49 CFR Ch. I (10–1–11 Edition)

Total Page:16

File Type:pdf, Size:1020Kb

49 CFR Ch. I (10–1–11 Edition) § 173.193 49 CFR Ch. I (10–1–11 Edition) examinations must be made to note leakage or permanent distortion. any escape of gas. The valve of the cyl- Vapor pressure of the contents must inder may not be loosened after this not exceed 140 psig at 55 °C (130 °F). test. Suitable safeguards must be pro- Cans must not be liquid full at 130 °F. vided to protect personnel and facili- Cans must be constructed of tinplate or ties should failure occur during the lined with suitable material and must test. As an alternative, each cylinder have concave or pressure ends. containing phosgene may be tested for (d) Cylinders, except those con- leakage by a method approved in writ- taining methyl bromide, must conform ing by the Associate Administrator. to § 173.40 of this part. [67 FR 51643, Aug. 8, 2002, as amended at 71 [Amdt. 173–224, 55 FR 52643, Dec. 21, 1990, as FR 33880, June 12, 2006] amended at 56 FR 66271, Dec. 20, 1991; 57 FR 45463, Oct. 1, 1992] § 173.193 Bromoacetone, methyl bro- mide, chloropicrin and methyl bro- § 173.194 Gas identification sets. mide or methyl chloride mixtures, Gas identification sets containing etc. poisonous material must be packaged (a) Bromoacetone must be packaged in packagings conforming to the re- as follows in wooden boxes (4C1, 4C2, 4D quirements of part 178 of this sub- or 4F) with inner glass receptacles or chapter at the Packing Group I per- tubes in hermetically sealed metal re- formance level, as follows: ceptacles in corrugated fiberboard car- (a) In glass inner receptacles, her- tons. Bottles may not contain over 500 metically sealed, of not over 40 mL (1.4 g (17.6 ounces) of liquid each and must fluid ounces) each. Each glass inner re- be cushioned in cans with at least 12.7 ceptacle must in turn be placed in a mm (0.5 inch) of absorbent material. sealed fiberboard receptacle, cushioned Total amount of liquid in the outer box with absorbent material. Not more must not exceed 11 kg (24 pounds). than 12 fiberboard receptacles must in Packagings must conform to the re- turn be placed in a 4G fiberboard box. quirements of part 178 of this sub- No more than four boxes, well-cush- chapter at the Packing Group I per- ioned, may in turn be placed in a steel formance level. cylinder. The cylinder must have a (b) Bromoacetone, methyl bromide, wall thickness of at least 3.7 mm (0.146 chloropicrin and methyl bromide mix- inch) and must have a hermetically tures, chloropicrin and methyl chloride sealed steel closure. mixtures, and chloropicrin mixtures (b) When the poisonous material is charged with non-flammable, non-liq- absorbed in a medium such as acti- uefied compressed gas must be packed vated charcoal or silical gel, gas identi- in Specification 3A, 3AA, 3B, 3C, 3E, 4A, fication sets may be shipped as follows: 4B, 4BA, 4BW, or 4C cylinders having (1) If the poisonous material does not not over 113 kg (250 pounds) water ca- exceed 5 mL (0.2 fluid ounce) if a liquid pacity (nominal). This capacity does or 5 g (0.2 ounce) if a solid, it may be not apply to shipments of methyl bro- packed in glass inner receptacles of not mide. over 120 mL (4.1 fluid ounces) each. (c) Methyl bromide mixtures con- Each glass receptacle, cushioned with taining up to 2% chloropicrin must be absorbent material must be packed in a packaged in 4G fiberboard boxes with hermetically sealed metal can of not inside metal cans containing not over less than 0.30 mm (0.012 inch) wall one pound each, or inside metal cans thickness. Metal cans, surrounded on with a minimum wall thickness of 0.007 all sides by at least 25 mm (1 inch) of inch containing not over 13⁄4 pounds dry sawdust, must be packed in 4C1, each. The one-pound can must be capa- 4C2, 4D or 4F wooden boxes. Not more ble of withstanding an internal pres- than 100 mL (3.4 fluid ounces) or 100 g sure of 130 psig without leakage or per- (3.5 ounces) of poisonous materials may manent distortion. Vapor pressure of be packed in one outer wooden box. the contents must not exceed 130 psig (2) If the poisonous material does not at 55 °C (130 °F). The 13⁄4–pound can exceed 5 mL (0.2 fluid ounce) if a liquid must be capable of withstanding an in- or 20 g (0.7 ounce) if a solid, it may be ternal pressure of 140 psig without packed in glass inner receptacles with 570 VerDate Mar<15>2010 13:51 Nov 28, 2011 Jkt 223215 PO 00000 Frm 00580 Fmt 8010 Sfmt 8010 Q:\49\49V2.TXT ofr150 PsN: PC150 Pipeline and Hazardous Materials Safety Admin., DOT § 173.196 screw-top closures of not less than 60 § 173.196 Category A infectious sub- mL (2 ounces), hermetically sealed. stances. Twelve bottles containing poisonous (a) Category A infectious substances material, not to exceed 100 mL (3.4 packaging. A packaging for a Division ounces) or 100 g (3.5 ounces), or both, 6.2 material that is a Category A infec- may be placed in a plastic carrying tious substance must meet the test case, each glass receptacle surrounded standards of § 178.609 of this subchapter by absorbent cushioning and each sepa- and must be marked in conformance rated from the other by sponge rubber with § 178.503(f) of this subchapter. A partitions. The plastic carrying case packaging for a Category A infectious must be placed in a tightly fitting fi- substance is a triple packaging con- berboard box which in turn must be sisting of the following components: placed in a tightly fitting 4C1, 4C2, 4D (1) A leakproof primary receptacle. or 4F wooden box. (2) A leakproof secondary packaging. If multiple fragile primary receptacles [Amdt. 173–224, 55 FR 52643, Dec. 21, 1990, as are placed in a single secondary pack- amended at 66 FR 45183, 45381, Aug. 28, 2001] aging, they must be either wrapped in- dividually or separated to prevent con- § 173.195 Hydrogen cyanide, anhy- drous, stabilized (hydrocyanic acid, tact between them. aqueous solution). (3) A rigid outer packaging of ade- quate strength for its capacity, mass (a) Hydrogen cyanide, anhydrous, and intended use. The outer packaging stabilized, must be packed in specifica- must measure not less than 100 mm (3.9 tion cylinders or UN pressure recep- inches) at its smallest overall external tacles as follows: dimension. (1) As prescribed in § 173.192; (4) For a liquid infectious substance, (2) Specification 3A480, 3A480X, an absorbent material placed between 3AA480, or 3A1800 metal cylinders of the primary receptacle and the sec- not over 126 kg (278 pounds) water ca- ondary packaging. The absorbent ma- pacity (nominal); terial must be sufficient to absorb the (3) Shipments in 3AL cylinders are entire contents of all primary recep- authorized only when transported by tacles. highway and rail; or (5) An itemized list of contents en- (4) UN cylinders, as specified in part closed between the secondary pack- 178, with a minimum test pressure of aging and the outer packaging. 100 bar and a maximum filling ratio of (6) The primary receptacle or sec- 0.55. The use of UN tubes and MEGCs is ondary packaging used for infectious not authorized. substances must be capable of with- (b) Cylinders may not be charged standing, without leakage, an internal with more than 0.27 kg (0.6 pound) of pressure producing a pressure differen- liquid per 0.45 kg (1 pound) water ca- tial of not less than 95 kPa (0.95 bar, 14 pacity of cylinder. Each filled cylinder psi). must be tested for leakage before being (7) The primary receptacle or sec- offered for transportation or trans- ondary packaging used for infectious ported and must show absolutely no substances must be capable of with- leakage; this test must consist of pass- standing without leakage temperatures in the range of ¥40 °C to +55 °C (¥40 °F ing a piece of Guignard’s sodium pic- to +131 °F). rate paper over the closure of the cyl- (b) Additional requirements for pack- inder, without the protection cap at- aging Category A infectious substances. tached, to detect any escape of hydro- Category A infectious substances must gen cyanide from the cylinder. Other be packaged according to the following equally efficient test methods may be requirements, depending on the phys- used in place of sodium picrate paper. ical state and other characteristics of (c) Packagings for hydrogen cyanide the material. must conform to § 173.40. (1) Infectious substances shipped at am- [Amdt. 173–224, 55 FR 52643, Dec. 21, 1990, as bient temperatures or higher. Primary re- amended at 56 FR 66271, Dec. 20, 1991; 71 FR ceptacles must be made of glass, metal, 33880, June 12, 2006] or plastic. Positive means of ensuring a 571 VerDate Mar<15>2010 13:51 Nov 28, 2011 Jkt 223215 PO 00000 Frm 00581 Fmt 8010 Sfmt 8010 Q:\49\49V2.TXT ofr150 PsN: PC150.
Recommended publications
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • Measurement Technique for the Determination of Photolyzable
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D13, PAGES 15,999-16,004,JULY 20, 1997 Measurement techniquefor the determination of photolyzable chlorine and bromine in the atmosphere G. A. Impey,P. B. Shepson,• D. R. Hastie,L. A. Bartie• Departmentof Chemistryand Centre for AtmosphericChemistry, York University,Toronto, Ontario, Canada Abstract. A techniquehas been developed to enablemeasurement of photolyzablechlorine and bromineat tracelevels in the troposphere.In thismethod, ambient air is drawnt•ough a cylindricalflow cell, whichis irradiatedwith a Xe arc lamp. In the reactionvessel of the photoactivehalogen detector (PHD), photolyrically active molecules Clp (including C12, HOC1, C1NO,C1NO2, and C1ONO2) and Brp (including Br2, HOBr, BrNO, BrNO2, and BrONO2) are photolyzed,and the halogenatoms produced react with properieto form stablehalogenated products.These products are thensampled and subsequently separated and detected by gas chromatography.The systemis calibratedusing low concentrationmixtures of C12and Br2 in air from commerciallyavailable permeation sources. We obtaineddetection limits of 4 pptv and 9 pptv as Br2 andC12, respectively, for 36 L samples. 1. Introduction (or C12)in the Arctic, largely as a result of the lack of suitable analyticalmethodologies. This paperreports the developmentof The episodicdestruction of groundlevel ozonein the Arctic at a measurementtechnique for the determinationof rapidly sunriseis a phenomenonthat hasbeen observed for many years. photolyzingchlorine (referred to hereas Clp) and bromine (Brp) With the onsetof polar sunrise,ozone levels are often observed speciesat pansper trillion by volume(pptv) mixingratios in the to drop from a backgroundconcentration of •40 ppbv to almost atmosphere.Impey et al. [this issue]discuss the resultsobserved zero on a timescaleof a day or less [Barrie et al., 1988] for from a field studyconducted in the Canadianhigh Arctic at Alert, periodsof 1-10 days.
    [Show full text]
  • Acutely Hazardous Waste List
    ACUTELY HAZARDOUS WASTE P011 1303–28–2 Arsenic pentoxide P012 1327–53–3 Arsenic trioxide The following materials, when a waste, are specifically listed in P038 692–42–2 Arsine, diethyl- 40 CFR 261.33 as Acutely Hazardous Wastes, when they are the only active ingredient, and are unused/unaltered. Also, P036 696–28–6 Arsonous dichloride, phenyl- certain solvent mixtures (of at least 10%) containing dioxin are P054 151–56–4 Aziridine Acutely hazardous wastes. P067 75–55–8 Aziridine, 2-methyl- P013 542–62–1 Barium cyanide The primary hazardous property(ies) of these materials are P024 106–47–8 Benzenamine, 4-chloro- indicated by the letters T (Toxicity), R (Reactivity), I (Ignitability) and C (Corrosivity). Absence of a letter indicates that the P077 100–01–6 Benzenamine, 4-nitro- compound is only listed for toxicity. P028 100–44–7 Benzene, (chloromethyl)- 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51–43–4 The list was last updated on 10/30/08. (R)- P046 122–09–8 Benzeneethanamine, alpha,alpha-dimethyl- Haz P014 108–98–5 Benzenethiol waste CAS Material 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-, No. P127 1563–66–2 methylcarbamate. P023 107–20–0 Acetaldehyde, chloro- Benzoic acid, 2-hydroxy-, compd. with (3aS-cis)- P002 591–08–2 Acetamide, N-(aminothioxomethyl)- P188 57–64–7 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethylpyrrolo[2,3- P057 640–19–7 Acetamide, 2-fluoro- b]indol-5-yl methylcarbamate ester (1:1). P058 62–74–8 Acetic acid, fluoro-, sodium salt 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1- 1 P002 591–08–2 1-Acetyl-2-thiourea P001 81–81–2 phenylbutyl)-, & salts, when present at concentrations greater than 0.3% P003 107–02–8 Acrolein P028 100–44–7 Benzyl chloride P070 116–06–3 Aldicarb P015 7440–41–7 Beryllium powder P203 1646–88–4 Aldicarb sulfone.
    [Show full text]
  • Chemical Warfare Agents
    Manuscript for Kirk-Othmer Encyclopedia of Chemical Technology August 2019 CHEMICAL WARFARE AGENTS This is the pre-print manuscript of an article published in the Kirk-Othmer Encyclopedia of Chemical Technology: https://onlinelibrary.wiley.com/doi/book/10.1002/0471238961 The published version of the article is available at the Wiley website: https://onlinelibrary.wiley.com/doi/10.1002/0471238961.0308051308011818.a01.pub3 How to cite: Costanzi, S. (2020). Chemical Warfare Agents. In Kirk‐Othmer Encyclopedia of Chemical Technology, (Ed.). doi:10.1002/0471238961.0308051308011818.a01.pub3 Stefano Costanzi Department of Chemistry and Center for Behavioral Neuroscience American University, Washington, D.C. [email protected] Chemical weapons are weapons that exploit the toxicity of chemicals to bring about death or harm. The toxic chemicals on which chemical weapons are based are known as chemical warfare agents. The elimination of this entire category of weapons is the aim of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction, also known as Chemical Weapons Convention or CWC, which was opened for signature in 1993 and entered into force in 1997. Administered and implemented by the Hague- based Organisation for the Prohibition of Chemical Weapons (OPCW), the CWC is an international treaty that enjoys almost universal embracement, having been ratified or acceded by 193 States Parties. Importantly, the CWC poses a complete and absolute ban on chemical weapons, mandating State Parties to renounce “(a) to develop, produce, otherwise acquire, stockpile or retain chemical weapons, or transfer, directly or indirectly, chemical weapons to anyone; (b) to use chemical weapons; (c) to engage in any military preparations to use chemical weapons; (d) to assist, encourage or induce, in any way, anyone to engage in any activity prohibited to a State Party” under the Convention (CWC Article II, Paragraph 1) (1-3).
    [Show full text]
  • Table of Water-Reactive Materials Which Produce Toxic Gases
    TABLE OF WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASES Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) Gas(es) When Spilled in Water ID Guide TIH Gas(es) No. No. Name of Material Produced 1162 155 Dimethyldichlorosilane HCl 1196 155 Ethyltrichlorosilane HCl 1242 139 Methyldichlorosilane HCl 1250 155 Methyltrichlorosilane HCl 1295 139 Trichlorosilane HCl 1298 155 Trimethylchlorosilane HCl 1305 155P Vinyltrichlorosilane HCl 1305 155P Vinyltrichlorosilane, inhibited HCl 1305 155P Vinyltrichlorosilane, stabilized HCl 1340 139 Phosphorus pentasulfide, free from yellow and white Phosphorus H2S 1340 139 Phosphorus pentasulphide, free from yellow and white Phosphorus H2S 1360 139 Calcium phosphide PH3 1384 135 Sodium dithionite H 2SSO2 1384 135 Sodium hydrosulfite H2SSO2 1384 135 Sodium hydrosulphite H2SSO2 1397 139 Aluminum phosphide PH3 1412 139 Lithium amide NH 3 1419 139 Magnesium aluminum phosphide PH3 1432 139 Sodium phosphide PH3 1541 155 Acetone cyanohydrin, stabilized HCN 1680 157 Potassium cyanide HCN 1680 157 Potassium cyanide, solid HCN 1689 157 Sodium cyanide HCN 1689 157 Sodium cyanide, solid HCN Chemical Symbols for TIH Gases: Br2 Bromine HF Hydrogen fluoride PH3 Phosphine Cl2 Chlorine HI Hydrogen iodide SO2 Sulfur dioxide HBr Hydrogen bromide H2S Hydrogen sulfide SO2 Sulphur dioxide SO Sulfur trioxide HCl Hydrogen chloride H2S Hydrogen sulphide 3 SO Sulphur trioxide HCN Hydrogen cyanide NH3 Ammonia 3 Page 344 Use this list only when material is spilled in water. TABLE OF INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES Page 306 SMALL SPILLS LARGE SPILLS (From a small package or small leak from a large package) (From a large package or from many small packages) First Then First Then ISOLATE PROTECT ISOLATE PROTECT in all Directions persons Downwind during- in all Directions persons Downwind during- ID DAY NIGHT DAY NIGHT No.
    [Show full text]
  • SUMMARY of PARTICULARLY HAZARDOUS SUBSTANCES (By
    SUMMARY OF PARTICULARLY HAZARDOUS SUBSTANCES (by alpha) Key: SC -- Select Carcinogens RT -- Reproductive Toxins AT -- Acute Toxins SA -- Readily Absorbed Through the Skin DHS -- Chemicals of Interest Revised: 11/2012 ________________________________________________________ ___________ _ _ _ _ _ _ _ _ _ _ _ ||| | | | CHEMICAL NAME CAS # |SC|RT| AT | SA |DHS| ________________________________________________________ ___________ | _ | _ | _ | _ | __ | | | | | | | 2,4,5-T 000093-76-5 | | x | | x | | ABRIN 001393-62-0 | | | x | | | ACETALDEHYDE 000075-07-0 | x | | | | | ACETAMIDE 000060-35-5 | x | | | | | ACETOHYDROXAMIC ACID 000546-88-3 ||x| | x | | ACETONE CYANOHYDRIN, STABILIZED 000075-86-5 | | | x | | x | ACETYLAMINOFLUORENE,2- 000053-96-3 | x | | | | | ACID MIST, STRONG INORGANIC 000000-00-0 | x | | | | | ACROLEIN 000107-02-8 | | x | x | x | | ACRYLAMIDE 000079-06-1 | x | x | | x | | ACRYLONITRILE 000107-13-1 | x | x | x | x | | ACTINOMYCIN D 000050-76-0 ||x| | x | | ADIPONITRILE 000111-69-3 | | | x | | | ADRIAMYCIN 023214-92-8 | x | | | | | AFLATOXIN B1 001162-65-8 | x | | | | | AFLATOXIN M1 006795-23-9 | x | | | | | AFLATOXINS 001402-68-2 | x | | x | | | ALL-TRANS RETINOIC ACID 000302-79-4 | | x | | x | | ALPRAZOMAN 028981-97-7 | | x | | x | | ALUMINUM PHOSPHIDE 020859-73-8 | | | x | | x | AMANTADINE HYDROCHLORIDE 000665-66-7 | | x | | x | | AMINO-2,4-DIBROMOANTHRAQUINONE 000081-49-2 | x | | | | | AMINO-2-METHYLANTHRAQUINONE, 1- 000082-28-0 | x | | | | | AMINO-3,4-DIMETHYL-3h-IMIDAZO(4,5f)QUINOLINE,2- 077094-11-2 | x | | | | | AMINO-3,8-DIMETHYL-3H-IMIDAZO(4,5-f)QUINOXALINE,
    [Show full text]
  • Historical Analysis of Chemical Warfare in World War I for Understanding the Impact of Science and Technology
    Historical Analysis of Chemical Warfare in World War I for Understanding the Impact of Science and Technology An Interactive Qualifying Project submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the Degree of Bachelor of Science By Cory Houghton John E. Hughes Adam Kaminski Matthew Kaminski Date: 2 March 2019 Report Submitted to: David I. Spanagel Worcester Polytechnic Institute This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI see http://www.wpi.edu/Academics/Projects ii Acknowledgements Our project team would like to express our appreciation to the following people assisted us with our project: ● Professor David Spanagel, our project advisor, for agreeing to advise our IQP and for helping us throughout the whole process. ● Amy Lawton, Head of the Access Services at Gordon Library, for helping us set up and plan our exhibit at Gordon Library. ● Arthur Carlson, Assistant Director of the Gordon Library, for helping us set up and plan our exhibit as well as helping us with archival research. ● Jake Sullivan, for helping us proofread and edit our main research document. ● Justin Amevor, for helping us to setup and advertise the exhibit. iii Abstract Historians categorize eras of human civilization by the technologies those civilizations possessed, and so science and technology have always been hand in hand with progress and evolution. Our group investigated chemical weapon use in the First World War because we viewed the event as the inevitable result of technology outpacing contemporary understanding.
    [Show full text]
  • Utilization of Various Analogy of Synthetic Nanoporous Zeolites and Composite of Zeolites for Decontamination/Detoxification of CWA Simulants—An Updated Review
    International Journal of Nonferrous Metallurgy, 2019, 8, 35-71 https://www.scirp.org/journal/ijnm ISSN Online: 2168-2062 ISSN Print: 2168-2054 Utilization of Various Analogy of Synthetic Nanoporous Zeolites and Composite of Zeolites for Decontamination/Detoxification of CWA Simulants—An Updated Review Neeraj Kumar*, Kautily Rao Tiwari, Km. Meenu, Arti Sharma, Adya Jain, Shikha Singh, Radha Tomar School of Studies in Chemistry, Jiwaji University, Gwalior, India How to cite this paper: Kumar, N., Tiwari, Abstract K.R., Meenu, Km., Sharma, A., Jain, A., Singh, S. and Tomar, R. (2019) Utilization In this review, we summaries the past few year work on the chemistry of of Various Analogy of Synthetic Nanopor- CWA’s and their simulants on various heterogeneous surfaces of zeolites, ous Zeolites and Composite of Zeolites for composites of zeolites and doped zeolite with transition metal oxides. This Decontamination/Detoxification of CWA Simulants—An Updated Review. Interna- review elaborates an updated literature overview on the degradation of tional Journal of Nonferrous Metallurgy, 8, CWA’s and its simulants. The data written in this review were collected from 35-71. the peer-reviewed national and international literature. https://doi.org/10.4236/ijnm.2019.84004 Keywords Received: May 4, 2019 Accepted: October 27, 2019 Zeolite, Composites, Adsorption, Decontamination, Metal Oxide, CWA, Published: October 30, 2019 Simulants Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International 1. Introduction License (CC BY 4.0). 1.1. Zeolites http://creativecommons.org/licenses/by/4.0/ Open Access Zeolites were first of all observed in 1756 by a Swedish mineralogist, Fredish Cronstedt.
    [Show full text]
  • And Bromoacetone in Salt Lakes of Western Australia
    atmosphere Article Natural Formation of Chloro- and Bromoacetone in Salt Lakes of Western Australia Tobias Sattler 1,2,*, Matthias Sörgel 2,3, Julian Wittmer 4, Efstratios Bourtsoukidis 2, Torsten Krause 1, Elliot Atlas 5 , Simon Benk 1,6, Sergej Bleicher 4, Katharina Kamilli 4, Johannes Ofner 4, Raimo Kopetzky 3,7, Andreas Held 4,8,9, Wolf-Ulrich Palm 3 , Jonathan Williams 2, Cornelius Zetzsch 2,4,9 and Heinz-Friedrich Schöler 1 1 Institute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (T.K.); [email protected] (S.B.); [email protected] (H.-F.S.) 2 Max Planck Institute for Chemistry, 55128 Mainz, Germany; [email protected] (M.S.); [email protected] (E.B.); [email protected] (J.W.); [email protected] (C.Z.) 3 Institute of Sustainable and Environmental Chemistry, University of Lüneburg, 21335 Lüneburg, Germany; [email protected] (R.K.); [email protected] (W.-U.P.) 4 Atmospheric Chemistry, University of Bayreuth, 95447 Bayreuth, Germany; [email protected] (J.W.); [email protected] (S.B.); [email protected] (K.K.); [email protected] (J.O.); [email protected] (A.H.) 5 Marine and Atmospheric Chemistry, RSMAS, University of Miami, Coral Gables, FL 33149, USA; [email protected] 6 Max Planck Institute for Biogeochemistry, 07745 Jena, Germany 7 Institute of Coastal Research, Helmholtz-Centre, 215022 Geesthacht, Germany 8 Environmental Chemistry and Air Research, Technical University Berlin, 10623 Berlin, Germany 9 Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95447 Bayreuth, Germany * Correspondence: [email protected]; Tel.: +49-6131-3054531 Received: 24 September 2019; Accepted: 26 October 2019; Published: 30 October 2019 Abstract: Western Australia is a semi-/arid region known for saline lakes with a wide range of 1 geochemical parameters (pH 2.5–7.1, Cl− 10–200 g L− ).
    [Show full text]
  • Irritant Compounds: Military Respiratory Irritants. Part I
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2015, vol. 84(3), p. 128-139 ISSN 0372-7025 DOI: 10.31482/mmsl.2015.014 REVIEW ARTICLE IRRITANT COMPOUNDS: MILITARY RESPIRATORY IRRITANTS. PART I. LACRIMATORS Jiri Patocka 1,3 , Kamil Kuca 2,3 1 Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia, Ceske Budejovice, Czech Republic 2 Center of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic 3 Biomedical Research Centre, University Hospital; Hradec Kralove, Czech Republic Received 29 th September 2014. Revised 24 th May 2015. Published 4 th September 2015. Summary World War I was a conflict where chemical warfare was first used on a massive scale. The earliest chemical attack occurred on the Western Front in October 1914 in Neuve Chapelle, but its effects were so minimal that the Allies learned about it only after the war from German documents. The attack in the Bolimow area, carried out by the Germans against the Russian army with artillery shells containing gas T (xylyl and benzyl bromides), was therefore the first attack on a massive scale recorded on the victim side. The attack, which occurred after it, made it possible to obtain some tactical success, but without a strategic breakthrough. Some of the later German attacks on the Eastern Front where chlorine was used proved to be more effective, but despite many victims there was not any major strategic success achieved. The Russians did not take attempts to use chemical weapons in the World War I. Key words: respiratory irritants; irritant gases; chemical warfare agents; riot control agents; World War I INTRODUCTION comfort to acute airway and lung injury and even death.
    [Show full text]
  • TIH/PIH List
    Hazardous Materials Designated as TIH/PIH (consolidated AAR and Railinc lists) 3/12/2007 STCC Proper Shipping Name 4921402 2-CHLOROETHANAL 4921495 2-METHYL-2-HEPTANETHIOL 4921741 3,5-DICHLORO-2,4,6-TRIFLUOROPYRIDINE 4921401 ACETONE CYANOHYDRIN, STABILIZED 4927007 ACROLEIN, STABILIZED 4921019 ALLYL ALCOHOL 4923113 ALLYL CHLOROFORMATE 4921004 ALLYLAMINE 4904211 AMMONIA SOLUTION 4920360 AMMONIA SOLUTIONS 4904209 AMMONIA, ANHYDROUS 4904210 AMMONIA, ANHYDROUS 4904879 AMMONIA, ANHYDROUS 4920359 AMMONIA, ANHYDROUS 4923209 ARSENIC TRICHLORIDE 4920135 ARSINE 4932010 BORON TRIBROMIDE 4920349 BORON TRICHLORIDE 4920522 BORON TRIFLUORIDE 4936110 BROMINE 4920715 BROMINE CHLORIDE 4918505 BROMINE PENTAFLUORIDE 4936106 BROMINE SOLUTIONS 4918507 BROMINE TRIFLUORIDE 4921727 BROMOACETONE 4920343 CARBON MONOXIDE AND HYDROGEN MIXTURE, COMPRESSED 4920399 CARBON MONOXIDE, COMPRESSED 4920511 CARBON MONOXIDE, REFRIGERATED LIQUID 4920559 CARBONYL FLUORIDE 4920351 CARBONYL SULFIDE 4920523 CHLORINE 4920189 CHLORINE PENTAFLUORIDE 4920352 CHLORINE TRIFLUORIDE 4921558 CHLOROACETONE, STABILIZED 4921009 CHLOROACETONITRILE 4923117 CHLOROACETYL CHLORIDE 4921414 CHLOROPICRIN 4920516 CHLOROPICRIN AND METHYL BROMIDE MIXTURES 4920547 CHLOROPICRIN AND METHYL BROMIDE MIXTURES 4920392 CHLOROPICRIN AND METHYL CHLORIDE MIXTURES 4921746 CHLOROPIVALOYL CHLORIDE 4930204 CHLOROSULFONIC ACID 4920527 COAL GAS, COMPRESSED 4920102 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920303 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920304 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920305 COMMPRESSED GAS, TOXIC, FLAMMABLE, CORROSIVE, N.O.S. 4920101 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920300 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920301 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920324 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920331 COMPRESSED GAS, TOXIC, CORROSIVE, N.O.S. 4920165 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S. 4920378 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S. 4920379 COMPRESSED GAS, TOXIC, FLAMMABLE, N.O.S.
    [Show full text]
  • Acutely Toxic (P-List) Hazardous Chemical Substance Waste No
    Appendix D Discarded commercial chemical products, off-specification species, container residues, and spill residues thereof; acutely toxic (P-list) Hazardous Chemical Substance waste No. abstracts No. P023 107-20-0 Acetaldehyde, chloro- P002 591-08-2 Acetamide, N-(aminothioxomethyl)- P057 640-19-7 Acetamide, 2-fluoro- P058 62-74-8 Acetic acid, fluoro-, sodium salt P002 591-08-2 1-Acetyl-2-thiourea P003 107-02-8 Acrolein P070 116-06-3 Aldicarb P203 1646-88-4 Aldicarb sulfone. P004 309-00-2 Aldrin P005 107-18-6 Allyl alcohol P006 20859-73-8 Aluminum phosphide (R,T) P007 2763-96-4 5-(Aminomethyl)-3-isoxazolol P008 504-24-5 4-Aminopyridine P009 131-74-8 Ammonium picrate (R) P119 7803-55-6 Ammonium vanadate P099 506-61-6 Argentate(1-), bis(cyano-C)-, potassium P010 7778-39-4 Arsenic acid H3 AsO4 P012 1327-53-3 Arsenic oxide As2 O3 P011 1303-28-2 Arsenic oxide As2 O5 P011 1303-28-2 Arsenic pentoxide P012 1327-53-3 Arsenic trioxide P038 692-42-2 Arsine, diethyl- P036 696-28-6 Arsonous dichloride, phenyl- P054 151-56-4 Aziridine P067 75-55-8 Aziridine, 2-methyl- P013 542-62-1 Barium cyanide P024 106-47-8 Benzenamine, 4-chloro- P077 100-01-6 Benzenamine, 4-nitro- P028 100-44-7 Benzene, (chloromethyl)- P042 51-43-4 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, (R)- P046 122-09-8 Benzeneethanamine, alpha,alpha-dimethyl- P014 108-98-5 Benzenethiol P127 1563-66-2 7-Benzofuranol, 2,3-dihydro-2,2-dimethyl-, methylcarbamate.
    [Show full text]