Neuron–Glia Interaction in the Developing and Adult Enteric Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Neuron–Glia Interaction in the Developing and Adult Enteric Nervous System cells Review Neuron–Glia Interaction in the Developing and Adult Enteric Nervous System Verena Pawolski and Mirko H. H. Schmidt * Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany; [email protected] * Correspondence: [email protected] Abstract: The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasis have gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursors enherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung’s diseases. Keywords: neuron-glia interaction; neural crest cells; enteric nervous system; gastrointestinal system; gut; GDNF; EDN3; Notch; BMP; hedgehog Citation: Pawolski, V.; Schmidt, M.H.H. Neuron–Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2021, 10, 47. 1. Introduction https://doi.org/10.3390/cells10010047 The enteric nervous system (ENS) developed in evolutionary terms independently and earlier than the central nervous system (CNS) [1]. With its 200–600 million neurons in Received: 14 November 2020 humans, the ENS contains as many neurons as the neural tube and is, therefore, considered Accepted: 29 December 2020 the largest part of the peripheral nervous system (PNS) [2]. The ENS is a complex, au- Published: 31 December 2020 tonomous nervous system which coordinates all bowel functions [3]. It is connected with the CNS via the sympathetic, parasympathetic and sensory system. Most prominent is its Publisher’s Note: MDPI stays neu- connection to the brain by the vagus nerve for the communication of content composition tral with regard to jurisdictional clai- and hunger [4,5]. In this way, stimulation of the CNS by the gut influences hippocampal ms in published maps and institutio- nal affiliations. learning and memory and regulates motivation and emotions [6,7]. A key component are the gut bacteria. The gut microbiome heavily interacts with the ENS and influences gut physiology [8,9]. The ENS modulates immune cells within the gut wall, which in- fluence the microbiome and the formation of cancer, abdominal pain and neurological Copyright: © 2020 by the authors. Li- disorders such as Parkinson’s disease [10–16]. The diversity in neuronal and glial subtypes, censee MDPI, Basel, Switzerland. as well as the diversity of neurotransmitters, is comparably rich as in the CNS [17]. Not This article is an open access article all aspects of neuron-glia interaction are fully understood yet, but it is evident that in distributed under the terms and con- both systems, physiological neural development and function depend on their functional ditions of the Creative Commons At- interaction [18,19]. In the CNS, neurons and glial cells influence each other during matura- tribution (CC BY) license (https:// tion and function. Glial cells promote neurogenesis, coordinate neuronal migration, axon creativecommons.org/licenses/by/ growth, the formation of synapses and are involved in neural circuit functions [19]. Glia 4.0/). Cells 2021, 10, 47. https://doi.org/10.3390/cells10010047 https://www.mdpi.com/journal/cells Cells 2021, 10, x FOR PEER REVIEW 2 of 21 Cells 2021, 10, 47 2 of 20 axon growth, the formation of synapses and are involved in neural circuit functions [19]. areGlia themselves are themselves regulated regulated by neurons by neurons which which modulate modulate their their transcriptome transcriptome and numbers,and num- probablybers, probably to shape to theshape neural the networksneural networks in the brain in the [20 brain]. In the [20]. ENS, In the glial ENS, cells glial are similarly cells are crucialsimilarly for crucial neuroprotection, for neuroprotection, neural maturation, neural maturation, synapses formation, synapses asformation, well as the as releasewell as andthe release degradation and degradation of neurotransmitters of neurotransmitters [18,21,22]. [18,21,22]. TheThe multipotentmultipotent stem stem cells cells of of the the CNS CNS are are the the radial radial glial glial cells, cells, which which may may differentiate differen- intotiate glia into and glia neurons and neurons [23]. In [23]. the ENS,In the compatible ENS, compatible functions functions are fulfilled are fulfilled by enteric by neuralenteric crest-derivedneural crest-derived cells (ENCC), cells (ENCC), which represent which repr theesent enteric the neural enteric progenitor neural progenitor population popula- [24]. Enteriction [24]. neurons Enteric are neurons distributed are distributed along the digestive along the tract digestive in two tract different in two plexuses different of plexuses ganglia: theof ganglia: submucosal the submucosal plexus, and pl theexus, myenteric and the myenteric plexus (Figure plexus1a). (Figure The submucosal1a). The submucosal plexus consistsplexus consists of a concentric of a concentric arrangement arrangement of enteric of enteric ganglia ganglia in the submucosa,in the submucosa, the tissue the layertissue adjacentlayer adjacent to the luminalto the luminal epithelium. epithelium. The myenteric The myenteric plexus isplexus dispersed is dispersed between between the circular the andcircular longitudinal and longitudinal smooth muscle smooth layers muscle of thelayers enteric of the canal. enteric Several canal. signalling Several pathwayssignalling arepathways associated are withassociated plexus with patterning plexus (Sonic pattern hedgehoging (Sonic (SHH), hedgehog bone morphogenic (SHH), bone proteinmorpho- 2 andgenic 4 (BMP2protein and 2 and 4) Netrin),4 (BMP2and4) neural Netrin), differentiation neural (Neurotrophin-3,differentiation (Neurotrophin-3, BMP2, 4), gliogenesis BMP2, (Neuregulin4), gliogenesis 1 (GGF2), (Neuregulin Notch) 1 (GGF2), and axonal Notch) growth and (Semaphorin axonal growth 3A, (Semaphorin Neuturin) [25 3A,]. How- Neu- ever,turin) on [25]. what However, stage of differentiationon what stage theseof diff moleculeserentiation act these and howmolecules they interact act and with how each they otherinteract remains with each mostly other unknown. remains mostly unknown. FigureFigure 1.1.Enteric Enteric nervousnervous system system (ENS) (ENS) precursors precursors colonize colonize the the gut gut in in two two waves. waves. (a )(a Enteric) Enteric ganglia gan- formglia form the myenteric the myenteric plexus plexus (MP) (M betweenP) between the circular the circular (CM) and(CM) longitudinal and longitudinal muscle muscle (LM) layers(LM) lay- and ers and the submucosal plexus (SMP) in the mucosa. (b) The majority of neural precursors are the submucosal plexus (SMP) in the mucosa. (b) The majority of neural precursors are derived from derived from the vagal neural crest, adjacent to somites 1 to 7 (orange). They migrate along the the vagal neural crest, adjacent to somites 1 to 7 (orange). They migrate along the bowel in an oral to bowel in an oral to anal direction. A second group originates from sacral neural crest cells (in mice analbehind direction. somite A24), second forms group the pelvic originates ganglia from (pg) sacral and migrates neural crest in an cells anal (in to miceoral direction behind somite (red). 24), formsFurther the enteric pelvic neural ganglia precursors (pg) and migratesare descendants in an anal of Schwann to oral direction cell precurso (red).rs Further (SCP, green) enteric or neural pan- precursorscreatic progenitors are descendants (blue). ( ofc) SchwannNeural-fated cell enteric precursors neural (SCP, crest- green)derived or pancreatic cells (ENCCs) progenitors (N) differen- (blue). (ctiate) Neural-fated in the myenteric enteric region neural (gre crest-derivedy). In parallel, cells neuron-glia (ENCCs) (N) bipo differentiatetent (N-G) inand the glial-fated myenteric ENCCs region (grey).(G) migrate In parallel, into the neuron-glia mucosal area bipotent (yellow) (N-G) and and differentiate glial-fated further ENCCs into (G) neurons migrate and into glial the mucosal cells.; h areaheart; (yellow) ld liver and diverticulum, differentiate pd further pancreatic into neuronsdiverticulum, and glial c caecum. cells.; h heart; ld liver diverticulum, pd pancreatic diverticulum, c caecum. 2. Neurons and Glia during Enteric Nervous System (ENS) Formation 2.2.1. Neurons Neural Precursors and Glia duringArise from Enteric Multiple Nervous Sources System (ENS) Formation
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Neural Control of Movement: Motor Neuron Subtypes, Proprioception and Recurrent Inhibition
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Enjin A, Rabe N, Nakanishi ST, Vallstedt A, Gezelius H, Mem- ic F, Lind M, Hjalt T, Tourtellotte WG, Bruder C, Eichele G, Whelan PJ, Kullander K (2010) Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as mark- ers for fast motor neurons and partition cells. J Comp Neurol 518:2284-2304. II Wootz H, Enjin A, Wallen-Mackenzie Å, Lindholm D, Kul- lander K (2010) Reduced VGLUT2 expression increases motor neuron viability in Sod1G93A mice. Neurobiol Dis 37:58-66 III Enjin A, Leao KE, Mikulovic S, Le Merre P, Tourtellotte WG, Kullander K. 5-ht1d marks gamma motor neurons and regulates development of sensorimotor connections Manuscript IV Enjin A, Leao KE, Eriksson A, Larhammar M, Gezelius H, Lamotte d’Incamps B, Nagaraja C, Kullander K. Development of spinal motor circuits in the absence of VIAAT-mediated Renshaw cell signaling Manuscript Reprints were made with permission from the respective publishers. Cover illustration Carousel by Sasha Svensson Contents Introduction.....................................................................................................9 Background...................................................................................................11 Neural control of movement.....................................................................11 The motor neuron.....................................................................................12 Organization
    [Show full text]
  • Signalling Between Microvascular Endothelium and Cardiomyocytes Through Neuregulin Downloaded From
    Cardiovascular Research (2014) 102, 194–204 SPOTLIGHT REVIEW doi:10.1093/cvr/cvu021 Signalling between microvascular endothelium and cardiomyocytes through neuregulin Downloaded from Emily M. Parodi and Bernhard Kuhn* Harvard Medical School, Boston Children’s Hospital, 300 Longwood Avenue, Enders Building, Room 1212, Brookline, MA 02115, USA Received 21 October 2013; revised 23 December 2013; accepted 10 January 2014; online publish-ahead-of-print 29 January 2014 http://cardiovascres.oxfordjournals.org/ Heterocellular communication in the heart is an important mechanism for matching circulatory demands with cardiac structure and function, and neuregulins (Nrgs) play an important role in transducing this signal between the hearts’ vasculature and musculature. Here, we review the current knowledge regarding Nrgs, explaining their roles in transducing signals between the heart’s microvasculature and cardiomyocytes. We highlight intriguing areas being investigated for developing new, Nrg-mediated strategies to heal the heart in acquired and congenital heart diseases, and note avenues for future research. ----------------------------------------------------------------------------------------------------------------------------------------------------------- Keywords Neuregulin Heart Heterocellular communication ErbB -----------------------------------------------------------------------------------------------------------------------------------------------------------† † † This article is part of the Spotlight Issue on: Heterocellular signalling
    [Show full text]
  • Identification of Neuronal Subpopulations That Project From
    Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically Sarah Stanleya,1, Shirly Pintoa,b,1, Jeremy Segala,c, Cristian A. Péreza, Agnes Vialea,d, Jeff DeFalcoa,e, XiaoLi Caia, Lora K. Heislerf, and Jeffrey M. Friedmana,g,2 aLaboratory of Molecular Genetics, Rockefeller University, New York, NY 10065; bMerck Research Laboratories, Rahway, NJ 07065; cDepartment of Pathology, Weill Cornell Medical College, New York, NY 10065; dGenomics Core Laboratory, Memorial Sloan Kettering Hospital, New York, NY 10065; eRenovis, San Fransisco, CA 94080; fDepartment of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom; and gHoward Hughes Medical Institute, Rockefeller University, New York, NY 10065 Contributed by Jeffrey M. Friedman, March 4, 2010 (sent for review January 6, 2010) The autonomic nervous system regulates fuel availability and of the solitary tract (NTS) (6) all modulate metabolic activity in energy storage in the liver, adipose tissue, and other organs; how- liver and white fat. Neuronal tracing studies confirm these areas, ever, the molecular components of this neural circuit are poorly and other studies innervate peripheral organs involved in car- understood. We sought to identify neural populations that project bohydrate and lipid metabolism (7–9). However, little is known from the CNS indirectly through multisynaptic pathways to liver of the site, organization, or connectivity of the CNS neural pop- and epididymal white fat in mice using pseudorabies
    [Show full text]
  • Secretin-Induced Gastric Relaxation Is Mediated by Vasoactive Intestinal Polypeptide and Prostaglandin Pathways
    Neurogastroenterol Motil (2009) 21, 754–e47 doi: 10.1111/j.1365-2982.2009.01271.x Secretin-induced gastric relaxation is mediated by vasoactive intestinal polypeptide and prostaglandin pathways Y. LU & C. OWYANG Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA Abstract Secretin has been shown to delay gastric vagally mediated pathway. Through nicotinic emptying and inhibit gastric motility. We have dem- synapses, secretin stimulates VIP release from post- onstrated that secretin acts on the afferent vagal ganglionic neurons in the gastric myenteric plexus, pathway to induce gastric relaxation in the rat. How- which in turn induces gastric relaxation through a ever, the efferent pathway that mediates the action of prostaglandin-dependent pathway. secretin on gastric motility remains unknown. We Keywords gastric relaxation, indomethacin, vagus recorded the response of intragastric pressure to graded nerve. doses of secretin administered intravenously to anaesthetized rats using a balloon attached to a cath- eter and placed in the body of the stomach. Secretin INTRODUCTION evoked a dose-dependent decrease in intragastric Secretin has been shown to inhibit gastric contrac- pressure. The threshold dose of secretin was 1.4 pmol tions and delay gastric emptying of liquids and kg)1 h)1 and the effective dose, 50% was 5.6 pmol kg)1 solids.1–3 However, the mechanisms of secretinÕs h)1. Pretreatment with hexamethonium markedly inhibitory effects on gastric motility remain unclear. reduced gastric relaxation induced by secretin The gene expression of secretin receptor has been (5.6 pmol kg)1 h)1). Bilateral vagotomy also signifi- demonstrated in the rat nodose ganglia.4 We have cantly reduced gastric motor responses to secretin.
    [Show full text]
  • RET Controls Sympathetic Innervation
    Development 128, 3963-3974 (2001) 3963 Printed in Great Britain © The Company of Biologists Limited 2001 DEV8811 RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons Hideki Enomoto1, Peter A. Crawford1, Alexander Gorodinsky1, Robert O. Heuckeroth2,3, Eugene M. Johnson, Jr3 and Jeffrey Milbrandt1,* 1Departments of Pathology and Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8118, St Louis, MO 63110, USA 2Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8116, St Louis, MO 63110, USA 3Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8113, St Louis, MO 63110, USA *Author for correspondence (e-mail: [email protected]) Accepted 26 July 2001 SUMMARY Sympathetic axons use blood vessels as an intermediate trunks and accelerated cell death of sympathetic neurons path to reach their final target tissues. The initial contact later in development. Artemin is expressed in blood vessels between differentiating sympathetic neurons and blood during periods of early sympathetic differentiation, and vessels occurs following the primary sympathetic chain can promote and attract axonal growth of the sympathetic formation, where precursors of sympathetic neurons ganglion in vitro. This analysis identifies RET and artemin migrate and project axons along or toward blood vessels. as central regulators of early sympathetic innervation. We demonstrate
    [Show full text]
  • The Enteric Nervous System: a Second Brain
    The Enteric Nervous System: A Second Brain MICHAEL D. GERSHON Columbia University Once dismissed as a simple collection of relay ganglia, the enteric nervous system is now recognized as a complex, integrative brain in its own right. Although we still are unable to relate complex behaviors such as gut motility and secretion to the activity of individual neurons, work in that area is proceeding briskly--and will lead to rapid advances in the management of functional bowel disease. Dr. Gershon is Professor and Chair, Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York. In addition to numerous scientific publications, he is the author of The Second Brain (Harper Collins, New York, 1998). Structurally and neurochemically, the enteric nervous system (ENS) is a brain unto itself. Within those yards of tubing lies a complex web of microcircuitry driven by more neurotransmitters and neuromodulators than can be found anywhere else in the peripheral nervous system. These allow the ENS to perform many of its tasks in the absence of central nervous system (CNS) control--a unique endowment that has permitted enteric neurobiologists to investigate nerve cell ontogeny and chemical mediation of reflex behavior in a laboratory setting. Recognition of the importance of this work as a basis for developing effective therapies for functional bowel disease, coupled with the recent, unexpected discovery of major enteric defects following the knockout of murine genes not previously known to affect the gut, has produced a groundswell of interest that has attracted some of the best investigators to the field. Add to this that the ENS provides the closest thing we have to a window on the brain, and one begins to understand why the bowel--the second brain--is finally receiving the attention it deserves.
    [Show full text]
  • Pin Faculty Directory
    Harvard University Program in Neuroscience Faculty Directory 2019—2020 April 22, 2020 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Rosenberg, Paul (BCH/Neurology) Andermann, Mark (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rotenberg, Alex (BCH/Neurology) Anderson, Matthew (BIDMC) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Sabatini, Bernardo (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sahay, Amar (MGH) Arlotta, Paola (Harvard/SCRB) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahin, Mustafa (BCH/Neurobio) Assad, John (HMS/Neurobio) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Samuel, Aravi (Harvard/ Physics) Bacskai, Brian (MGH/East) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Sanes, Joshua (Harvard/MCB) Baker, Justin (McLean) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Saper, Clifford
    [Show full text]
  • Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells
    The Journal of Neuroscience, March 5, 2008 • 28(10):2551–2562 • 2551 Development/Plasticity/Repair Early Neuronal and Glial Fate Restriction of Embryonic Neural Stem Cells Delphine Delaunay,1,2 Katharina Heydon,1,2 Ana Cumano,3 Markus H. Schwab,4 Jean-Le´on Thomas,1,2 Ueli Suter,5 Klaus-Armin Nave,4 Bernard Zalc,1,2 and Nathalie Spassky1,2 1Inserm, Unite´ 711, 75013 Paris, France, 2Institut Fe´de´ratif de Recherche 70, Faculte´deMe´decine, Universite´ Pierre et Marie Curie, 75013 Paris, France, 3Inserm, Unite´ 668, Institut Pasteur, 75724 Paris Cedex 15, France, 4Max-Planck-Institute of Experimental Medicine, D-37075 Goettingen, Germany, and 5Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), ETH Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland The question of how neurons and glial cells are generated during the development of the CNS has over time led to two alternative models: either neuroepithelial cells are capable of giving rise to neurons first and to glial cells at a later stage (switching model), or they are intrinsically committed to generate one or the other (segregating model). Using the developing diencephalon as a model and by selecting a subpopulation of ventricular cells, we analyzed both in vitro, using clonal analysis, and in vivo, using inducible Cre/loxP fate mapping, the fate of neuroepithelial and radial glial cells generated at different time points during embryonic development. We found that, during neurogenic periods [embryonic day 9.5 (E9.5) to 12.5], proteolipid protein ( plp)-expressing cells were lineage-restricted neuronal precursors, but later in embryogenesis, during gliogenic periods (E13.5 to early postnatal), plp-expressing cells were lineage-restricted glial precursors.
    [Show full text]
  • Enteric Nervous System (ENS): 1) Myenteric (Auerbach) Plexus & 2
    Enteric Nervous System (ENS): 1) Myenteric (Auerbach) plexus & 2) Submucosal (Meissner’s) plexus à both triggered by sensory neurons with chemo- and mechanoreceptors in the mucosal epithelium; effector motors neurons of the myenteric plexus control contraction/motility of the GI tract, and effector motor neurons of the submucosal plexus control secretion of GI mucosa & organs. Although ENS neurons can function independently, they are subject to regulation by ANS. Autonomic Nervous System (ANS): 1) parasympathetic (rest & digest) – can innervate the GI tract and form connections with ENS neurons that promote motility and secretion, enhancing/speeding up the process of digestion 2) sympathetic (fight or flight) – can innervate the GI tract and inhibit motility & secretion by inhibiting neurons of the ENS Sections and dimensions of the GI tract (alimentary canal): Esophagus à ~ 10 inches Stomach à ~ 12 inches and holds ~ 1-2 L (full) up to ~ 3-4 L (distended) Duodenum à first 10 inches of the small intestine Jejunum à next 3 feet of small intestine (when smooth muscle tone is lost upon death, extends to 8 feet) Ileum à final 6 feet of small intestine (when smooth muscle tone is lost upon death, extends to 12 feet) Large intestine à 5 feet General Histology of the GI Tract: 4 layers – Mucosa, Submucosa, Muscularis Externa, and Serosa Mucosa à epithelium, lamina propria (areolar connective tissue), & muscularis mucosae Submucosa à areolar connective tissue Muscularis externa à skeletal muscle (in select parts of the tract); smooth muscle (at least 2 layers – inner layer of circular muscle and outer layer of longitudinal muscle; stomach has a third layer of oblique muscle under the circular layer) Serosa à superficial layer made of areolar connective tissue and simple squamous epithelium (a.k.a.
    [Show full text]
  • Are Astrocytes Executive Cells Within the Central Nervous System? ¿Son Los Astrocitos Células Ejecutivas Dentro Del Sistema Nervioso Central? Roberto E
    DOI: 10.1590/0004-282X20160101 VIEW AND REVIEW Are astrocytes executive cells within the central nervous system? ¿Son los astrocitos células ejecutivas dentro del Sistema Nervioso Central? Roberto E. Sica1, Roberto Caccuri1, Cecilia Quarracino1, Francisco Capani1 ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well. Keywords: astrocytes; physiology; central nervous system; neurodegenerative diseases. RESUMEN Evidencias experimentales sugieren que los astrocitos desempeñan un rol crucial en la fisiología del sistema nervioso central (SNC) modulando la actividad y plasticidad sináptica. En base a lo actualmente conocido creemos que los astrocitos participan, en pie de igualdad con las neuronas, en los procesos de información del SNC. Además, observaciones experimentales y humanas encontraron que algunas de las enfermedades degenerativas primarias del SNC: la demencia fronto-temporal; las enfermedades de Parkinson, de Alzheimer, y de Huntington, las ataxias cerebelosas primarias y la esclerosis lateral amiotrófica, que afectan solo a los humanos, pueden deberse a astroglíopatía.
    [Show full text]
  • Neural Circuit Mechanisms of Value-Based Decision-Making and Reinforcement Learning A
    CHAPTER 13 Neural Circuit Mechanisms of Value-Based Decision-Making and Reinforcement Learning A. Soltani1, W. Chaisangmongkon2,3, X.-J. Wang3,4 1Dartmouth College, Hanover, NH, United States; 2King Mongkut’s University of Technology Thonburi, Bangkok, Thailand; 3New York University, New York, NY, United States; 4NYU Shanghai, Shanghai, China Abstract by reward-related signals. Over the course of learning, this synaptic mechanism results in reconfiguration of Despite groundbreaking progress, currently we still know the neural network to increase the likelihood of making preciously little about the biophysical and circuit mechanisms of valuation and reward-dependent plasticity underlying a rewarding choice based on sensory stimuli. The algo- adaptive choice behavior. For instance, whereas phasic firing rithmic computations of certain reinforcement models of dopamine neurons has long been ascribed to represent have often been translated to synaptic plasticity rules reward-prediction error (RPE), only recently has research that rely on the reward-signaling neurotransmitter begun to uncover the mechanism of how such a signal is dopamine (DA). computed at the circuit level. In this chapter, we will briefly review neuroscience experiments and mathematical models There are two main theoretical approaches to derive on reward-dependent adaptive choice behavior and then plasticity rules that foster rewarding behaviors. The first focus on a biologically plausible, reward-modulated Hebbian utilizes gradient-descent methods to directly maximize synaptic plasticity rule. We will show that a decision-making expected rewarddan idea known as policy gradient neural circuit endowed with this learning rule is capable of methods in machine learning [2,3]. Because neurons accounting for behavioral and neurophysiological observa- tions in a variety of value-based decision-making tasks, possess stochastic behaviors, many of these learning including foraging, competitive games, and probabilistic rules exploit the covariation between neural activity inference.
    [Show full text]