Urinary System Kidney Anatomy Nephrons Let's Make the Filtrate

Total Page:16

File Type:pdf, Size:1020Kb

Urinary System Kidney Anatomy Nephrons Let's Make the Filtrate Kidney anatomy Urinary system Renal Aids homeostasis by cortex removing cellular wastes and Renal medulla foreign compounds, and Cortex maintains salt and water Renal balance of plasma pelvis Medulla Ureter Nephrons Let’s make the filtrate... Each kidney has about one million nephrons Blood is filtered at the glomerulus. Water Afferent arteriole brings and solutes leave the blood to glomerulus and blood and enter then forms efferent Bowman’s capsule. arteriole. Efferent arteriole branches to peritubular capillaries 1 Glomerulus physiology Bowman’s capsule contains podocytes that encircle Glomerular filtration the glomerulus. Glomerular filtration Normally blood cells and plasma proteins are not is similar to Capillary filtered ultrafiltration of 55 blood pressure capillaries Osmotic Hydrostatic 20% of plasma pressure 30 15 pressure becomes filtrate Glomerular filtration rate (GFR) determined by: Net filtration pressure and glomerulus permeability Adjusting GFR Filtrate is adjusted along the nephron Distal Blood pressure tubule Proximal tubule Cortex region Bowman’s capsule Radius of afferent arteriole Juxtaglomerular apparatus - helps in Decreasing GFR helps retain adjustments to filtration rate fluid and salts Loop of Henle Medulla region 2 Tubular reabsorption and secretion 180 liters per day are filtered, most is reabsorbed Reabsorption: filtered substances leave the nephron and enter peritubular capillaries Secretion: some substances from the peritubular capillaries enter the nephron So what is urine, then? Everything in the nephron that does not get Reabsorption physiology reabsorbed into the blood leaves as ….urine!!! 3 + Reabsorption of Na + (the key to it all…) Na reabsorption Na+ reabsorption (RA) drives the movement of many other substances in the tubule Water will “follow” Na+ movement Lumen Proximal tubular cell Control of sodium RA Page 533 When ECF volume is low, need to Na+ RA Osmosis Interstitial fluid Peritubular + Water capillary Na RA at distal and collection tubules with channel aldosterone. More Na+K+ pumps and Na+ Hydrostatic channels are made Osmosis pressure Renin is the trigger for eventual release of aldosterone, along a chain of events (renin- angiotensin-aldosterone system or RAAS) 4 Jux.App. monitors NaCl and ECF levels Efferent arteriole Distal tubule Bowman’s capsule Bowman’s capsule Juxtaglomerular Glomerular apparatus capillaries Podocyte Distal Glomerular capillaries tubule Granular cells Juxtaglomerular apparatus Afferent arteriole Glucose and amino acid reabsorption Hypertension can be due to increased renin leading to more plasma and thus high blood pressure Glucose and AA’s are cotransported w/Na+ via carriers Actively RA substances have a “tubular maximum” (when all carriers are used) 5 Na+ movement allows passive RA of substances. Our old friend, cotransport 80% of water reabsorption occurs before distal tub. by following Na+ Glucose, amino acids are reabsorbed via cotransporters If plasma levels get too high, renal threshold is reached (AAs or glucose leave in urine) Tubular secretion H+ and K+, and organic anions are secreted to Adjusting the concentration of urine tubule Our body tissues and filtrate are 300 mosm (osmolarity) K+ secretion is driven by the Na+K+ pump We can make urine as dilute as 100 or concentrated as 1200 mosm Na+ gradient in renal medulla allows for control of urine osmolarity for water balance 6 Loop of Henle functions to set up high osmolarity along the collecting tubule (duct) Collecting tubule (duct) Changing the permeability to H20 along the Distal collecting duct controls H O RA tubule 2 Cortex Vasopressin hormone controls permeability Medulla at distal and collecting tubules Collecting Long loop Tubule or Duct of Henle Collecting duct permeability Needing water Filtrate has concentration determines final amount of H2O RA of 100 mosm/liter 65 % of H20 RA is obligatory in the proximal tubule, 15% at Loop of Henle. Cortex Medulla 20% determined by vasopressin Collecting tubule Concentration of urine may be up to 1,200 = passive diffusion of = portions of tubule impermeable to H O H2O 2 = active transport of NaCl * = permeability to H2O increased by vasopressin 7 Too much water Why increased urination Filtrate has concentration of 100 mosm/liter from alcohol? Alcohol inhibits vasopressin Cortex Medulla It can also temporarily reduce blood glucose (via liver effects) Collecting tubule Concentration of urine may be as low as 100 = passive diffusion of = portions of tubule impermeable to H O H2O 2 = active transport of NaCl * = permeability to H2O increased by vasopressin Medical problems Kidney stones – caused when hard deposits form in the kidney (usually calcium, sometimes uric acid). They can enter the ureter and cause extreme pain. End of exam 4 material Urinary tract infection – 2nd most common type of infection. Bacteria introduced to urethra multiply and travel to bladder (cystitis) or further. 8 What goes on during Things I’m assuming you know: digestion… Know layers found throughout alimentary Motility - propulsion and mixing canal (mucosa, submucosa, muscular Secretion of digestive enzymes, bile, layers) and the term lumen mucus, water Chemical digestion Accessory structures (pancreas, liver, salivary glands, other exocrine glands) are Absorption a part of the digestive system Signaling Intrinsic nerve plexus Down the chute…oral cavity Network of nerve fibers that controls digestive activity in gut. “Your 2nd brain” Physical digestion Mastication - mixes food with saliva Saliva - amylase - digests starch mucus Tooth decay from lysozyme bacterial activity on food debris 9 Making saliva... Pressure and gustation promotes autonomic impulses to salivary glands PNS and SNS signals both influence salivary glands Bolus touches receptors in the pharynx to stimulate swallowing Peristaltic contractions push food Into the ....stomach through the esophagus. Storage, physical and chemical digestion Distention will cause a second wave and saliva release HCl Mixing in the antrum Bolus Chyme 10 Gastric emptying Pyloric sphincter Duodenum Peristaltic Peristaltic Movement contraction contraction of chyme Mucosa Stomach mucosa of stomach Gastric juices! Gastric Mucosa pH as low as 2 pits Gastric pit Mucosa cells Gastric glands Chief cells (Pepsinogen) Submucosa Parietal cells (HCl) 11 autocatalysis Digestion Pepsinogen Pepsin Controlling gastric juices.. Cephalic (“head”) phase - stimuli from the Protein head stimulate chief and parietal cells via HCI Peptide fragments intrinsic plexus, gastrin released Controlling gastric juices.. Protecting the stomach from itself… Stomach lining is protected from Gastric phase – proteins, distension at stomach gastric secretions by mucus. H+ cannot also stimulate gastric secretions via intrinsic enter cells plexus Cells are continually replaced Low protein, low pH is inhibitory, decreasing flow of gastric juices 12 Stomach lining problems Leaving the stomach… Peptic ulcer - stomach wall injured by acid Emptying controlled by duodenum and and enzymes stomach Chyme volume promotes emptying Injured tissue releases histamine, which stimulates acid production (…not good) Acid and fats in duodenum prevent gastric emptying Leaving the stomach... Pancreas Gastroesophageal sphincter Stomach Pyloric sphincter Islets of Langerhans Duodenum Duodenum Movement Peristaltic Cells contraction of chyme secrete alkaline Cells secrete solution Gastric emptying digestive enzymes 13 Pancreas An endocrine and exocrine gland Enzymes: protease, amylase, lipase 14.
Recommended publications
  • Excretory Products and Their Elimination
    290 BIOLOGY CHAPTER 19 EXCRETORY PRODUCTS AND THEIR ELIMINATION 19.1 Human Animals accumulate ammonia, urea, uric acid, carbon dioxide, water Excretory and ions like Na+, K+, Cl–, phosphate, sulphate, etc., either by metabolic System activities or by other means like excess ingestion. These substances have to be removed totally or partially. In this chapter, you will learn the 19.2 Urine Formation mechanisms of elimination of these substances with special emphasis on 19.3 Function of the common nitrogenous wastes. Ammonia, urea and uric acid are the major Tubules forms of nitrogenous wastes excreted by the animals. Ammonia is the most toxic form and requires large amount of water for its elimination, 19.4 Mechanism of whereas uric acid, being the least toxic, can be removed with a minimum Concentration of loss of water. the Filtrate The process of excreting ammonia is Ammonotelism. Many bony fishes, 19.5 Regulation of aquatic amphibians and aquatic insects are ammonotelic in nature. Kidney Function Ammonia, as it is readily soluble, is generally excreted by diffusion across 19.6 Micturition body surfaces or through gill surfaces (in fish) as ammonium ions. Kidneys do not play any significant role in its removal. Terrestrial adaptation 19.7 Role of other necessitated the production of lesser toxic nitrogenous wastes like urea Organs in and uric acid for conservation of water. Mammals, many terrestrial Excretion amphibians and marine fishes mainly excrete urea and are called ureotelic 19.8 Disorders of the animals. Ammonia produced by metabolism is converted into urea in the Excretory liver of these animals and released into the blood which is filtered and System excreted out by the kidneys.
    [Show full text]
  • Renal Corpuscle Renal System > Histology > Histology
    Renal Corpuscle Renal System > Histology > Histology Key Points: • The renal corpuscles lie within the renal cortex; • They comprise the glomerular, aka, Bowman's capsule and capillaries The capsule is a double-layer sac of epithelium: — The outer parietal layer folds upon itself to form the visceral layer. — The inner visceral layer envelops the glomerular capillaries. • As blood passes through the glomerular capillaries, aka, glomerulus, specific components, including water and wastes, are filtered to create ultrafiltrate. • The filtration barrier, which determines ultrafiltrate composition, comprises glomerular capillary endothelia, a basement membrane, and the visceral layer of the glomerular capsule. • Nephron tubules modify the ultrafiltrate to form urine. Overview Diagram: • Tuft of glomerular capillaries; blood enters the capillaries via the afferent arteriole, and exits via efferent arteriole. • The visceral layer of the glomerular capsule envelops the capillaries, then folds outwards to become the parietal layer. • The capsular space lies between the parietal and visceral layers; this space fills with ultrafiltrate. • Vascular pole = where the arterioles pass through the capsule • Urinary pole = where the nephron tubule begins • Distal tubule passes by the afferent arteriole. Details of Capillary and Visceral Layer: • Fenestrated glomerular capillary; fenestrations are small openings, aka, pores, in the endothelium that confer permeability. • Thick basement membrane overlies capillaries • Visceral layer comprises podocytes: — Cell bodies — Cytoplasmic extensions, called primary processes, give rise to secondary foot processes, aka, pedicles. • The pedicles interdigitate to form filtration slits; molecules pass through these slits to form the ultrafiltrate in the 1 / 3 capsular space. • Subpodocyte space; healthy podocytes do not adhere to the basement membrane. Clinical Correlation: • Podocyte injury causes dramatic changes in shape, and, therefore, their ability to filter substances from the blood.
    [Show full text]
  • Kidney Function • Filtration • Reabsorption • Secretion • Excretion • Micturition
    About This Chapter • Functions of the kidneys • Anatomy of the urinary system • Overview of kidney function • Filtration • Reabsorption • Secretion • Excretion • Micturition © 2016 Pearson Education, Inc. Functions of the Kidneys • Regulation of extracellular fluid volume and blood pressure • Regulation of osmolarity • Maintenance of ion balance • Homeostatic regulation of pH • Excretion of wastes • Production of hormones © 2016 Pearson Education, Inc. Anatomy of the Urinary System • Kidneys, ureters, bladder, and urethra • Kidneys – Bean-shaped organ – Cortex and medulla © 2016 Pearson Education, Inc. Anatomy of the Urinary System • Functional unit is the nephron – Glomerulus in the Bowman’s capsule – Proximal tubule – The loop of Henle • Descending limb and ascending limb twisted between arterioles forming the juxtaglomerular apparatus – Distal tubule – Collecting ducts © 2016 Pearson Education, Inc. Figure 19.1b Anatomy summary The kidneys are located retroperitoneally at the level of the lower ribs. Inferior Diaphragm vena cava Aorta Left adrenal gland Left kidney Right kidney Renal artery Renal vein Ureter Peritoneum Urinary Rectum (cut) bladder (cut) © 2016 Pearson Education, Inc. Figure 19.1c Anatomy summary © 2016 Pearson Education, Inc. Figure 19.1d Anatomy summary © 2016 Pearson Education, Inc. Figure 19.1f-h Anatomy summary Some nephrons dip deep into the medulla. One nephron has two arterioles and two sets of capillaries that form a portal system. Efferent arteriole Arterioles Peritubular Juxtaglomerular capillaries The cortex apparatus contains all Bowman’s Nephrons Afferent capsules, arteriole Glomerulus proximal Juxtamedullary nephron and distal (capillaries) with vasa recta tubules. Peritubular capillaries Glomerulus The medulla contains loops of Henle and Vasa recta collecting ducts. Collecting duct Loop of Henle © 2016 Pearson Education, Inc.
    [Show full text]
  • Urinary System
    OUTLINE 27.1 General Structure and Functions of the Urinary System 818 27.2 Kidneys 820 27 27.2a Gross and Sectional Anatomy of the Kidney 820 27.2b Blood Supply to the Kidney 821 27.2c Nephrons 824 27.2d How Tubular Fluid Becomes Urine 828 27.2e Juxtaglomerular Apparatus 828 Urinary 27.2f Innervation of the Kidney 828 27.3 Urinary Tract 829 27.3a Ureters 829 27.3b Urinary Bladder 830 System 27.3c Urethra 833 27.4 Aging and the Urinary System 834 27.5 Development of the Urinary System 835 27.5a Kidney and Ureter Development 835 27.5b Urinary Bladder and Urethra Development 835 MODULE 13: URINARY SYSTEM mck78097_ch27_817-841.indd 817 2/25/11 2:24 PM 818 Chapter Twenty-Seven Urinary System n the course of carrying out their specific functions, the cells Besides removing waste products from the bloodstream, the uri- I of all body systems produce waste products, and these waste nary system performs many other functions, including the following: products end up in the bloodstream. In this case, the bloodstream is ■ Storage of urine. Urine is produced continuously, but analogous to a river that supplies drinking water to a nearby town. it would be quite inconvenient if we were constantly The river water may become polluted with sediment, animal waste, excreting urine. The urinary bladder is an expandable, and motorboat fuel—but the town has a water treatment plant that muscular sac that can store as much as 1 liter of urine. removes these waste products and makes the water safe to drink.
    [Show full text]
  • The Urinary System Dr
    The urinary System Dr. Ali Ebneshahidi Functions of the Urinary System • Excretion – removal of waste material from the blood plasma and the disposal of this waste in the urine. • Elimination – removal of waste from other organ systems - from digestive system – undigested food, water, salt, ions, and drugs. + - from respiratory system – CO2,H , water, toxins. - from skin – water, NaCl, nitrogenous wastes (urea , uric acid, ammonia, creatinine). • Water balance -- kidney tubules regulate water reabsorption and urine concentration. • regulation of PH, volume, and composition of body fluids. • production of Erythropoietin for hematopoieseis, and renin for blood pressure regulation. Anatomy of the Urinary System Gross anatomy: • kidneys – a pair of bean – shaped organs located retroperitoneally, responsible for blood filtering and urine formation. • Renal capsule – a layer of fibrous connective tissue covering the kidneys. • Renal cortex – outer region of the kidneys where most nephrons is located. • Renal medulla – inner region of the kidneys where some nephrons is located, also where urine is collected to be excreted outward. • Renal calyx – duct – like sections of renal medulla for collecting urine from nephrons and direct urine into renal pelvis. • Renal pyramid – connective tissues in the renal medulla binding various structures together. • Renal pelvis – central urine collecting area of renal medulla. • Hilum (or hilus) – concave notch of kidneys where renal artery, renal vein, urethra, nerves, and lymphatic vessels converge. • Ureter – a tubule that transport urine (mainly by peristalsis) from the kidney to the urinary bladder. • Urinary bladder – a spherical storage organ that contains up to 400 ml of urine. • Urethra – a tubule that excretes urine out of the urinary bladder to the outside, through the urethral orifice.
    [Show full text]
  • Urinary System Functions
    Urinary System Functions • Major excretory pathway for wastes transported by blood – Filtration, secretion, and reabsorption by the kidney’s microscopic tubules – Includes wastes from metabolism, excess water and excess solutes, absorbed substances • Collection, transport, exit of urine – product of kidney’s function – Responsive to condition – Role in maintenance of blood volume and pressure • Urine release controlled by reflex actions • Regulation of hemopoesis Organs and Vessels of the Urinary System Hepatic veins (cut) Esophagus (cut) Inferior vena cava Renal artery Adrenal gland Renal hilum Aorta Renal vein Kidney Iliac crest Ureter - peristalsis Rectum (cut) Uterus (part of female reproductive system) Urinary bladder Urethra Figure 25.2 Dissection of urinary system organs (male). Kidney Renal artery Renal hilum Renal vein Ureter Urinary bladder Figure 25.3a Position of the kidneys against the posterior body wall. Three layers of supportive tissue surround kidney Renal fascia outer layer of dense fibrous connective tissue Perirenal fat capsule Fatty cushion Fibrous capsule Transparent capsule Anterior Inferior vena cava Aorta Peritoneum Peritoneal cavity (organs removed) Supportive Renal tissue layers vein • Renal fascia anterior Renal posterior artery • Perirenal fat capsule • Fibrous Body of capsule vertebra L2 Body wall Posterior Kidney Function Maintain the body’s internal environment by: – Regulating total water volume and total solute concentration in water – Regulating ion concentrations in ECF – Ensuring long-term acid-base
    [Show full text]
  • The Distal Convoluted Tubule and Collecting Duct
    Chapter 23 *Lecture PowerPoint The Urinary System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Urinary system rids the body of waste products. • The urinary system is closely associated with the reproductive system – Shared embryonic development and adult anatomical relationship – Collectively called the urogenital (UG) system 23-2 Functions of the Urinary System • Expected Learning Outcomes – Name and locate the organs of the urinary system. – List several functions of the kidneys in addition to urine formation. – Name the major nitrogenous wastes and identify their sources. – Define excretion and identify the systems that excrete wastes. 23-3 Functions of the Urinary System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Diaphragm 11th and 12th ribs Adrenal gland Renal artery Renal vein Kidney Vertebra L2 Aorta Inferior vena cava Ureter Urinary bladder Urethra Figure 23.1a,b (a) Anterior view (b) Posterior view • Urinary system consists of six organs: two kidneys, two ureters, urinary bladder, and urethra 23-4 Functions of the Kidneys • Filters blood plasma, separates waste from useful chemicals, returns useful substances to blood, eliminates wastes • Regulate blood volume and pressure by eliminating or conserving water • Regulate the osmolarity of the body fluids by controlling the relative amounts of water and solutes
    [Show full text]
  • URINARY SYSTEM Components
    Human Anatomy Unit 3 URINARY SYSTEM Components • Kidneys • Ureters • Urinary bladder • Urethra Funcons • Storage of urine – Bladder stores up to 1 L of urine • Excreon of urine – Transport of urine out of body • Regulaon: – Plasma pH – Blood volume/pressure – Plasma ion concentraons (Ca2+, Na+, K+, CL-) – Assist liver in detoxificaon, amino acid metabolism Kidney Gross Anatomy • Retroperitoneal – Anterior surface covered with peritoneum – Posterior surface directly against posterior abdominal wall • Superior surface at about T12 • Inferior surface at about L3 • Ureters enter urinary bladder posteriorly • LeT kidney 2cm superior to right – Size of liver Structure of the Kidney • Hilum = the depression along the medial border through which several structures pass – renal artery – renal vein – ureter – renal nerves Surrounding Tissue • Fibrous capsule – Innermost layer of dense irregular CT – Maintains shape, protec:on • Adipose capsule – Adipose ct of varying thickness – Cushioning and insulaon • Renal fascia – Dense irregular CT – Anchors kidney to peritoneum & abdominal wall • Paranephric fat – Outermost, adipose CT between renal fascia and peritoneum Frontal Sec:on of the Kidney • Cortex – Layer of renal :ssue in contact with capsule – Renal columns – parts of cortex that extend into the medulla between pyramids • Medulla – Striped due to renal tubules • Renal pyramids – 8-15 present in medulla of adult – Conical shape – Wide base at cor:comedullary juncon Flow of Filtrate/Urine • Collec:ng ducts – Collect from mul:ple nephrons • Minor calyx – Collect from each pyramid • Major calyx – Collect from minor calyx • Renal pelvis – Collects from calyces, passes onto • Ureter – Collects from pelvis • Urinary Bladder – Collects from ureters Histology Renal Cortex Renal Medulla Renal Tubules • Nephron – func:onal unit of the kidney.
    [Show full text]
  • Introduction to the Urinary System
    Tips for Success 1. Show up 2. Participate in lab 3. Show up 4. Turn in assignments (completed, refer to #6) 5. Show up 6. Communicate with me, e-mail is best 7. Show up Every point counts! Business Homework due in lab Label the handout provided today Front and back Use your book! There should be at least 18 items labeled Part 1 Urinary System Wastes Gases versus fluids Urinary system Dispose of water soluble wastes Electrolyte regulation Acid-base regulation Urinary System Other functions Kidneys Renin Erythropoietin Vitamin D activation Nitrogenous Wastes Urine is about 95% water Second largest component is urea Urea derived from breakdown of amino acids Nitrogenous Wastes TOXIC! + 1. Dietary amino acids → NH2 removed → NH2 + H → NH3 500 ml of urine removes only 1 gram of nitrogen as ammonia 2. Ammonia can be converted to urea Requires energy 50 ml of urine removes 1 gram of nitrogen as urea 3. Ammonia can be converted to uric acid Requires lots of energy 10 ml of urine removes 1 gram of nitrogen as uric acid Urinary System Organs Kidneys Major excretory organs Urinary bladder Temporary storage reservoir for urine Ureters Transport urine from the kidneys to the bladder Urethra Transports urine out of the body Hepatic veins (cut) Esophagus (cut) Inferior vena cava Renal artery Adrenal gland Renal hilum Aorta Renal vein Kidney Iliac crest Ureter Rectum (cut) Uterus (part of female reproductive Urinary system) bladder Urethra Figure 25.1 Kidney: Urinary System page 6 Anterior Inferior vena cava Peritoneal
    [Show full text]
  • Chapter 4 Central Nervous System and Sensory Organs
    Chapter 4 Central Nervous System and Sensory Organs © David G. Ward © David Dendrites of Neuron Showing Dendritic Spines (Brighteld, Silver, x1880) 79 Sensory and Motor Neurons Cell Body Synaptic Bulb Dendrite / Receptor Axon (Central Process) Axon (Peripheral Process) Figure 4.1: Unipolar neuron (sensory). © David G. Ward. Dendrites Dendrites Cell Body Axon Hillock Synaptic Bulb Dendrites Axon Figure 4.2: Multipolar neuron (motor). © David G. Ward. 80 Chapter 4: Central Nervous System and Sensory Organs Communication Between Neurons Cell Body Dendrites Axon Cell Body Enlargement Synaptic Axon Synaptic Bulb Hillock Vesicles Synaptic Bulb Presynaptic Axon Membrane Postsynaptic Membrane Dendrite Synaptic Cleft Figure 4.3: Synaptic communication. © David G. Ward. Synaptic Bulb* Axon Dendrite Dendrite Synaptic Bulb* Synaptic Bulb Nucleus Axon Synaptic Vessicles *The synaptic bulbs are from other neurons communicating with this neuron. Presynaptic Membrane Figure 4.4: Mutlipolar neuron. Figure 4.5: Synaptic bulb. © David G. Ward. © David G. Ward. Chapter 4: Central Nervous System and Sensory Organs 81 Motor Neurons, Glial and Schwann Cells Multipolar Neurons Glial Cells Figure 4.6: Spinal multipolar neurons. © David G. Ward. Node Node Schwann Cell Axon Endoneurium Axon Myelin Sheath Figure 4.7: Myelinated neuron. © David G. Ward. Axon Node Axon Schwann Cell Schwann Cell 400x+ Axon Schwann Cell / Myelin Sheath Figure 4.8: Schwann cell. © David G. Ward. 82 Chapter 4: Central Nervous System and Sensory Organs Nerve and Schwann Cells Fascicle Perineurium Epineurium Perineurium Epineurium Fascicle Figure 4.9: Nerve cell, histology. © David G. Ward. Epineurium Perineurium Endoneurium Axons Perineurium Perineurium Fascicle Figure 4.10: Nerve. Figure 4.11: Nerve fascicle.
    [Show full text]
  • Lecture (1) Urinary System
    UrinaryUrinaryUrinary systemsystemsystem Dr. Carmen E. Rexach Anatomy 35 Mt. San Antonio College Functions •Storage of urine – Bladder stores up to 1 L of urine • Excretion of urine – Transport of urine out of body • Blood volume regulation – Effects of hormones on kidneys • Regulation of erythrocyte production –Kidneys • Monitor oxygen content of blood • Produce EPO = erthrocyte production Components •Kidneys • Ureters • Urinary Bladder • Urethra Kidneys Gross Anatomy • Kidneys approx weight = 125- 150g each • Retroperitoneal – Anterior surface covered with peritoneum – Posterior surface directly against posterior abdominal wall • Superior surface at about T12 • Inferior surface at about L3 • ureters enter urinary bladder posteriorly • Left kidney 2cm superior to right –Size of liver Transverse section at L1 surface features of kidney • Hilum = the depression along the medial border through which several structures pass –renal artery –renal vein –ureter – renal nerves Surrounding structures • Fibrous capsule – Innermost layer of dense irregular CT – Maintains shape, protection • Adipose capsule (perinephric fat) – Adipose ct of varying thickness – Cushioning and insulation • Renal fascia – Dense irregular CT – Anchors kidney to peritoneum & abdominal wall • Paranephric fat – Outermost, adipose CT between renal fascia and peritoneum Coronal section •Cortex – layer of renal tissue in contact with capsule –Lighter shade –Renal columns= parts of cortex that extend into the medulla between pyramids •Medulla –Innermost – striped due to renal tubules •renal pyramids – 8-15 present in medulla of adult – conical shape – Wide base at corticomedullary junction Coronal section • Renal pelvis – collects from calyces, passes onto ureter •Calyces (pl) – funnel shaped regions – collect urine into pelvis •Minor calyx (s) – in contact with each pyramid •Major calyx (s) – collect from minor Microscopic Anatomy Microscopic anatomy Renal tubules • Nephron – functional unit of the kidney.
    [Show full text]
  • Juxtamedullary Afferent and Efferent Arterioles Constrict to Renal Nerve Stimulation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 44 (1993), pp. 684—691 Juxtamedullary afferent and efferent arterioles constrict to renal nerve stimulation JING CHEN and JOHN T. FLEMING Department of Physiology and Biophysics, School of Medicine, University of Louisville, and Center for Applied Microcirculatory Research, Louisville, Kentucky, USA Juxtamedullary afferent and efferent arterioles constrict to renal nerve preferential preglomerular action may not be applicable to the stimulation. Sympathetic neural control of afferent and efferent arteri- arterioles of inner cortical (juxtamedullary) glomeruli. oles of inner cortical (juxtamedullary) glomeruli has not been estab- lished, in part, because of difficulty accessing these vessels, normally A reduction of medullary blood flow during renal nerve located deep below the kidney surface. In this study we utilized the rat stimulation [15] confirms the histological evidence for innerva- hydronephrotic kidney model to visualize the renal microcirculation tion of vessels in the inner cortex [2, 3, 12, 14, 20]. However, and to quantitate the responses ofjuxtamedullary arterioles to brief (30 these data do not provide evidence for the relative response of see) renal nerve stimulation (RNS). Juxtamedullary afferent and effer- ent arterioles constricted in a frequency-dependent fashion to RNS, the pre- versus postglomerular vessels to nerve stimulation. achieving a maximal constriction of 35% to 8 Hz stimulation. In these According to Gorgas [14], the juxtamedullary efferent arterioles same kidneys, outer cortical afferent arterioles also constricted to RNS are surrounded by a denser nerve plexus than cortical efferent but outer cortical efferent arterioles did not.
    [Show full text]