Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer

Total Page:16

File Type:pdf, Size:1020Kb

Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer Ernsberger and Rohrer Neural Development (2018) 13:20 https://doi.org/10.1186/s13064-018-0117-6 REVIEW Open Access Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies Uwe Ernsberger* and Hermann Rohrer Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system. Keywords: Sympathetic, Parasympathetic, Transcription factor, Preganglionic, Postganglionic, Autonomic nervous system, Sacral, Pelvic ganglion, Heart Background interplay of nervous and hormonal control in particular The “great sympathetic”... “was the principal means of mediated by the sympathetic nervous system and the ad- bringing about the sympathies of the body”. With these renal gland in adapting the internal milieu to the chan- words Langley [1, 2] summarized the ideas of Winslow ging external challenges the organism meets. [3] on connectivity and function of the intercostal nerve In this review we first describe the anatomical and in his treatise on human anatomy. Within the general physiological findings that led to the formulation of the term “sympathetic” he included three nerves, the inter- classical model of the autonomic nervous system, subdi- costal nerve or great sympathetic synonymous to the vided into sympathetic and parasympathetic subsystems, paravertebral sympathetic chain, the medium sympa- acting partly in antagonistic manner. The heart as a thetic synonymous to the par vagum or pair of vagus prime target of autonomic innervation is discussed with nerves and the small sympathetic synonymous to the respect to the historical unfolding of the physiological portio dura of the seventh nerve. Thus, nearly two cen- function of both autonomic nervous pathways regulating turies before the large breakthroughs in physiological heart activity, their anatomical trajectories and the posi- studies on nervous tissue and the synthesis of histo- tions of the neuron cell bodies involved. We then con- logical and cellular studies towards the neuron theory, sider the electrophysiological and neurochemical the vagus and sympathetic nerves were linked by their features of autonomic neurons, to illustrate neuron di- naming and the assumption that these nerves are sub- versity even within each of the autonomic subsystems stantially involved in the matching of functional states and to compare the cranial, thoracolumbar and sacral among the different organs. This idea was taken up two autonomic domains, their constituent cells and targets. centuries later by Cannon [4] in his monograph “The This paves the way to delineate neuron development Wisdom of the Body” and the attempt to understand the and factors regulating the acquisition of neuron subtype- specific features determining functional properties. We * Correspondence: [email protected] highlight transcription factor fingerprints of pregangli- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, onic and postganglionic neurons at different axial levels 60590 Frankfurt/Main, Germany © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Ernsberger and Rohrer Neural Development (2018) 13:20 Page 2 of 21 that suggest a sympathetic rather than parasympathetic de- subdivision. While the effects of adrenaline closely resem- velopmental profile of the sacral spinal cord outflow, which ble the majority but not all effects of sympathetic nerve stands in stark contrast to the classical model of auto- stimulation, the effects of pilocarpine mimic the effects of nomic neuron domains. Then we discuss the limitations of parasympathetic nerve stimulation. our understanding of the mechanisms responsible for the For Langley [1, 14]itappearedconvenienttocoverthe selective innervation of postganglionic neuron populations tectal and the bulbo – sacral nerves under the name para- by the appropriate preganglionic neurons. Together with sympathetic since they differ in their pharmacological re- the more detailed characterization of a range of autonomic sponse from the sympathetic nerves whose action in neuron populations so far underrepresented in the mo- general can be mimicked by application of adrenaline. He lecular and developmental analysis, a comprehensive un- was eager to point out, however, that the sweat gland derstanding of the cellular composition and connectivity of regulation by sympathetic nerves poses an exception as this the autonomic nervous system is expected to emerge. target tissue responds to pilocarpine similar to parasympa- thetic target tissues. In addition, Langley emphasized that Main text sympatheticnervessupplyallpartsofthebodywhilethe Formulation of the classical model for the autonomic or parasympathetic nerves supply only special parts. involuntary nervous system at the turn to the 20th century An important issue in Langley’ssynthesis[1] is the dis- During the last two decades of the 19th century a series cussion of the source of the preganglionic axons to the of keystone publications on structure and function of sympathetic and parasympathetic system. He emphasized autonomic nerves were released from the Gaskell and the critical contribution by Gaskell [5, 7] on the distribu- Langley labs that provided the foundation for the think- tion of myelinated fibers in the communicating rami, ing about the “autonomic” [1]or“involuntary” [5] ner- pointing out the gaps in their presence between thoracol- vous system dominating the 20th century. umbar levels and cranial as well as sacral levels. This is Gaskell attempted to replace the nomenclature of the nicely illustrated by Gaskell [7] in his classical publication efferent nerves, which to him in part appeared entirely on the white and gray rami communicantes and the vis- artificial or hypothetical, by fundamental divisions of the ceral nerves in particular in dogs as well as by Pick and nervous system where physiological and structural prop- Sheehan [15] presenting a drawing of the macroscopic erties can be grouped together. In a series of landmark situation in man from cervical to sacral levels and papers on the nerves innervating the heart [6], the vis- cross-sections on individual rami communicantes. ceral and vascular systems [7] and the cranial nerves [8], Gaskell noticed the differences in the presence of small Integration of knowledge into the classical model of the and non-myelinated (non-medullated) fibers in the autonomic nervous system during the 20th century nerves leaving the central nervous system from cranial The classical model of the sympathetic and parasympa- to sacral levels. This histological approach to classify the thetic nervous system provided an amazingly constructive efferent nervous system to the vascular and visceral framework for results coming in from the biomedical dis- muscles led to a subdivision into bulbar, thoracolumbar ciplines at increasing speed. The division into two subsys- and sacral parts in addition to a small mesencephalic tems acting at least in part in an antagonistic manner section [5]. A very similar conclusion was drawn by based on two neurotransmitter systems provided a very at- Langley [1] from a series of studies combining histological tractive framework for considering system biological analysis, electrical stimulation, pharmacological interven- problems and to confront a vast range of therapeutic chal- tion and nerve transection in the autonomic nervous sys- lenges. The opposite action of sympathetic and parasym- tem as exemplified by a series of treatises on the pathetic stimulation on the ciliary muscle, the heart and innervation of the pelvic and adjoining viscera [9–12]. the reproductive organs were but three examples where The use of nicotine allowed the interruption of ganglionic the attraction of this approach became apparent. Histo- transmission and the separation of preganglionic and logical, electrophysiological, pharmacological and neuro- postganglionic effects upon electrical stimulation of auto- chemical approaches became the main motors to nomic nerves. With the help of adrenaline and pilocar- complete an anatomical and physiological description of pine, as exemplified by the analysis of sweat gland cellular structure and function of the autonomic nervous regulation
Recommended publications
  • The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
    life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions.
    [Show full text]
  • Cardiac Sympathectomy and Spinal Cord Stimulation Attenuate Reflex-Mediated Norepinephrine Release During Ischemia Preventing Ventricular Fibrillation
    Cardiac sympathectomy and spinal cord stimulation attenuate reflex-mediated norepinephrine release during ischemia preventing ventricular fibrillation Jeffrey L. Ardell, … , J. Andrew Armour, Kalyanam Shivkumar JCI Insight. 2019. https://doi.org/10.1172/jci.insight.131648. Research In-Press Preview Cardiology Neuroscience Rationale: Reflex-mediated sympathoexcitation is central to the pathogenesis of arrhythmias and heart disease; neuraxial modulation can favorably attenuate these cardiac reflexes leading to cardioprotection. Objective: The purpose of this study was to define the mechanism by which cardiac neural decentralization and spinal cord stimulation (SCS) reduces ischemia-induced ventricular fibrillation (VF) and sudden cardiac death (SCD) by utilizing direct neurotransmitter measurements in the heart. Methods and Results: Direct measurement of norepinephrine (NE) levels in the left ventricular (LV) interstitial fluid (ISF) by microdialysis in response to transient left anterior descending coronary artery occlusion (CAO: 15 min) in anesthetized canines. Responses were studied with: (i) intact neuraxis and were compared to those in which the (ii) intrathoracic component of the cardiac neuraxis (stellate ganglia),(iii) the intrinsic cardiac neuronal (ICN) system were surgically delinked from the central nervous system versus (iv) subjects with intact neuraxis subjected to pre-emptive SCS (T1-T3 spinal level). With an intact neuraxis, animals with exaggerated NE-ISF levels in response to CAO were at increased risk for VF and SCD. During CAO there was a 152% increase in NE level when the entire neuraxis was intact compared to 114% following intrathoracic neuraxial decentralization (removal of the stellates) and 16% increase following ICN decentralization, when the entire heart and ICN was delinked from the other levels of the neuraxis.
    [Show full text]
  • Autonomic Nerve Activity and Cardiac Arrhythmias
    ACORP Complete (with appendices) Last Name of PI► Protocol No. Assigned by the IACUC►02002 Official Date of Approval► 1. Caging needs. Complete the table below to describe the housing that will have to be accommodated by the housing sites for this protocol: d. Is this housing e. Estimated c. Number of consistent with the maximum number a. Species b. Type of housing* individuals per Guide and USDA of housing units housing unit** regulations? needed at any one (yes/no***) time Chain link run, 3x6 Canines 1 no 7 and 4x10 feet cage *See ACORP Instructions, for guidance on describing the type of housing needed. If animals are to be housed according to a local Standard Operating Procedure (SOP), enter “standard (see SOP)” here, and enter the SOP into the table in Item Y. If the local standard housing is not described in a SOP, enter “standard, see below” in the table and describe the standard housing here: Chain link run, 3x6 feet cages ** The Guide states that social animals should generally be housed in stable pairs or groups. Provide a justification if any animals will be housed singly (if species is not considered “social”, then so note) Dogs are housed singly in chain link runs but can socialize with one another since each room has two to five dog runs. In addition, while their runs are being cleaned on a daily basis, pairs of dogs are allowed to exercise and play together in a designated "romper room". Animals are fitted with DSI transmitters and need to be housed singly in a cage for which DSI receivers are installed to receive signals from the transmitters.
    [Show full text]
  • Identification of Neuronal Subpopulations That Project From
    Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically Sarah Stanleya,1, Shirly Pintoa,b,1, Jeremy Segala,c, Cristian A. Péreza, Agnes Vialea,d, Jeff DeFalcoa,e, XiaoLi Caia, Lora K. Heislerf, and Jeffrey M. Friedmana,g,2 aLaboratory of Molecular Genetics, Rockefeller University, New York, NY 10065; bMerck Research Laboratories, Rahway, NJ 07065; cDepartment of Pathology, Weill Cornell Medical College, New York, NY 10065; dGenomics Core Laboratory, Memorial Sloan Kettering Hospital, New York, NY 10065; eRenovis, San Fransisco, CA 94080; fDepartment of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom; and gHoward Hughes Medical Institute, Rockefeller University, New York, NY 10065 Contributed by Jeffrey M. Friedman, March 4, 2010 (sent for review January 6, 2010) The autonomic nervous system regulates fuel availability and of the solitary tract (NTS) (6) all modulate metabolic activity in energy storage in the liver, adipose tissue, and other organs; how- liver and white fat. Neuronal tracing studies confirm these areas, ever, the molecular components of this neural circuit are poorly and other studies innervate peripheral organs involved in car- understood. We sought to identify neural populations that project bohydrate and lipid metabolism (7–9). However, little is known from the CNS indirectly through multisynaptic pathways to liver of the site, organization, or connectivity of the CNS neural pop- and epididymal white fat in mice using pseudorabies
    [Show full text]
  • 'Voodoo' Death Revisited: the Modern Lessons of Neurocardiology†
    KEYNOTE ADDRESS MARTIN A. SAMUELS, MD, DSc (hon), FAAN, MACP* Neurologist-in-Chief and Chairman Department of Neurology Brigham and Women’s Hospital Professor of Neurology Harvard Medical School Boston, MA ‘Voodoo’ death revisited: The modern lessons of neurocardiology† n 1942, Walter Bradford Cannon published a personal danger or threat of injury; (7) after danger is remarkable paper entitled “‘Voodoo’ Death,”1 in over; and (8) reunion, triumph, or happy ending. which he recounted anecdotal experiences, largely Common to all is that they involve events impossible I from the anthropology literature, of death from for the victim to ignore and to which the response is fright. These events, drawn from widely disparate parts overwhelming excitation, giving up, or both. of the world, had several features in common. They were In 1957, Carl Richter reported on a series of experi- all induced by an absolute belief that an external force, ments aimed at elucidating the mechanism of such as a wizard or medicine man, could, at will, cause Cannon’s “voodoo” death.3 Richter studied the length demise and that the victim himself had no power to alter of time domesticated rats could swim at various water this course. This perceived lack of control over a power- temperatures and found that at a water temperature of ful external force is the sine qua non for all the cases 93º these rats could swim for 60 to 80 minutes. recounted by Cannon, who postulated that death was However, if the animal’s whiskers were trimmed, it caused “by a lasting and intense action of the sym- would invariably drown within a few minutes.
    [Show full text]
  • The Sympathetic and the Parasympathetic Nervous System
    The sympathetic and the parasympathetic nervous system Zsuzsanna Tóth, PhD Institute of Anatomy, Histology and Embryology Semmelweis University The role of the autonomic nervous system Claude Bernard • „milieu intérieur” concept; every organism lives in its internal environment that is constant and independent form the external environment Walter Bradford Cannon homeostasis; • an extension of the “milieu interieur” concept • consistence in an open system requires mechanisms that act to maintain that consistency • steady-state conditions require that any tendency toward change automatically meets with factors that resist that change • regulating systems that determine the homeostatic state : o autonomic nervous system ( sympathetic, parasympathetic, enteral) o endocrine system General structure of the autonomic nervous system craniosacral thoracolumbar Anatomy Neurotransmittersof the gut autonomic nervous system. symp. gangl pregangl. fiber pregangl. postgangl. fiber fiber (PoR) PoR enteral ganglion PoR PoR smooth muscle smooth muscle Kuratani S Development 2009;136:1585-1589 Sympathetic activation: Fight or flight reaction • energy mobilization • preparation for escape, or fight vasoconstriction • generalized Parasympathetic activation: adrenal • energy saving and restoring • „rest and digest” system • more localized vasoconstriction Paravertebral ganglia and the sympathetic chains pars cervicalis superius ganglion medium cervicale stellatum pars vertebrae • from the base of the skull to the caudal end thoracalis thoracalis of the sacrum • paravertebral ganglia (ganglia trunci sympathici) • rami interganglionares pars vertebrae • the two chains fuses at the ganglion impar abdominalis lumbalis sacrum pars pelvina foramen sacralia anteriora ganglion impar Anatomy of the cervical part of the sympathetic trunk superior cervical ganglion • behind the seath of the carotid, fusiform ggl. cervicale superius • IML T1-3 vegetative motoneurons- preganglionic fibers truncus symp.
    [Show full text]
  • Simple Ways to Dissect Ciliary Ganglion for Orbital Anatomical Education
    OkajimasDetection Folia Anat. of ciliary Jpn., ganglion94(3): 119–124, for orbit November, anatomy 2017119 Simple ways to dissect ciliary ganglion for orbital anatomical education By Ming ZHOU, Ryoji SUZUKI, Hideo AKASHI, Akimitsu ISHIZAWA, Yoshinori KANATSU, Kodai FUNAKOSHI, Hiroshi ABE Department of Anatomy, Akita University Graduate School of Medicine, Akita, 010-8543 Japan –Received for Publication, September 21, 2017– Key Words: ciliary ganglion, orbit, human anatomy, anatomical education Summary: In the case of anatomical dissection as part of medical education, it is difficult for medical students to find the ciliary ganglion (CG) since it is small and located deeply in the orbit between the optic nerve and the lateral rectus muscle and embedded in the orbital fat. Here, we would like to introduce simple ways to find the CG by 1): tracing the sensory and parasympathetic roots to find the CG from the superior direction above the orbit, 2): transecting and retracting the lateral rectus muscle to visualize the CG from the lateral direction of the orbit, and 3): taking out whole orbital structures first and dissecting to observe the CG. The advantages and disadvantages of these methods are discussed from the standpoint of decreased laboratory time and students as beginners at orbital anatomy. Introduction dissection course for the first time and with limited time. In addition, there are few clear pictures in anatomical The ciliary ganglion (CG) is one of the four para- textbooks showing the morphology of the CG. There are sympathetic ganglia in the head and neck region located some scientific articles concerning how to visualize the behind the eyeball between the optic nerve and the lateral CG, but they are mostly based on the clinical approaches rectus muscle in the apex of the orbit (Siessere et al., rather than based on the anatomical procedure for medical 2008).
    [Show full text]
  • Neuromodulation Therapies for Intractable Angina: a Review
    Research Article Clinics in Surgery Published: 06 Apr, 2021 Neuromodulation Therapies for Intractable Angina: A Review Patel S1* and Mammis A2 1Department of Neurosurgery, Rutgers New Jersey Medical School, USA 2Department of Neurosurgery, New York University School of Medicine, USA Abstract Background: Transcutaneous Electrical Nerve Stimulation (TENS) and Spinal Cord Stimulation (SCS) are neuromodulation therapies that have shown to be effective as treatments for the care of Intractable Angina. In addition, Stellate Ganglion Block (SGB), although not considered a neuromodulation therapy, has proven to be a successful interventional therapy. Objective: With the minimal research studying the use of neuromodulation therapies to treat intractable angina, this review looks to summarize the pre-existing data published and see which neuromodulation therapies have proven to be successful in treating patients with Intractable Angina. Methods: A literature search was done on PubMed, Google Scholars, and ResearchGate to discover 3 different neuromodulation therapies that have shown to be effective in the treatment of intractable angina. Factors that were searched for include safety, complications, and the application of the neuromodulation therapy. Results: 12 articles were analyzed with 3 three different neuromodulation therapies. For Spinal Cord Stimulation (SCS), 19 patients were implanted for SCS and the results found that both admission rate and hospital stay time were lower after SCS (0.97 vs. 0.27) and (8.3 days vs. 2.5 days). For Transcutaneous Electrical Nerve Stimulation (TENS), results have shown reduced frequency of anginal attacks, and increased work capacity. For Stellate Ganglion Block (SGB), the mean pain relief duration was 3.5 weeks. SBG has proven to be an alternative neuromodulation invasive strategy for the treatment of intractable angina.
    [Show full text]
  • Association of Arrhythmia in Patients with Cervical Spondylosis: a Nationwide Population-Based Cohort Study
    Journal of Clinical Medicine Article Association of Arrhythmia in Patients with Cervical Spondylosis: A Nationwide Population-Based Cohort Study Shih-Yi Lin 1,2, Wu-Huei Hsu 1,3, Cheng-Chieh Lin 1,4, Cheng-Li Lin 5,6, Chun-Hao Tsai 1,7, Chih-Hsueh Lin 1,4, Der-Cherng Chen 7, Tsung-Chih Lin 8, Chung-Y. Hsu 1 and Chia-Hung Kao 1,9,10,* ID 1 Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 404, Taiwan; [email protected] (S.-Y.L.); [email protected] (W.-H.H.); [email protected] (C.-C.L.); [email protected] (C.-H.T.); [email protected] (C.-H.L.); [email protected] (C.-Y.H.) 2 Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung 404, Taiwan 3 Division of Pulmonary and Critical Care Medicine, China Medical University Hospital and China Medical University, Taichung 404, Taiwan 4 Department of Family Medicine, China Medical University Hospital, Taichung 404, Taiwan 5 Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan; [email protected] 6 College of Medicine, China Medical University, Taichung 404, Taiwan 7 Department of Orthopedics, China Medical University Hospital, Taichung 404, Taiwan; [email protected] 8 Department of Orthopedics, St. Martin De Porres Hospital, Chiayi 600, Taiwan; [email protected] 9 Department of Nuclear Medicine, China Medical University Hospital, Taichung 404, Taiwan 10 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan * Correspondence: [email protected]; Tel.: +886-4-2205-2121 (ext.
    [Show full text]
  • Neural Circuit Mechanisms of Value-Based Decision-Making and Reinforcement Learning A
    CHAPTER 13 Neural Circuit Mechanisms of Value-Based Decision-Making and Reinforcement Learning A. Soltani1, W. Chaisangmongkon2,3, X.-J. Wang3,4 1Dartmouth College, Hanover, NH, United States; 2King Mongkut’s University of Technology Thonburi, Bangkok, Thailand; 3New York University, New York, NY, United States; 4NYU Shanghai, Shanghai, China Abstract by reward-related signals. Over the course of learning, this synaptic mechanism results in reconfiguration of Despite groundbreaking progress, currently we still know the neural network to increase the likelihood of making preciously little about the biophysical and circuit mechanisms of valuation and reward-dependent plasticity underlying a rewarding choice based on sensory stimuli. The algo- adaptive choice behavior. For instance, whereas phasic firing rithmic computations of certain reinforcement models of dopamine neurons has long been ascribed to represent have often been translated to synaptic plasticity rules reward-prediction error (RPE), only recently has research that rely on the reward-signaling neurotransmitter begun to uncover the mechanism of how such a signal is dopamine (DA). computed at the circuit level. In this chapter, we will briefly review neuroscience experiments and mathematical models There are two main theoretical approaches to derive on reward-dependent adaptive choice behavior and then plasticity rules that foster rewarding behaviors. The first focus on a biologically plausible, reward-modulated Hebbian utilizes gradient-descent methods to directly maximize synaptic plasticity rule. We will show that a decision-making expected rewarddan idea known as policy gradient neural circuit endowed with this learning rule is capable of methods in machine learning [2,3]. Because neurons accounting for behavioral and neurophysiological observa- tions in a variety of value-based decision-making tasks, possess stochastic behaviors, many of these learning including foraging, competitive games, and probabilistic rules exploit the covariation between neural activity inference.
    [Show full text]
  • The Neuroanatomy of Female Pelvic Pain
    Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis.
    [Show full text]
  • Neuronal Types and Their Specification Dynamics in the Autonomic Nervous System
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM Alessandro Furlan Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB © Alessandro Furlan, 2016 ISBN 978-91-7676-419-0 On the cover: abstract illustration of sympathetic neurons extending their axons Credits: Gioele La Manno NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM THESIS FOR DOCTORAL DEGREE (Ph.D.) By Alessandro Furlan Principal Supervisor: Opponent: Prof. Patrik Ernfors Prof. Hermann Rohrer Karolinska Institutet Max Planck Institute for Brain Research Department of Medical Biochemistry and Research Group Developmental Neurobiology Biophysics Division of Molecular Neurobiology Examination Board: Prof. Jonas Muhr Co-supervisor(s): Karolinska Institutet Prof. Ola Hermansson Department of Cell and Molecular Biology Karolinska Institutet Department of Neuroscience Prof. Tomas Hökfelt Karolinska Institutet Assistant Prof. Francois Lallemend Department of Neuroscience Karolinska Institutet Division of Chemical Neurotransmission Department of Neuroscience Prof. Ted Ebedal Uppsala University Department of Neuroscience Division of Developmental Neuroscience To my parents ABSTRACT The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbation of autonomic nervous system activity can lead to a broad spectrum of disorders collectively known as dysautonomia and other diseases such as hypertension.
    [Show full text]