Can a Compact Neuronal Circuit Policy Be Re-Purposed to Learn Simple Robotic Control?

Total Page:16

File Type:pdf, Size:1020Kb

Can a Compact Neuronal Circuit Policy Be Re-Purposed to Learn Simple Robotic Control? Can a Compact Neuronal Circuit Policy be Re-purposed to Learn Simple Robotic Control? Ramin Hasani1∗, Mathias Lechner2∗, Alexander Amini3, Daniela Rus3 and Radu Grosu1 Abstract— We propose a neural information processing sys- Network general structure Tap-withdrawal neural circuit tem which is obtained by re-purposing the function of a k observations 4 observations biological neural circuit model, to govern simulated and real- AVM ALM 1 … k PVD PLM world control tasks. Inspired by the structure of the nervous system of the soil-worm, C. elegans, we introduce Neuronal Circuit Policies (NCPs), defined as the model of biological neural … circuits reparameterized for the control of an alternative task. 1 NI DVA PVC AVD We learn instances of NCPs to control a series of robotic tasks, including the autonomous parking of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, 1 … Nc AVB AVA we adopt a search-based optimization algorithm. Neuronal circuit policies perform on par and in some cases surpass the … performance of contemporary deep learning models with the 1 n FWD REV advantage leveraging significantly fewer learnable parameters n actions 2 actions and realizing interpretable dynamics at the cell-level. sensory neuron command neuron chemical synapse I. INTRODUCTION upper interneuron motor neuron gap junction We wish to explore a new class of machine learning algorithms for robot control that is inspired by nature. Fig. 1. Left: C. elegans’ general neuronal circuit structure. Right: Tap- Through natural evolution, the subnetworks within the ner- Withdrawal (TW) neural circuit schematic. Total number of interneurons = Ni +NC. We preserve the TW circuit wiring topology, model its dynamics vous system of the nematode, C. elegans, structured a near- by computational models, and deploy a search-based reinforcement learning optimal wiring diagram from the wiring economy principle1 algorithm to control robots. perspective [2], [1]. Its stereotypic brain composed of 302 neurons connected through approximately 8000 chemical and electrical synapses [3]. C. elegans exhibits distinct behavioral body. The circuit has been characterized in terms of its neu- mechanisms to process complex chemical stimulations [4], ronal dynamics [11]. The TW circuit comprises nine neuron avoid osmotic regions [5], sleep [6], show adaptive behavior classes which are wired together by means of chemical and [7], perform mechanosensation [8], and to control muscles electrical synapses. Behavior of the TW reflexive response [9]. The functions of many neural circuits within its brain is substantially similar to the control agent’s reaction in have been identified [10], [11], [12], [6], and simulated some standard control settings such as a controller acting [13], [14], [15], [16], [17], which makes it a suitable model on driving an underpowered car, to go up on a steep hill, organism to be investigated, computationally. The general known as the Mountain Car [19], or a controller acting on network architecture in C. elegans establishes a hierarchical the navigation of a rover robot that plans to go from point topology from sensory neurons through upper interneuron A to B, on a planned trajectory. and command interneurons down to motor neurons (See arXiv:1809.04423v2 [cs.LG] 16 Nov 2019 The biophysical neuronal and synaptic models express Fig. 1A). In these neuronal circuits, typically interneurons useful properties; 1) In addition to the nonlinearities exposed establish highly recurrent wiring diagrams with each other on the neurons’ hidden state, synapses also are modeled while sensors and command neurons mostly realize feed- by additional nonlinearity. This property results in realizing forward connections to their downstream neurons. An exam- complex dynamics with a fewer number of neurons. 2) Their ple of such a structure is a neural circuit shown in Fig. 1B, dynamics are set by grounded biophysical properties which the Tap-withdrawal (TW) circuit [18], which is responsible ease the interpretation of the network hidden dynamics. for inducing a forward/backward locomotion reflex when the worm is mechanically exposed to touch stimulus on its The trained networks obtained by learning the parameters of a fixed neural circuit structure are called neuronal circuit *Equal Contributions policies (NCP). We experimentally investigate NCP’s prop- 1Technische Universitat¨ Wien (TU Wien), 1040 Vienna, Austria erties in terms, their learning performance, their ability to 2Institute of Science and Technology Austria (IST Austria) solve tasks in different RL domains, and ways to interpret 3 Massachusetts Institute of Technology (MIT), USA their internal dynamics. For this purpose, we preserve the 1Under proper functionality of a network, the wiring economy principle proposes that its morphology is organized such that the cost of wiring its wiring structure of an example NCP (the TW circuit) and elements is minimal [1]. adopt a search-based optimization algorithm for learning the neuronal and synaptic parameters of the network. This paper reversal potentials of the leakage and chemical channels. contributes to the following: Ii;L, Iˆi; j, and Ii; j present the currents flowing through the • Demonstration of a compact neuronal circuit policy leak channel, electric-synapse, and chemical-synapse, with (NCP) inspired by the brain of the C. elegans worm, conductances wi;L, wˆi; j, and wi; j, respectively. gi; j(t) is the as an interpretable controller in various control settings. dynamic conductance of the chemical-synapse, and Ci;m is • An optimization algorithm (Adaptive search-based) and the membrane capacitance. Ei; j determines the whether a experiments with NCPs in different control domains, synapse is inhibitory or excitatory. including simulated and physical robots. For interacting with the environment, We introduced • Autonomous parking of a mobile robot by re-purposing sensory and motor neuron models. A sensory component a compact neuronal circuit policy. consists of two neurons Sp, Sn and an input variable, x. • Interpretation of the internal dynamics of the learned Sp gets activated when x has a positive value, whereas Sn policies. We introduce a novel computational method fires when x is negative. The potential of the neurons Sp, to understand continuous-time network dynamics. The and Sn, as a function of x, are defined by an affine function technique (Definition 1) determines the relation between that maps the region [xmin;xmax] of the system variable x, to the kinetics of sensory/interneurons and a motor neu- a membrane potential range of [−70mV;−20mV]. (See the ron’s decision, We compute the magnitude of a neuron’s formula in Supplementary Materials Section 2).2 Similar to contribution, (positive or negative), of these hidden sensory neurons, a motor component is composed of two nodes to the output dynamics in determinable phases neurons Mn, Mp and a controllable motor variable y. Values of activity, during the simulation. of y is computed by y := yp +yn and an affine mapping links the neuron potentials Mn and Mp, to the range [ymin;ymax]. II. PRELIMINARIES (Formula in Supplementary Materials Section 2). FWD and In this section, we first briefly describe the structure and REV motor classes (Output units) in Fig. 1B, are modeled dynamics of the tap-withdrawal neural circuit. We then intro- in this fashion. duce the mathematical neuron and synapse models utilized For simulating neural networks composed of such dynamic to build up the circuit, as an instance of neuronal circuit models, we adopted an implicit numerical solver [22]. For- policies. mally, we realized the ODE models in a hybrid fashion which A. Tap-Withdrawal Neural Circuit Revisit combines both implicit and explicit Euler’s discretization method [21]. (See Supplementary Materials Section 3, for A mechanically exposed stimulus (i.e. tap) to the petri dish a concrete discussion on the model implementation, and the in which the worm inhabits, results in the animal’s reflexive choice of parameters.) Note that the solver has to serve as response in the form of a forward or backward movement. a real-time control system, additionally. For reducing the This response has been named as the tap-withdrawal reflex, complexity, therefore, our method realizes a fixed-timestep and the circuit identified to underlay such behavior is known solver. The solver’s complexity for each time step D is as the tap-withdrawal (TW) neural circuit [18]. The circuit t O(j# neuronsj + j# synapsesj). In the next section, we in- is shown in Fig. 1B. It is composed of four sensory neurons, troduce the optimization algorithm used to reparametrize the PVD and PLM (posterior touch sensors), AVM and ALM tap-withdrawal circuit. (anterior touch sensors), four interneuron classes (AVD, PVC, AVA and AVB), and two subgroup of motor neurons III. SEARCH-BASED OPTIMIZATION ALGORITHM which are abstracted as a forward locomotory neurons, FWD, and backward locomotory neurons, REV. Interneurons recur- In this section we formulate a Reinforcement learning rently synapse into each other with excitatory and inhibitory (RL) setting for tuning the parameters of a given neural synaptic links. circuit to control robots. The behavior of a neural circuit can be expressed as a policy pq (oi;si) 7! hai+1;si+1i, that B. Neural circuit modeling revisit maps an observation oi, and an internal state si of the Here, we briefly describe the neuron and synapse model circuit, to an action ai+1, and a new internal state si+1. model [20], [21], used to design neural circuit dynamics. This policy acts upon a possible stochastic environment Dynamics of neura Env(ai+1), that provides an observation oi+1, and a reward, T n n ri+1. The stochastic return is given by R(q) := ∑ rt . The V˙i(t) = [Ii;L + ∑ Iˆi; j(t) + ∑ Ii; j(t)]=Ci;m t=1 j=1 j=1 objective of the Reinforcement learning is to find a q that Ii;L(t) = wi;L [Ei;L −Vi(t)] maximizes E R(q) .
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Identification of Neuronal Subpopulations That Project From
    Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically Sarah Stanleya,1, Shirly Pintoa,b,1, Jeremy Segala,c, Cristian A. Péreza, Agnes Vialea,d, Jeff DeFalcoa,e, XiaoLi Caia, Lora K. Heislerf, and Jeffrey M. Friedmana,g,2 aLaboratory of Molecular Genetics, Rockefeller University, New York, NY 10065; bMerck Research Laboratories, Rahway, NJ 07065; cDepartment of Pathology, Weill Cornell Medical College, New York, NY 10065; dGenomics Core Laboratory, Memorial Sloan Kettering Hospital, New York, NY 10065; eRenovis, San Fransisco, CA 94080; fDepartment of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom; and gHoward Hughes Medical Institute, Rockefeller University, New York, NY 10065 Contributed by Jeffrey M. Friedman, March 4, 2010 (sent for review January 6, 2010) The autonomic nervous system regulates fuel availability and of the solitary tract (NTS) (6) all modulate metabolic activity in energy storage in the liver, adipose tissue, and other organs; how- liver and white fat. Neuronal tracing studies confirm these areas, ever, the molecular components of this neural circuit are poorly and other studies innervate peripheral organs involved in car- understood. We sought to identify neural populations that project bohydrate and lipid metabolism (7–9). However, little is known from the CNS indirectly through multisynaptic pathways to liver of the site, organization, or connectivity of the CNS neural pop- and epididymal white fat in mice using pseudorabies
    [Show full text]
  • Neural Circuit Mechanisms of Value-Based Decision-Making and Reinforcement Learning A
    CHAPTER 13 Neural Circuit Mechanisms of Value-Based Decision-Making and Reinforcement Learning A. Soltani1, W. Chaisangmongkon2,3, X.-J. Wang3,4 1Dartmouth College, Hanover, NH, United States; 2King Mongkut’s University of Technology Thonburi, Bangkok, Thailand; 3New York University, New York, NY, United States; 4NYU Shanghai, Shanghai, China Abstract by reward-related signals. Over the course of learning, this synaptic mechanism results in reconfiguration of Despite groundbreaking progress, currently we still know the neural network to increase the likelihood of making preciously little about the biophysical and circuit mechanisms of valuation and reward-dependent plasticity underlying a rewarding choice based on sensory stimuli. The algo- adaptive choice behavior. For instance, whereas phasic firing rithmic computations of certain reinforcement models of dopamine neurons has long been ascribed to represent have often been translated to synaptic plasticity rules reward-prediction error (RPE), only recently has research that rely on the reward-signaling neurotransmitter begun to uncover the mechanism of how such a signal is dopamine (DA). computed at the circuit level. In this chapter, we will briefly review neuroscience experiments and mathematical models There are two main theoretical approaches to derive on reward-dependent adaptive choice behavior and then plasticity rules that foster rewarding behaviors. The first focus on a biologically plausible, reward-modulated Hebbian utilizes gradient-descent methods to directly maximize synaptic plasticity rule. We will show that a decision-making expected rewarddan idea known as policy gradient neural circuit endowed with this learning rule is capable of methods in machine learning [2,3]. Because neurons accounting for behavioral and neurophysiological observa- tions in a variety of value-based decision-making tasks, possess stochastic behaviors, many of these learning including foraging, competitive games, and probabilistic rules exploit the covariation between neural activity inference.
    [Show full text]
  • Synapses and Simple Neural Circuits! Summation of Signals! Some
    The synapse Synapses and Simple Neural neurotransmitter + Na Circuits + ! K Synaptic vesicles containing Presynaptic Today’s topics: membrane neurotransmitter • Review action potentials Voltage-gated • The Synapse Ca2+ channel – Summation Ca2+ – Neurotransmitters Postsynaptic – Various drugs membrane http://images.lifescript.com/images/ebsco/images/synapse_neurotransmitter.JPG • Memory Ligand-gated ion channels 2 April 2012 How is the signal sent? How is the signal turned off? Signals can be excitatory or inhibitory Summation of Signals! The effects are SUMMED EPSP - excitatory post-synaptic potential IPSP - inhibitory post-synaptic potential Example: Neuron D receives inputs from A, B, and C. How would you Some Neurotransmitters! make it fire under the situation: (see Table 48.1) • Acetylcholine! • Only when A and B are • Norepinephrine! both signaling? A • Dopamine! • Serotonin! • Either A or B? • Glutamate! • A and B but not C? B D • GABA! C • And lots more! 1 Table 48-1 Acts as Precursor L-Dopa-> Dopamine Stimulates Release of NT Black Widow venom-> Ach Blocks Relase of NT Botulinum -> Ach Blocks Reuptake Stimulates Receptors Cocaine -> Dopamine Nocotine -> Ach Blocks Receptors Curare, Atropine -> Ach Actions of Various Drugs Fig. 49-22 Nicotine stimulates Dopamine- releasing neuron. Opium and heroin decrease activity of inhibitory neuron. Cocaine and amphetamines block removal of dopamine. Reward system response Mescaline (from peyote) mimics norepinephrine. Psilocybe cubensis (Magic mushrooms) 2 Cell body of Gray A very simple sensory neuron in matter dorsal root neural circuit ganglion Memory! White matter NY Times! Spinal cord (cross section) Sensory neuron Motor neuron Fig. 49-3 Interneuron Fig. 49-19 Figure 49.20a N1 N1 Ca2+ Na+ N2 N2 (a) Synapses are strengthened or weakened in response to activity.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • A Gut-Brain Neural Circuit
    Rodger A. Liddle, J Neurol Neurosci 2019, Volume:10 DOI: 10.21767/2171-6625-C1-019 Rodger A. Liddle Duke University 5th EuroSciCon Conference on Neurology & Neurological Disorders March 04-05, 2019 | Amsterdam, Netherlands A gut-brain neural circuit Biography Rodger Liddle is Professor of Medicine at the Duke hallmark of Parkinson’s disease (PD) is the accumulation of intracellular University. Our laboratory has had a longstanding interest in two types of EECs that regulate satiety aggregates containing the neuronal protein α-synuclein known as A and signal the brain to stop eating. Cholecystokinin Lewy bodies. Clinical and pathological evidence indicates that abnormal (CCK) is secreted from EECs of the upper small α-synuclein is found in enteric nerves before it appears in the brain. It has intestine and regulates the ingestion and digestion been proposed that misfolded α-synuclein can form fibrils that may spread of food through effects on the stomach, gallbladder, from one neuron to another in a prion-like fashion eventually reaching the pancreas and brain. Peptide YY (PYY) is secreted from EECs of the small intestine and colon and brain. However, it is not known whether misfolding of α-synuclein in enteric regulates satiety. We recently demonstrated that nerves is the initiating event in the development of PD or whether other CCK and PYY cells not only secrete hormones but cells may be involved. Enteroendocrine cells (EECs) are sensory cells of are directly connected to nerves through unique the gastrointestinal tract and reside in the mucosal surface of the gut where cellular processes called ‘neuropods’.
    [Show full text]
  • Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer
    Ernsberger and Rohrer Neural Development (2018) 13:20 https://doi.org/10.1186/s13064-018-0117-6 REVIEW Open Access Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies Uwe Ernsberger* and Hermann Rohrer Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system. Keywords: Sympathetic, Parasympathetic, Transcription factor, Preganglionic, Postganglionic, Autonomic nervous system, Sacral, Pelvic ganglion, Heart Background interplay of nervous and hormonal control in particular The “great sympathetic”... “was the principal means of mediated by the sympathetic nervous system and the ad- bringing about the sympathies of the body”. With these renal gland in adapting the internal
    [Show full text]
  • Challenges in Modeling the Neural Control of LUT
    1 Challenges in modeling the neural control of LUT Vinay Guntu1, Benjamin Latimer1, Erin Shappell2, David J. Schulz3, Satish S. Nair1 1Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA 2Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA 3Division of Biological Sciences, University of Missouri, Columbia, MO, USA 1. Overview The lower urinary tract (LUT) in mammals consists of the urinary bladder, external urethral sphincter (EUS) and the urethra. Control of the LUT is achieved via a neural circuit which integrates two distinct components. One component of the neural circuit is ‘reflexive’ in that it relies solely on input from sensory neurons in the bladder and urethra that is fed back via spinal neurons to the LUT. The second neural component is termed ‘top-down’ and is a conditioned input that comes from structures such as Pontine Micturition center (PMC), and Pontine storage center (PSC), that also receive the afferent sensory input from the LUT relayed through periaqueductal gray (PAG). The reader is referred to excellent references such as [1-3] from de Groat’s group for the top down control, which is not discussed here. This chapter focuses primarily on outlining the challenges in the development of computational model of the neural circuit that controls the LUT. Section 2 describes the anatomy of the LUT with primary focus on the neural anatomy. We describe the overall efferent and afferent neural pathways of LUT and briefly discuss the neurotransmitters involved and known details related to species/sex differences and developmental changes. Section 3 provides a brief summary of efforts to model the various neural components of the LUT for the purpose of understanding how they might participate in control.
    [Show full text]
  • Surviving Threats: Neural Circuit and Computational Implications of a New Taxonomy of Defensive Behaviour
    REVIEWS Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour Joseph LeDoux1,2,3* and Nathaniel D. Daw4 Abstract | Research on defensive behaviour in mammals has in recent years focused on elicited reactions; however, organisms also make active choices when responding to danger. We propose a hierarchical taxonomy of defensive behaviour on the basis of known psychological processes. Included are three categories of reactions (reflexes, fixed reactions and habits) and three categories of goal-directed actions (direct action–outcome behaviours and actions based on implicit or explicit forecasting of outcomes). We then use this taxonomy to guide a summary of findings regarding the underlying neural circuits. Innate behaviours As soon as there is life, there is danger. distinctions have been studied mainly in appetitive 1 Behaviours, such as reflexes Ralph Waldo Emerson behaviour, it is similarly necessary to go beyond super‑ and fixed responses, that all ficial similarities and differences in order to understand members of a species share as As the eminent comparative psychologist T. C. Schneirla the psychological processes, computations and neural part of their heritage and that 2 make minimal demands on noted, behaviour is a decisive factor in natural selection : mechanisms underlying defensive responses. In light of learning. life is a dangerous undertaking, and those organisms this, we here propose a hierarchical taxonomy of defen‑ that are adept at surviving live to pass their genes on to sive behaviours on the basis of their known psychological their offspring. Predators are pervasive sources of harm processes. We use this framework to organize a review of to animals, and most predators are themselves prey to the neural circuit and, where possible, the computational other animals.
    [Show full text]
  • Neural Circuit and Cognitive Development
    Chapter 16 Development of the visual system Scott P. Johnson University of California, Los Angeles, CA, United States Chapter outline 16.1. Classic theoretical accounts 336 16.4.5. Development of visual memory 345 16.1.1. Piagetian theory 336 16.4.6. Development of visual stability 345 16.1.2. Gestalt theory 337 16.4.7. Object perception 346 16.2. Prenatal development of the visual system 337 16.4.8. Face perception 347 16.2.1. Development of structure in the visual system 338 16.4.9. Critical period for development of holistic 16.2.2. Prenatal visual function 338 perception 347 16.3. Visual perception in the newborn 339 16.5. How infants learn about objects 349 16.3.1. Visual organization at birth 340 16.5.1. Learning from targeted visual exploration 349 16.3.2. Visual behaviors at birth 340 16.5.2. Learning from associations between visible and 16.3.3. Faces and objects 340 occluded objects 350 16.4. Postnatal visual development 340 16.5.3. Learning from visual-manual exploration 350 16.4.1. Visual physiology 342 16.5.4. Hormonal and environmental influences on object 16.4.2. Critical periods 342 perception 352 16.4.3. Development of visual attention 343 16.6. Summary and conclusions 353 16.4.4. Cortical maturation and oculomotor development 343 References 355 The purpose of vision is to obtain information about the surrounding environment so that we may plan appropriate actions. Consider, for example, the view through the windshield when driving (Fig. 16.1). The driver must detect and react to the road and any possible obstacles, accommodating changes of direction and avoiding objects in the path; thus visual information helps guide decisions about where to steer and when to accelerate or brake.
    [Show full text]
  • A Neural Circuit for Competing Approach and Defense Underlying Prey Capture
    A neural circuit for competing approach and defense underlying prey capture Daniel Rossiera, Violetta La Francaa,b, Taddeo Salemia,c, Silvia Natalea,d, and Cornelius T. Grossa,1 aEpigenetics and Neurobiology Unit, European Molecular Biology Laboratory, 00015 Monterotondo (RM), Italy; bNeurobiology Master’s Program, Sapienza University of Rome, 00185 Rome, Italy; cDepartment of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; and dDivision of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy Edited by Michael S. Fanselow, University of California, Los Angeles, CA, and accepted by Editorial Board Member Peter L. Strick February 11, 2021 (received for review July 22, 2020) Predators must frequently balance competing approach and defen- studies is their use of two different Cre driver lines (Vgat::Cre sive behaviors elicited by a moving and potentially dangerous prey. versus Gad2::Cre) that have been shown to target distinct LHA Several brain circuits supporting predation have recently been local- GABAergic neurons (23). Thus, it remains unclear to what extent ized. However, the mechanisms by which these circuits balance the different populations of LHA GABAergic neurons specifically en- conflict between approach and defense responses remain unknown. code and control predatory behaviors. Laboratory mice initially show alternating approach and defense A link between LHA and PAG in predation was made by
    [Show full text]
  • Emerging Roles of Gut Microbiota and the Immune System in the Development of the Enteric Nervous System
    Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system Panagiotis S. Kabouridis, Vassilis Pachnis J Clin Invest. 2015;125(3):956-964. https://doi.org/10.1172/JCI76308. Review Series The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell–intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function. Initial reports confirm this idea while further studies in this area promise new insights into ENS physiology and pathophysiology. Find the latest version: https://jci.me/76308/pdf REVIEW SERIES: ENTERIC NERVOUS SYSTEM The Journal of Clinical Investigation Series Editor: Rodger Liddle Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system Panagiotis S. Kabouridis1,2 and Vassilis Pachnis2 1William Harvey Research Institute, Queen Mary University London, London, United Kingdom. 2Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, United Kingdom. The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell–intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function.
    [Show full text]