Sagittal Section of Human Head Model

Total Page:16

File Type:pdf, Size:1020Kb

Sagittal Section of Human Head Model SAGITTAL SECTION OF HUMAN HEAD MODEL Nasal Cavity Nasal Concha Internal Nare SAGITTAL SECTION OF HUMAN HEAD MODEL External Nare Hard Palate Oral Cavity Tongue Soft Palate Uvula Epiglottis Larnyx Esophagus SAGITTAL SECTION OF HUMAN HEAD MODEL Nasal Cavity Nasal Concha Internal Nare SAGITTAL SECTION OF HUMAN HEAD MODEL External Nare Hard Palate Oral Cavity Tongue Soft Palate Uvula Epiglottis Trachea Esophagus LAYRNX MODEL Side View Hyoid Bone Thyroid Cartilage Cricoid Cartilage Trachea Tracheal Rings LAYRNX MODEL Anterior View Hyoid Bone Thyroid Cartilage Thyroid Gland Cricoid Cartilage Trachea Tracheal Rings LAYRNX MODEL Epiglottis Hyoid Bone Vocal Cords LAYRNX MODEL Epiglottis Arytenoid Cartilage Cricoid Cartilage LAYRNX MODEL Side View LAYRNX MODEL Anterior View LAYRNX MODEL LAYRNX MODEL HUMAN HEART AND LUNG MODEL Larynx Tracheal Rings Found on the Trachea HUMAN HEART AND LUNG MODEL Lung Lobes Diaphragm Heart HUMAN HEART AND LUNG MODEL Carina Hilum (curvature where blood vessels enter lungs) Pulmonary Arteries (Blue) Pulmonary Veins (Red) Bronchioles Bronchi Diaphragm HUMAN HEART AND LUNG MODEL Pulmonary Trunk Apex (points on lung lobes) HUMAN HEART AND LUNG MODEL Larynx Tracheal Rings Found on the Trachea HUMAN HEART AND LUNG MODEL Lung Lobes Diaphragm Heart HUMAN HEART AND LUNG MODEL Carina Hilum (curvature where blood vessels enter lungs) Pulmonary Arteries (Blue) Pulmonary Veins (Red) Bronchioles Bronchi Diaphragm HUMAN HEART AND LUNG MODEL Pulmonary Trunk Apex (points on lung lobes) LARGE TORSO MODEL Lung Lobes Heart Diaphragm LARGE TORSO MODEL Pulmonary Trunk Heart Diaphragm LARGE TORSO MODEL Pulmonary Arteries (Blue) Bronchi LARGE TORSO MODEL LARGE TORSO MODEL LARGE TORSO MODEL MANDIBLE MODEL Incisors Canine Premolars Molars MANDIBLE MODEL Incisors Canine Premolars Molars Tooth Model Crown Neck Root Tooth Model Enamel Dentin Pulp Cavity Root Canal Tooth Model Crown Neck Root Tooth Model Enamel Dentin Pulp Cavity Root Canal JEJUNUM MODEL Simple Columnar Epithelium Villi Mucosa Layer Intestinal Gland JEJUNUM MODEL Submucosa Layer Muscularis Externa JEJUNUM MODEL Simple Columnar Epithelium Villi Mucosa Layer Intestinal Gland JEJUNUM MODEL Submucosa Layer Muscularis Externa LIVER MODEL Common Bile Duct Cystic Duct Gall Bladder Hepatic Duct Round Ligament LIVER MODEL FLAT DIGESTIVE MODEL Hard Palate Tongue Soft Palate Uvula Esophagus FLAT DIGESTIVE MODEL Esophagus Liver Stomach FLAT DIGESTIVE MODEL Fundic Region Rugae (Ridges) Body Pyloric Region FLAT DIGESTIVE MODEL Transverse Colon Descending Colon Small Intestine FLAT DIGESTIVE MODEL Spleen Pancreas Duodenum Ascending Colon Jejunum Ileocecal Valve Cecum Ileum Appendix Rectum Sigmoid Colon FLAT DIGESTIVE MODEL Hard Palate Tongue Soft Palate Uvula Esophagus FLAT DIGESTIVE MODEL Esophagus Liver Stomach FLAT DIGESTIVE MODEL Fundic Region Rugae (Ridges) Body Pyloric Region FLAT DIGESTIVE MODEL Transverse Colon Descending Colon Small Intestine FLAT DIGESTIVE MODEL Spleen Pancreas Duodenum Ascending Colon Jejunum Ileocecal Valve Cecum Ileum Appendix Rectum Sigmoid Colon 3 PART KIDNEY MODEL Whole Kidney Arcuate Artery & Vein Interlobular Artery & Vein Calyces Renal Papilla Interlobar Artery & Vein Renal Artery Renal Pyramid Renal Vein Renal Medulla Inner region Renal Pelvis Ureter Renal Cortex Outer Region 3 PART KIDNEY MODEL Nephron Interlobular Artery & Vein Distal Convoluted Tubule Glomerulus Nephron (= Glomerulus to collecting duct) Bowman’s Capsule Collecting Duct Proximal Convoluted Tubule Arcuate Artery & Vein Interlobar Vein& Artery Loop of Henle Renal Pyramid (within the renal medulla) Renal Papilla 3 PART KIDNEY MODEL Renal Corpuscle Afferent Arteriole Efferent Arteriole Glomerulus Bowman’s Capsule 3 PART KIDNEY MODEL Arcuate Artery & Vein Renal Papilla Interlobar Artery & Vein Renal Artery Renal Pyramid Renal Vein Ureter Renal Pelvis Renal Medulla Inner Region Renal Cortex Outer Region 3 PART KIDNEY MODEL Nephron Interlobular Artery & Vein Distal Convoluted Tubule Glomerulus Nephron Bowman’s Capsule (within the renal cortex) Collecting Duct Proximal Convoluted Tubule Arcuate Artery & Vein Interlobar Vein& Artery Loop of Henle Renal Pyramid (within the renal medulla) Renal Papilla 3 PART KIDNEY MODEL Urinary Organs Model Adrenal Gland Kidney Kidney Renal Artery Renal Vein Ureter Ureter Female Male Urinary Organs Model Female Urinary Bladder Urinary Organs Model Male Urinary Bladder Urinary Organs Model Adrenal Gland Kidney Kidney Renal Artery Renal Vein Ureter Ureter Male Female Urinary Organs Model Female Bladder Urinary Organs Model Male Urinary Bladder MALE REPRODUCTIVE MODEL Ureter Urinary Bladder Inguinal Canal Ductus Deferens Seminal Vesicle Prostate Gland Spermatic Cord With Penis Testicular Artery& Vein Epididymis Glans Testes Scrotum MALE REPRODUCTIVE MODEL Ureter Urinary Bladder Inguinal Canal Ductus Deferens Seminal Vesicle Prostate Gland Spermatic Cord Penis With Testicular Artery& Vein Glans Epididymis Testes Scrotum MALE REPRODUCTIVE MODEL Ureter Urinary Bladder Inguinal Canal Ductus Deferens Seminal Vesicle Prostate Gland Spermatic Cord With Penis Testicular Artery& Vein Epididymis Glans Testes Scrotum MALE REPRODUCTIVE MODEL Ureter Urinary Bladder Inguinal Canal Ductus Deferens Seminal Vesicle Prostate Gland Spermatic Cord Penis With Testicular Artery& Vein Glans Epididymis Testes Scrotum FEMALE REPRODUCTIVE MODEL Uterus Urinary Bladder Clitoris Labia Majora Labia Minora FEMALE REPRODUCTIVE MODEL Fallopian Tube Ovary Perimetrium Myometrium Round Ligament Urinary Bladder Endometrium Urethra Cervix Clitoris Labia Majora Vagina Labia Minora FEMALE REPRODUCTIVE MODEL Fimbriae Fallopian Tube Body Ovary Ovarian Ligament Fundus Urethra Cervix Clitoris Vagina FEMALE REPRODUCTIVE MODEL Uterus Urinary Bladder Clitoris Labia Majora Labia Minora FEMALE REPRODUCTIVE MODEL Perimetrium Myometrium Endometrium Urinary Bladder Clitoris Labia Majora Labia Minora Vagina Cervix FEMALE REPRODUCTIVE MODEL Fallopian Tube Ovarian Ligament Fimbriae Ovary Body Clitoris Cervix Fundus Urethra Vagina FEMALE REPRODUCTIVE MODEL Uterus Urinary Bladder Clitoris Labia Majora Labia Minora FEMALE REPRODUCTIVE MODEL Fallopian Tube Ovary Perimetrium Myometrium Round Ligament Urinary Bladder Endometrium Urethra Cervix Clitoris Labia Majora Vagina Labia Minora FEMALE REPRODUCTIVE MODEL Fimbriae Fallopian Tube Body Ovary Ovarian Ligament Fundus Urethra Cervix Clitoris Vagina FEMALE REPRODUCTIVE MODEL Uterus Urinary Bladder Clitoris Labia Majora Labia Minora FEMALE REPRODUCTIVE MODEL Perimetrium Myometrium Endometrium Urinary Bladder Clitoris Labia Majora Labia Minora Vagina Cervix FEMALE REPRODUCTIVE MODEL Fallopian Tube Ovarian Ligament Fimbriae Ovary Body Clitoris Cervix Fundus Urethra Vagina OVARY MODEL Corpus Albicans Corpus Luteum Antrum (Open space within Graafian follicle) Graafian Follicle Oocyte Follicle Cells OVARY MODEL Corpus Albicans Corpus Luteum Antrum (Open space within Graafian follicle) Graafian Follicle Oocyte Follicle Cells .
Recommended publications
  • Chapter 24 Primary Sex Organs = Gonads Produce Gametes Secrete Hormones That Control Reproduction Secondary Sex Organs = Accessory Structures
    Anatomy Lecture Notes Chapter 24 primary sex organs = gonads produce gametes secrete hormones that control reproduction secondary sex organs = accessory structures Development and Differentiation A. gonads develop from mesoderm starting at week 5 gonadal ridges medial to kidneys germ cells migrate to gonadal ridges from yolk sac at week 7, if an XY embryo secretes SRY protein, the gonadal ridges begin developing into testes with seminiferous tubules the testes secrete androgens, which cause the mesonephric ducts to develop the testes secrete a hormone that causes the paramesonephric ducts to regress by week 8, in any fetus (XX or XY), if SRY protein has not been produced, the gondal ridges begin to develop into ovaries with ovarian follicles the lack of androgens causes the paramesonephric ducts to develop and the mesonephric ducts to regress B. accessory organs develop from embryonic duct systems mesonephric ducts / Wolffian ducts eventually become male accessory organs: epididymis, ductus deferens, ejaculatory duct paramesonephric ducts / Mullerian ducts eventually become female accessory organs: oviducts, uterus, superior vagina C. external genitalia are indeterminate until week 8 male female genital tubercle penis (glans, corpora cavernosa, clitoris (glans, corpora corpus spongiosum) cavernosa), vestibular bulb) urethral folds fuse to form penile urethra labia minora labioscrotal swellings fuse to form scrotum labia majora urogenital sinus urinary bladder, urethra, prostate, urinary bladder, urethra, seminal vesicles, bulbourethral inferior vagina, vestibular glands glands Strong/Fall 2008 Anatomy Lecture Notes Chapter 24 Male A. gonads = testes (singular = testis) located in scrotum 1. outer coverings a. tunica vaginalis =double layer of serous membrane that partially surrounds each testis; (figure 24.29) b.
    [Show full text]
  • FEMALE REPRODUCTIVE SYSTEM Female ReproducVe System
    Human Anatomy Unit 3 FEMALE REPRODUCTIVE SYSTEM Female Reproducve System • Gonads = ovaries – almond shaped – flank the uterus on either side – aached to the uterus and body wall by ligaments • Gametes = oocytes – released from the ovary during ovulaon – Develop within ovarian follicles Ligaments • Broad ligament – Aaches to walls and floor of pelvic cavity – Connuous with parietal peritoneum • Round ligament – Perpendicular to broad ligament • Ovarian ligament – Lateral surface of uterus ‐ ‐> medial surface of ovary • Suspensory ligament – Lateral surface of ovary ‐ ‐> pelvic wall Ovarian Follicles • Layers of epithelial cells surrounding ova • Primordial follicle – most immature of follicles • Primary follicle – single layer of follicular (granulosa) cells • Secondary – more than one layer and growing cavies • Graafian – Fluid filled antrum – ovum supported by many layers of follicular cells – Ovum surrounded by corona radiata Ovarian Follicles Corpus Luteum • Ovulaon releases the oocyte with the corona radiata • Leaves behind the rest of the Graafian follicle • Follicle becomes corpus luteum • Connues to secrete hormones to support possible pregnancy unl placenta becomes secretory or no implantaon • Becomes corpus albicans when no longer funconal Corpus Luteum and Corpus Albicans Uterine (Fallopian) Tubes • Ciliated tubes – Passage of the ovum to the uterus and – Passage of sperm toward the ovum • Fimbriae – finger like projecons that cover the ovary and sway, drawing the ovum inside aer ovulaon The Uterus • Muscular, hollow organ – supports
    [Show full text]
  • Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development
    Cancers 2012, 4, 701-724; doi:10.3390/cancers4030701 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development Mitsuko Furuya Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; E-Mail: [email protected]; Tel.: +81-45-787-2587; Fax: +81-45-786-0191 Received: 17 May 2012; in revised form: 29 June 2012 / Accepted: 12 July 2012 / Published: 18 July 2012 Abstract: Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary.
    [Show full text]
  • Biology of the Corpus Luteum
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 113, No 1, 43–49, 2011 CODEN PDBIAD ISSN 0031-5362 Review Biology of the Corpus luteum Abstract JELENA TOMAC \UR\ICA CEKINOVI] Corpus luteum (CL) is a small, transient endocrine gland formed fol- JURICA ARAPOVI] lowing ovulation from the secretory cells of the ovarian follicles. The main function of CL is the production of progesterone, a hormone which regu- Department of Histology and Embryology lates various reproductive functions. Progesterone plays a key role in the reg- Medical Faculty, University of Rijeka B. Branchetta 20, Rijeka, Croatia ulation of the length of estrous cycle and in the implantation of the blastocysts. Preovulatory surge of luteinizing hormone (LH) is crucial for Correspondence: the luteinization of follicular cells and CL maintenance, but there are also Jelena Tomac other factors which support the CL development and its functioning. In the Department of Histology and Embryology Medical Faculty, University of Rijeka absence of pregnancy, CL will cease to produce progesterone and induce it- B. Branchetta 20, Rijeka, Croatia self degradation known as luteolysis. This review is designed to provide a E-mail: [email protected] short overview of the events during the life span of corpus luteum (CL) and to make an insight in the synthesis and secretion of its main product – pro- Key words: Ovary, Corpus Luteum, gesterone. The major biologic mechanisms involved in CL development, Progesterone, Luteinization, Luteolysis function, and regression will also be discussed. INTRODUCTION orpus luteum (CL) is a transient endocrine gland, established by Cresidual follicular wall cells (granulosa and theca cells) following ovulation.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Excretory Products and Their Elimination
    290 BIOLOGY CHAPTER 19 EXCRETORY PRODUCTS AND THEIR ELIMINATION 19.1 Human Animals accumulate ammonia, urea, uric acid, carbon dioxide, water Excretory and ions like Na+, K+, Cl–, phosphate, sulphate, etc., either by metabolic System activities or by other means like excess ingestion. These substances have to be removed totally or partially. In this chapter, you will learn the 19.2 Urine Formation mechanisms of elimination of these substances with special emphasis on 19.3 Function of the common nitrogenous wastes. Ammonia, urea and uric acid are the major Tubules forms of nitrogenous wastes excreted by the animals. Ammonia is the most toxic form and requires large amount of water for its elimination, 19.4 Mechanism of whereas uric acid, being the least toxic, can be removed with a minimum Concentration of loss of water. the Filtrate The process of excreting ammonia is Ammonotelism. Many bony fishes, 19.5 Regulation of aquatic amphibians and aquatic insects are ammonotelic in nature. Kidney Function Ammonia, as it is readily soluble, is generally excreted by diffusion across 19.6 Micturition body surfaces or through gill surfaces (in fish) as ammonium ions. Kidneys do not play any significant role in its removal. Terrestrial adaptation 19.7 Role of other necessitated the production of lesser toxic nitrogenous wastes like urea Organs in and uric acid for conservation of water. Mammals, many terrestrial Excretion amphibians and marine fishes mainly excrete urea and are called ureotelic 19.8 Disorders of the animals. Ammonia produced by metabolism is converted into urea in the Excretory liver of these animals and released into the blood which is filtered and System excreted out by the kidneys.
    [Show full text]
  • Renal Corpuscle Renal System > Histology > Histology
    Renal Corpuscle Renal System > Histology > Histology Key Points: • The renal corpuscles lie within the renal cortex; • They comprise the glomerular, aka, Bowman's capsule and capillaries The capsule is a double-layer sac of epithelium: — The outer parietal layer folds upon itself to form the visceral layer. — The inner visceral layer envelops the glomerular capillaries. • As blood passes through the glomerular capillaries, aka, glomerulus, specific components, including water and wastes, are filtered to create ultrafiltrate. • The filtration barrier, which determines ultrafiltrate composition, comprises glomerular capillary endothelia, a basement membrane, and the visceral layer of the glomerular capsule. • Nephron tubules modify the ultrafiltrate to form urine. Overview Diagram: • Tuft of glomerular capillaries; blood enters the capillaries via the afferent arteriole, and exits via efferent arteriole. • The visceral layer of the glomerular capsule envelops the capillaries, then folds outwards to become the parietal layer. • The capsular space lies between the parietal and visceral layers; this space fills with ultrafiltrate. • Vascular pole = where the arterioles pass through the capsule • Urinary pole = where the nephron tubule begins • Distal tubule passes by the afferent arteriole. Details of Capillary and Visceral Layer: • Fenestrated glomerular capillary; fenestrations are small openings, aka, pores, in the endothelium that confer permeability. • Thick basement membrane overlies capillaries • Visceral layer comprises podocytes: — Cell bodies — Cytoplasmic extensions, called primary processes, give rise to secondary foot processes, aka, pedicles. • The pedicles interdigitate to form filtration slits; molecules pass through these slits to form the ultrafiltrate in the 1 / 3 capsular space. • Subpodocyte space; healthy podocytes do not adhere to the basement membrane. Clinical Correlation: • Podocyte injury causes dramatic changes in shape, and, therefore, their ability to filter substances from the blood.
    [Show full text]
  • Kidney Function • Filtration • Reabsorption • Secretion • Excretion • Micturition
    About This Chapter • Functions of the kidneys • Anatomy of the urinary system • Overview of kidney function • Filtration • Reabsorption • Secretion • Excretion • Micturition © 2016 Pearson Education, Inc. Functions of the Kidneys • Regulation of extracellular fluid volume and blood pressure • Regulation of osmolarity • Maintenance of ion balance • Homeostatic regulation of pH • Excretion of wastes • Production of hormones © 2016 Pearson Education, Inc. Anatomy of the Urinary System • Kidneys, ureters, bladder, and urethra • Kidneys – Bean-shaped organ – Cortex and medulla © 2016 Pearson Education, Inc. Anatomy of the Urinary System • Functional unit is the nephron – Glomerulus in the Bowman’s capsule – Proximal tubule – The loop of Henle • Descending limb and ascending limb twisted between arterioles forming the juxtaglomerular apparatus – Distal tubule – Collecting ducts © 2016 Pearson Education, Inc. Figure 19.1b Anatomy summary The kidneys are located retroperitoneally at the level of the lower ribs. Inferior Diaphragm vena cava Aorta Left adrenal gland Left kidney Right kidney Renal artery Renal vein Ureter Peritoneum Urinary Rectum (cut) bladder (cut) © 2016 Pearson Education, Inc. Figure 19.1c Anatomy summary © 2016 Pearson Education, Inc. Figure 19.1d Anatomy summary © 2016 Pearson Education, Inc. Figure 19.1f-h Anatomy summary Some nephrons dip deep into the medulla. One nephron has two arterioles and two sets of capillaries that form a portal system. Efferent arteriole Arterioles Peritubular Juxtaglomerular capillaries The cortex apparatus contains all Bowman’s Nephrons Afferent capsules, arteriole Glomerulus proximal Juxtamedullary nephron and distal (capillaries) with vasa recta tubules. Peritubular capillaries Glomerulus The medulla contains loops of Henle and Vasa recta collecting ducts. Collecting duct Loop of Henle © 2016 Pearson Education, Inc.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Reproductive Cycles in Females
    MOJ Women’s Health Review Article Open Access Reproductive cycles in females Abstract Volume 2 Issue 2 - 2016 The reproductive system in females consists of the ovaries, uterine tubes, uterus, Heshmat SW Haroun vagina and external genitalia. Periodic changes occur, nearly every one month, in Faculty of Medicine, Cairo University, Egypt the ovary and uterus of a fertile female. The ovarian cycle consists of three phases: follicular (preovulatory) phase, ovulation, and luteal (postovulatory) phase, whereas Correspondence: Heshmat SW Haroun, Professor of the uterine cycle is divided into menstruation, proliferative (postmenstrual) phase Anatomy and Embryology, Faculty of Medicine, Cairo University, and secretory (premenstrual) phase. The secretory phase of the endometrium shows Egypt, Email [email protected] thick columnar epithelium, corkscrew endometrial glands and long spiral arteries; it is under the influence of progesterone secreted by the corpus luteum in the ovary, and is Received: June 30, 2016 | Published: July 21, 2016 an indicator that ovulation has occurred. Keywords: ovarian cycle, ovulation, menstrual cycle, menstruation, endometrial secretory phase Introduction lining and it contains the uterine glands. The myometrium is formed of many smooth muscle fibres arranged in different directions. The The fertile period of a female extends from the age of puberty perimetrium is the peritoneal covering of the uterus. (11-14years) to the age of menopause (40-45years). A fertile female exhibits two periodic cycles: the ovarian cycle, which occurs in The vagina the cortex of the ovary and the menstrual cycle that happens in the It is the birth and copulatory canal. Its anterior wall measures endometrium of the uterus.
    [Show full text]
  • Big Female Reproductive System Foldable – Answer Key
    1 Big Female Reproductive System Foldable – Answer Key What you expect your students to produce will depend on their grade level and their academic level. The detailed information provided in the answer key is to give you a more thorough understanding about this topic. You most likely do not require your students to know all the details, so for your ease of use, highlight which details you would like students to know and use these to guide your lessons. Structure Function 1. uterus The embryo implants into the lining of the uterus and begins to develop. The uterus helps to support the development and maturation of the embryo and fetus by providing physical support and protection as well as nutrients through the production of a placenta. 2. fallopian tube These tubes are lined with sweeping cilia and empty out into the uterus. The fallopian tubes are the bridge between the ovaries and the uterus allowing eggs, fertilized eggs, and embryos to reach the uterine lining/endometrium. 3. infundibulum The ending funnel-like part of the fallopian tube (closest to the ovary) that is fringed with fimbriae. 4. fimbriae During ovulation the fimbriae swell (due to an engorgement of blood caused by a hormonal trigger) and gently hit the ovary in a sweeping motion. The cilia covering the fimbriae sway to draw the ovum into the fallopian tube. 5. ovary It produces, stores, matures and releases follicles containing female gametes (ova). It also has an endocrine function, producing estrogen, progesterone as well as testosterone to. 6. myometrium The middle muscular layer of the uterus.
    [Show full text]