Hodakoski PTEN, a tumor suppressor lost in multiple cancers, antagonizes PI3-kinase signaling by dephosphorylating the second messenger phosphatidylinositol (3,4,5) trisphosphate. PTEN expression and enzymatic activity is regulated through various mechanisms, including oxidation, phosphorylation, and protein-protein interactions. Our lab has recently identified a PTEN interacting protein, the Rac GEF P-REX2, which inhibits PTEN phosphatase activity in a non- competitive manner. This thesis focuses on understanding the physiological relevance of this interaction in the regulation of PI3K signaling, as well as determining the mechanism of P-REX2 mediated PTEN inhibition. The first chapter focuses on the role of P-REX2 overexpression in PI3K signaling, proliferation, and transformation. We first find that P-REX2 Rac GEF activity is dispensable for PTEN inhibition by utilizing a P-REX2 GEF dead mutant N212A. Next, we determined the effect of P-REX2 overexpression on PI3K signaling in normal mammary epithelial cells. Expression of P-REX2 or the DHPH inhibitory domain increased AKT phosphorylation, promoted cellular proliferation, and disrupted acini morphogenesis. Furthermore, P-REX2 cooperated with other oncogenes, including the PI3K E545K oncogenic mutant, c-MYC, and HER2 to promote proliferation, colony formation in soft agar, and tumor formation in mice. We also analyzed the effects of expression of P-REX2 cancer mutants, and discovered two transforming mutants, V432M and R498I that cooperated with PI3K E545K to increase anchorage independent growth and cellular proliferation. The next chapter examines the role of P-rex2 in PI3K signaling regulation in vivo. We generated Prex2 knockout mice using a gene trap method, and found that baseline signaling and proliferation in fibroblasts was not affected by P-rex2 deletion. However, insulin and IGF-1, but not PDGF or EGF stimulated PI3K signaling was reduced in Prex2-/- fibroblasts. The activity of PTEN from Prex2+/+ fibroblasts was reduced following insulin stimulation, but remained elevated in Prex2-/- cells, suggesting that insulin stimulated PTEN inhibition is dependent on P- rex2. Furthermore, P-REX2 interacted with phosphorylated insulin receptor and recruited PTEN to the membrane following insulin stimulation. Prex2-/- mice are intolerant to insulin and glucose, and have reduced PI3K signaling in the fat and liver following insulin stimulation. Furthermore, the activity of PTEN from Prex2-/- liver samples is elevated, and correlated with a decrease in cellular PIP3 levels. After uncovering an essential role for P-REX2 in PI3K signal transduction, we next examined the mechanism and regulation of P-REX2 mediated PTEN inhibition. We found that P-REX2 interacts with two different sites on PTEN. The PH domain of P-REX2 bound to the phosphatase and C2 domains of PTEN, while the inositol polyphosphate-4 phosphatase domain interacted with the PDZ-binding domain on the PTEN C-terminal tail. We discovered that the PH domain was the minimal domain that constitutively inhibited PTEN. However, the DHPH domain and full length P-REX2 required phosphorylation of the PTEN C-terminal tail for inhibition, suggesting the DH domain of P-REX2 restricts PH domain inhibition of PTEN when the C-terminal tail of PTEN is unphosphorylated. Furthermore, the PH domain of P-REX1 was not able to inhibit PTEN, and full length P-REX1 did not interact with PTEN, suggesting that there is a level of specificity involved in P-REX2 PH domain mediated phosphatase inhibition and binding. Overall, this thesis identifies P-REX2 as a dynamic inhibitor of PTEN phosphatase activity that regulates PI3K mediated cellular transformation, insulin signaling, and glucose metabolism. TABLE OF CONTENTS CHAPTER I: INTRODUCTION ..................................................................................... 1 PHOSPHOINOSITIDE SIGNALING .................................................................... 2 Substrate recognition.................................................................................. 3 Phosphoinositide regulation and disease.................................................... 5 PHOSPHOINOSITIDE-3 KINASE ........................................................................ 7 Classes of Phosphoinsotide- 3 kinases ....................................................... 7 Activation of Class IA PI3K ...................................................................... 9 AKT ....................................................................................................................... 9 Structure ................................................................................................... 10 Activation.................................................................................................. 11 Biological effects of AKT activation ...................................................... 12 PTEN .................................................................................................................. 15 Genetic alterations of PTEN in cancer .................................................... 16 PTEN structure ........................................................................................ 17 PTEN function ......................................................................................... 18 PI3K independent function of PTEN ....................................................... 22 PTEN regulation ...................................................................................... 23 P-REX2 and RHO GTPASES ............................................................................... 28 Rac GTPase function ............................................................................... 28 P-REX2 function ...................................................................................... 30 P-REX2 structure ..................................................................................... 30 Rac activation and disease ....................................................................... 31 P-REX2-PTEN interaction ....................................................................... 33 FIGURE LEGENDS ............................................................................................ 35 FIGURES ............................................................................................................. 37 CHAPTER II: Expression of Wild-type P-REX2 and P-REX2 Cancer Mutants Increases PI3K Signaling and Proliferation, and Transforms Cells in Cooperation with Various Oncogenes .................................................... 43 i ABSTRACT ......................................................................................................... 44 INTRODUCTION................................................................................................ 45 EXPERIMENTAL PROCEDURES .................................................................... 49 RESULTS ............................................................................................................ 54 DISCUSSION ...................................................................................................... 61 FIGURE LEGENDS ............................................................................................ 65 FIGURES ............................................................................................................. 68 CHAPTER III: P-REX2 Regulates Insulin Dependent PI3K Signaling and Glucose Metabolism in vivo .......................................................................................................... 74 ABSTRACT ......................................................................................................... 75 INTRODUCTION ............................................................................................... 76 EXPERIMENTAL PROCEDURES .................................................................... 79 RESULTS ............................................................................................................ 85 DISCUSSION ...................................................................................................... 93 FIGURE LEGENDS ............................................................................................ 98 FIGURES ............................................................................................................101 CHAPTER IV: Phosphorylation of the PTEN Carboxy-terminal Tail Domain Regulates P-REX2 PH Domain-mediated Inhibition of PTEN ......................... 108 ABSTRACT ....................................................................................................... 109 INTRODUCTION ............................................................................................. 110 EXPERIMENTAL PROCEDURES .................................................................. 114 RESULTS .......................................................................................................... 120 DISCUSSION ...................................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genetic Heterogeneity of Motor Neuropathies
    Genetic heterogeneity of motor neuropathies Boglarka Bansagi, MD ABSTRACT Helen Griffin, PhD Objective: To study the prevalence, molecular cause, and clinical presentation of hereditary motor Roger G. Whittaker, MD, neuropathies in a large cohort of patients from the North of England. PhD Methods: Detailed neurologic and electrophysiologic assessments and next-generation panel Thalia Antoniadi, PhD testing or whole exome sequencing were performed in 105 patients with clinical symptoms of Teresinha Evangelista, distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor MD Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly James Miller, MD, PhD affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). Mark Greenslade, PhD Natalie Forester, PhD Results: The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% – Jennifer Duff, PhD confidence interval 1.62 2.66) in the North of England. Causative mutations were identified in Anna Bradshaw 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, Stephanie Kleinle, PhD which is higher than previously reported (20%). We detected a significant defect of neuromus- Veronika Boczonadi, PhD cular transmission in 7 cases and identified potentially causative mutations in 4 patients with Hannah Steele, MD multifocal demyelinating motor neuropathy. Venkateswaran Ramesh, Conclusions: Many of the genes were shared between dHMN and motor CMT2, indicating identical MD disease mechanisms; therefore, we suggest changing the classification and including dHMN also as Edit Franko, MD, PhD a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some Angela Pyle, PhD genetic forms provides a treatable target to develop therapies.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • The PX Domain Protein Interaction Network in Yeast
    The PX domain protein interaction network in yeast Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) vorgelegte DISSERTATION von Dipl. Biol. Carolina S. Müller aus Buenos Aires Dekan: Prof. Dr. Manfred Kappes Referent: Dr. Nils Johnsson Korreferent: HD. Dr. Adam Bertl Tag der mündlichen Prüfung: 17.02.2005 I dedicate this work to my Parents and Alex TABLE OF CONTENTS Table of contents Introduction 1 Yeast as a model organism in proteome analysis 1 Protein-protein interactions 2 Protein Domains in Yeast 3 Classification of protein interaction domains 3 Phosphoinositides 5 Function 5 Structure 5 Biochemistry 6 Localization 7 Lipid Binding Domains 8 The PX domain 10 Function of PX domain containing proteins 10 PX domain structure and PI binding affinities 10 Yeast PX domain containing proteins 13 PX domain and protein-protein interactions 13 Lipid binding domains and protein-protein interactions 14 The PX-only proteins Grd19p and Ypt35p and their phenotypes 15 Aim of my PhD work 16 Project outline 16 Searching for interacting partners 16 Confirmation of obtained interactions via a 16 second independent method Mapping the interacting region 16 The Two-Hybrid System 17 Definition 17 Basic Principle of the classical Yeast-Two Hybrid System 17 Peptide Synthesis 18 SPOT synthesis technique 18 Analysis of protein- peptide contact sites based on SPOT synthesis 19 TABLE OF CONTENTS Experimental procedures 21 Yeast two-hybrid assay
    [Show full text]
  • Pax6 Interactions with Chromatin and Identification of Its Novel Direct Target Genes in Lens and Forebrain
    Pax6 Interactions with Chromatin and Identification of Its Novel Direct Target Genes in Lens and Forebrain Qing Xie1., Ying Yang1., Jie Huang4, Jovica Ninkovic5,6, Tessa Walcher5,6, Louise Wolf2, Ariel Vitenzon2, Deyou Zheng1,3, Magdalena Go¨ tz5,6, David C. Beebe4, Jiri Zavadil7¤, Ales Cvekl1,2* 1 The Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America, 2 The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America, 3 The Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America, 4 Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America, 5 Helmholtz Zentrum Munchen, Institute of Stem Cell Research, Ingolsta¨dter Landstraße 1, Neuherberg, Germany, 6 Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University Munich, Munich Center for Integrated Protein Science CiPS, Munich, Germany, 7 Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America Abstract Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of a-, b-andd-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip) were performed using three distinct sources of chromatin (lens, forebrain and b-cells).
    [Show full text]
  • Chemical Agent and Antibodies B-Raf Inhibitor RAF265
    Supplemental Materials and Methods: Chemical agent and antibodies B-Raf inhibitor RAF265 [5-(2-(5-(trifluromethyl)-1H-imidazol-2-yl)pyridin-4-yloxy)-N-(4-trifluoromethyl)phenyl-1-methyl-1H-benzp{D, }imidazol-2- amine] was kindly provided by Novartis Pharma AG and dissolved in solvent ethanol:propylene glycol:2.5% tween-80 (percentage 6:23:71) for oral delivery to mice by gavage. Antibodies to phospho-ERK1/2 Thr202/Tyr204(4370), phosphoMEK1/2(2338 and 9121)), phospho-cyclin D1(3300), cyclin D1 (2978), PLK1 (4513) BIM (2933), BAX (2772), BCL2 (2876) were from Cell Signaling Technology. Additional antibodies for phospho-ERK1,2 detection for western blot were from Promega (V803A), and Santa Cruz (E-Y, SC7383). Total ERK antibody for western blot analysis was K-23 from Santa Cruz (SC-94). Ki67 antibody (ab833) was from ABCAM, Mcl1 antibody (559027) was from BD Biosciences, Factor VIII antibody was from Dako (A082), CD31 antibody was from Dianova, (DIA310), and Cot antibody was from Santa Cruz Biotechnology (sc-373677). For the cyclin D1 second antibody staining was with an Alexa Fluor 568 donkey anti-rabbit IgG (Invitrogen, A10042) (1:200 dilution). The pMEK1 fluorescence was developed using the Alexa Fluor 488 chicken anti-rabbit IgG second antibody (1:200 dilution).TUNEL staining kits were from Promega (G2350). Mouse Implant Studies: Biopsy tissues were delivered to research laboratory in ice-cold Dulbecco's Modified Eagle Medium (DMEM) buffer solution. As the tissue mass available from each biopsy was limited, we first passaged the biopsy tissue in Balb/c nu/Foxn1 athymic nude mice (6-8 weeks of age and weighing 22-25g, purchased from Harlan Sprague Dawley, USA) to increase the volume of tumor for further implantation.
    [Show full text]
  • Deciphering the Functional and Molecular Differences Between MTM1 and MTMR2 to Better Understand Two Neuromuscular Diseases Matthieu Raess
    Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases Matthieu Raess To cite this version: Matthieu Raess. Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases. Genomics [q-bio.GN]. Université de Strasbourg, 2017. English. NNT : 2017STRAJ088. tel-03081300 HAL Id: tel-03081300 https://tel.archives-ouvertes.fr/tel-03081300 Submitted on 18 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE (ED 414) Génétique Moléculaire, Génomique, Microbiologie (GMGM) – UMR 7156 & Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 – INSERM U 964 THÈSE présentée par : Matthieu RAESS soutenue le : 13 octobre 2017 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects moléculaires et cellulaires de la biologie Deciphering the functional and molecular differences between MTM1 and MTMR2 to better understand two neuromuscular diseases. THÈSE dirigée par : Mme FRIANT Sylvie Directrice de recherche, Université de Strasbourg & Mme COWLING Belinda Chargée de recherche, Université de Strasbourg RAPPORTEURS : Mme BOLINO Alessandra Directrice de recherche, Institut San Raffaele de Milan M.
    [Show full text]
  • Rho Guanine Nucleotide Exchange Factors: Regulators of Rho Gtpase Activity in Development and Disease
    Oncogene (2014) 33, 4021–4035 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease DR Cook1, KL Rossman2,3 and CJ Der1,2,3 The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger). Oncogene (2014) 33, 4021–4035; doi:10.1038/onc.2013.362; published online 16 September 2013 Keywords: Rac1; RhoA; Cdc42; guanine nucleotide exchange factors; cancer;
    [Show full text]
  • Truncating PREX2 Mutations Activate Its GEF Activity and Alter Gene
    Truncating PREX2 mutations activate its GEF activity PNAS PLUS and alter gene expression regulation in NRAS-mutant melanoma Yonathan Lissanu Deribea,1,2, Yanxia Shia,b,1, Kunal Raia, Luigi Nezia, Samir B. Amina, Chia-Chin Wua, Kadir C. Akdemira, Mozhdeh Mahdavia, Qian Penga, Qing Edward Changc, Kirsti Hornigoldd, Stefan T. Arolde, Heidi C. E. Welchd, Levi A. Garrawayf,g, and Lynda China,c,2 aDepartment of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; bSun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborate Center for Cancer Medicine, Guangzhou 510060, China; cInstitute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX 77030; dThe Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom; eDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia; fDepartment of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215; and gBroad Institute of MIT and Harvard, Boston, MA 02141 Edited by Dennis A. Carson, University of California at San Diego, La Jolla, CA, and approved January 26, 2016 (received for review July 14, 2015) PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac- To date, the most obvious connection between PREX2 and exchange factor 2) is a PTEN (phosphatase and tensin homolog cancer relevant pathways is through its physical interaction with deleted on chromosome 10) binding protein that is significantly PTEN (7). PTEN catalyzes the conversion of phosphatidylino- mutated in cutaneous melanoma and pancreatic ductal adenocar- sitol-3,4,5-trisphosphate to phosphatidylinositol-4,5 bisphosphate.
    [Show full text]
  • Spatial and Temporal Aspects of Signalling 6 1
    r r r Cell Signalling Biology Michael J. Berridge Module 6 Spatial and Temporal Aspects of Signalling 6 1 Module 6 Spatial and Temporal Aspects of Signalling Synopsis The function and efficiency of cell signalling pathways are very dependent on their organization both in space and time. With regard to spatial organization, signalling components are highly organized with respect to their cellular location and how they transmit information from one region of the cell to another. This spatial organization of signalling pathways depends on the molecular interactions that occur between signalling components that use signal transduction domains to construct signalling pathways. Very often, the components responsible for information transfer mechanisms are held in place by being attached to scaffolding proteins to form macromolecular signalling complexes. Sometimes these macromolecular complexes can be organized further by being localized to specific regions of the cell, as found in lipid rafts and caveolae or in the T-tubule regions of skeletal and cardiac cells. Another feature of the spatial aspects concerns the local Another important temporal aspect is timing and signal and global aspects of signalling. The spatial organization of integration, which relates to the way in which functional signalling molecules mentioned above can lead to highly interactions between signalling pathways are determined localized signalling events, but when the signalling mo- by both the order and the timing of their presentations. lecules are more evenly distributed, signals can spread The organization of signalling systems in both time and more globally throughout the cell. In addition, signals space greatly enhances both their efficiency and versatility.
    [Show full text]
  • Lipid Phosphatases Identified by Screening a Mouse Phosphatase Shrna Library Regulate T-Cell Differentiation and Protein Kinase
    Lipid phosphatases identified by screening a mouse PNAS PLUS phosphatase shRNA library regulate T-cell differentiation and Protein kinase B AKT signaling Liying Guoa, Craig Martensb, Daniel Brunob, Stephen F. Porcellab, Hidehiro Yamanea, Stephane M. Caucheteuxa, Jinfang Zhuc, and William E. Paula,1 aCytokine Biology Unit, cMolecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and bGenomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840 Contributed by William E. Paul, March 27, 2013 (sent for review December 18, 2012) Screening a complete mouse phosphatase lentiviral shRNA library production (10, 11). Conversely, constitutive expression of active using high-throughput sequencing revealed several phosphatases AKT leads to increased proliferation and enhanced Th1/Th2 cy- that regulate CD4 T-cell differentiation. We concentrated on two lipid tokine production (12). phosphatases, the myotubularin-related protein (MTMR)9 and -7. The amount of PI[3,4,5]P3 and the level of AKT activation are Silencing MTMR9 by shRNA or siRNA resulted in enhanced T-helper tightly controlled by several mechanisms, including breakdown of (Th)1 differentiation and increased Th1 protein kinase B (PKB)/AKT PI[3,4,5]P3, down-regulation of the amount and activity of PI3K, phosphorylation while silencing MTMR7 caused increased Th2 and and the dephosphorylation of AKT (13). PTEN is a major negative Th17 differentiation and increased AKT phosphorylation in these regulator of PI[3,4,5]P3. It removes the 3-phosphate from the cells.
    [Show full text]
  • Modular Phosphoinositide-Binding Domains – Their Role in Signalling and Membrane Trafficking Peter J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector R882 Review Modular phosphoinositide-binding domains – their role in signalling and membrane trafficking Peter J. Cullen*, Gyles E. Cozier*, George Banting† and Harry Mellor† The membrane phospholipid phosphatidylinositol is the Introduction precursor of a family of lipid second-messengers, The membrane phospholipid phosphatidylinositol is the known as phosphoinositides, which differ in the precursor for a family of lipid second-messengers, known phosphorylation status of their inositol group. A major collectively as phosphoinositides, that differ solely in the advance in understanding phosphoinositide signalling phosphorylation status of their inositol head group has been the identification of a number of highly (Figure 1) [1,2]. Phosphoinositides are ideally suited to conserved modular protein domains whose function function as spatially restricted membrane second messen- appears to be to bind various phosphoinositides. Such gers because: the synthesis and turnover of phosphoinosi- ‘cut and paste’ modules are found in a diverse array of tides from the relatively abundant phosphatidylinositol multidomain proteins and recruit their host protein to membrane precursor can be rapid and highly concentrated specific regions in cells via interactions with within discrete membrane micro domains; the ratio of phosphoinositides. Here, with particular reference to phosphoinositide to binding partner can be relatively large,
    [Show full text]