Chapter 16 Bridge Replacement Outline Design of Selected Bridges
Total Page:16
File Type:pdf, Size:1020Kb
CHAPTER 16 BRIDGE REPLACEMENT OUTLINE DESIGN OF SELECTED BRIDGES 16.1 Design Criteria and Conditions for Bridge Replacement 16.1.1 Design Criteria and Conditions for Bridge Replacement The following items show design criteria and conditions utilized for outline design of new bridges. (1) Design Standards utilized for Outline Design of New Bridges The Design standards utilized for outline design of new bridges shall be given as follows: Table 16.1.1-1 Design Standards Utilized for Outline Design of New Bridges Item Design Condition Specification 1) General Design Load Combination LV2 Seismic Design: Extreme Event I LRFD (2012) Seismic Design Design Spectrum (1,000year) JICA Study Team Response Spectrum Analysis JICA Study Team 2) Superstructure 3350 mm (Pack and Guadalupe) Design Lane Width DPWH, AASHTO 3000 mm (Lambingan) Dead Load LRFD (2012) Live Load HL-93 and Lane Loads LRFD (2012) 3) Substructure Seismic Earth Pressure LRFD(2012) Column Section Design R-factor method LRFD(2012) 4) Foundation Pile Foundation Analysis JICA Study Team (JRA) Soil Type JICA Study Team (JRA) Liquefaction design JICA Study Team (JRA) Pile Bearing L1: FS=2, L2: FS=1 JICA Study Team (JRA) Pile Section Design M-N chart (=1.0) LRFD(2012) 16-1 (2) Load Factors and Combination The outline design calculation shall be carried out based on LRFD methodology given in AASHTO LRFD 2012 as follows: 1) Loads Table 16.1.1-2 Permanent and Transient Loads Permanent Loads DD = Down drag DC = Dead load of structural components and nonstructural attachment DW = Dead load of wearing surfaces and utilities EH = Horizontal earth pressure load EL = Accumulated locked-in force effects resulting from the construction process, including the secondary forces from post-tensioning ES = Earth surcharge load EV = Vertical pressure from dead load of earth fill Transient Loads BR = Vehicular braking force CE = Vehicular centrifugal force CR = Creep CT = Vehicular collision force CV = Vessel collision force EQ = Earthquake FR = Friction IM = Vehicular dynamic load allowance LL = Vehicular live load LS = Live load surcharge PL = Pedestrian live load SE = Settlement SH = Shrinkage TG = Temperature gradient TL = Train Load TU = Uniform temperature WA = Water load and stream pressure WL = Wind on live load WS = Wind load on structure Source: LRFD 2012 2) Load Factors and Combination Table 16.1.1-3 Load Combinations and Factors Load DC LL TL WA WS WL FR TU TG SE Use One of These Combination DW IM CR At a Time EH CE SH EV BR Limit State ES PL EQ CT CV LS EL Extreme γ 0.50 0.50 1.00 - - 1.00 - - - 1.00 - - Event I p Source: LRFD 2012 16-2 Table 16.1.1-4 Load Factors for Permanent Loads, γp Type of Load Load Factor Maximum Minimum DC : Component and Attachments 1.25 0.90 DW : Wearing Surfaces and Utilities 1.50 0.65 EH : Horizontal Earth Pressure Active 1.50 0.90 At Rest 1.35 0.90 EL : Locked-in Erection Stress 1.00 1.00 EV : Vertical Earth Pressure Overall Stability 1.00 N/A Retaining Structures 1.35 1.00 Rigid Buried Structures 1.30 0.90 Rigid Frames 1.35 0.90 ES : Earth Surcharge 1.50 0.75 Source: LRFD 2012 16-3 (3) Design Spectrum The design spectrum utilized for modal analysis and response spectrum analysis shall be as following figure and table, evaluated in this project. Ss= 0.38 Site-Specfic Design Spectrum = 0.93 (0.38<T<0.55) 5% Damped = 0.51/T (0.55<T) Csm Mawo Br. at A1(1000-Year) Guadarupe Br. at B2(1000-year) Wawa Br. at A1(1000-year) Lambingan Br. at A1(1000-year) Palanit Br. at A1(1000-year) 0.010.0 0.10 1.000.1 10.00 1.0 10.0 Tm(sec) Soil Type & Response Coefficement Soil Profile Type Guadarupe Br. Mawo Br. at A1Wawa Br. at A1 Lambingan Br. Palanit Br. at B2 at A1at A1 at A1 & B1 at A1 T(sec) Cs(g) T(sec) Cs(g) T(sec) Cs(g) T(sec) Cs(g) T(sec) Cs(g) 0.010 0.380 0.010 0.380 0.010 0.380 0.010 0.380 0.010 0.630 0.120 0.920 0.200 0.820 0.150 0.880 0.110 0.920 0.070 1.570 0.120 0.920 0.200 0.820 0.150 0.880 0.110 0.920 0.070 1.570 0.590 0.920 1.120 0.820 0.730 0.880 0.560 0.920 0.340 1.570 0.590 0.915 1.120 0.820 0.730 0.877 0.560 0.911 0.340 1.559 0.610 0.885 1.200 0.767 0.750 0.853 0.600 0.850 0.600 0.883 0.700 0.771 3.000 0.307 0.800 0.800 0.700 0.729 0.700 0.757 0.810 0.667 4.000 0.230 0.850 0.753 0.800 0.638 0.800 0.663 0.900 0.600 5.000 0.184 0.900 0.711 0.900 0.567 0.900 0.589 1.000 0.540 6.000 0.153 1.000 0.640 1.000 0.510 1.000 0.530 2.000 0.270 7.000 0.131 2.000 0.320 2.000 0.255 2.000 0.265 3.000 0.180 8.000 0.115 3.000 0.213 3.000 0.170 3.000 0.177 4.000 0.135 9.000 0.102 4.000 0.160 4.000 0.128 4.000 0.133 5.000 0.108 10.000 0.092 5.000 0.128 5.000 0.102 5.000 0.106 6.000 0.090 0.000 0.000 6.000 0.107 6.000 0.085 6.000 0.088 7.000 0.077 0.000 0.000 7.000 0.091 7.000 0.073 7.000 0.076 8.000 0.068 0.000 0.000 8.000 0.080 8.000 0.064 8.000 0.066 9.000 0.060 0.000 0.000 9.000 0.071 9.000 0.057 9.000 0.059 10.000 0.054 0.000 0.000 10.000 0.064 10.000 0.051 10.000 0.053 Figure 16.1.1-1 Design Spectrum for New Bridge Design 16-4 (4) Materials The material properties for concrete, reinforcing bar, PC cable, piles and steel structure mainly utilized for steel deck superstructures shall be given as follows: 1) Concrete Table 16.1.1-5 Concrete Strength by Structural Member Compressive Strength at 28 days (MPa) Structural Member (Cylinder Specimen) Post-tensioned PC I-Girder 40 Cast-in-situ PC Slab/Girder Cast-in-situ PC Slab 35 Cast-in-situ PC Crossbeam Substructure (Pier, Abutment, Pile Caps, Wing wall) Retaining Wall, Box Culvert 28 Precast Reinforced Concrete Plate Precast Parapet 21 Approach Slab 28 Cast-in-situ Bored Pile Non-reinforced Concrete Structure 18 Lean Concrete Source: DPWH 2) Reinforcing Bar Table 16.1.1-6 Properties and Stress Limit of Reinforcing Bars Yield Strength f y Tensile Strength f u Modulus of Elasticity Diameter of Bar Type (MPa) (MPa) (MPa) (mm) Grade 275 275 500 200,000 D10, D12, D16,D20 Grade 415 414 620 200,000 D25,D28,D32,D36 Source: DPWH 3) PC Cable Table 16.1.1-7 Properties and Stress Limit of PC Cable for T girder bridge Min. Ultimate Strength Temporary Stress Stress at Service Load (MPa) Before Loss due to Creep After Losses =0.7fs' and Shrinkage = 0.8fs' Grade 270 1862 1488 1300 Source: AASHTO Table 16.1.1-8 Properties and Stress Limit of PC Cable for PC Box Girder bridge Diameter Tensile Strength Modulus of Elasticity (mm) (kN) (MPa) 12S15.2mm (SWPR7BL) 15.2mm 3130 200,000 Source: JIS 16-5 4) Steel Pipe Pile Table 16.1.1-9 Properties and Stress Limit of Steel Pipe Yield Strength f y Tensile Strength f u Modulus of Elasticity Type (MPa) (MPa) (MPa) Grade SKK 400 235 400 200,000 Grade SKK 490 315 490 200,000 Source: JIS 5) Steel Pipe Sheet Pile Table 16.1.1-10 Properties and Stress Limit of Steel Pipe for Steel Pipe Sheet Pile Yield Strength f y Tensile Strength f u Modulus of Elasticity Type (MPa) (MPa) (Mpa) Grade SKY 400 235 400 200,000 Grade SKY 490 315 490 200,000 Source: JIS 6) Steel members for superstructure Table 16.1.1-11 Properties and Stress Limit of Steel Members Yield Strength f y Tensile Strength f u Modulus of Elasticity Type (MPa) (MPa) (MPa) 450 t < 40mm SM570 430 40mm < t < 75mm 570 200,000 420 75mm < t < 100mm 355 t < 40mm SM490W 335 40mm < t < 75mm 490 200,000 325 75mm < t < 100mm 235 t < 40mm SM400AW 400 200,000 215 40mm < t < 100mm 355 t < 40mm SM490Y 335 40mm < t < 75mm 490 200,000 325 75mm < t < 100mm 235 t < 40mm SS400 400 200,000 215 40mm < t < 100mm Source: JIS 16-6 16.1.2 Determination of New Bridge Types for Outline Design Bridge types to be conducted in the outline design are determined based on comparison study considering multiple elements such as costs, structure advantage, constructability, environmental impact and maintenance ability. The following flowchart shows the basic procedure of the comparison study for selection of new bridge types. STEP 1. Confirmation of ROAD CONDITION - Cross Section of Bridge, Lane Arrangement - Road Horizontal and Vertical Alignment STEP 2.