Thoracic Anatomy Autonomic Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Thoracic Anatomy Autonomic Nervous System Thoracic anatomy Autonomic nervous system Thoracic Anatomy 3.G.1.1 James Mitchell (December 24, 2003) Autonomic nervous system Division by direction Visceral efferent Preganglionic myelinated, postganglionic unmyelinated Synapse in ganglia Visceral afferent Similar to somatic afferent Cell body in CNS, peripheral processes travel with autonomic and somatic fibres Division by outflow Sympathetic Thoracolumbar outflow: T1-L3 Synapse in sympathetic trunk ganglia or other ganglia near CNS Preganglionic cholinergic, postganglionic predominantly noradrenergic (also adrenergic, cholinergic sudomotor and purinergic) Parasympathetic Craniosacral outflow: III, VII, IX, X, S2-4 Synapse adjacent to end-organs Cranial nerve parasympathetic ganglia are traversed by other fibres but contain only parasympathetic synapses Parasympathetic anatomy III Edinger-Westphal nuclei → oculomotor n. → n. to inferior oblique → ciliary ganglion → short ciliary nn. → ciliary muscle and sphincter pupillae VII Superior salivatory nucleus → nervus intermedius → facial n. → chorda tympani → lingual n. → submandibular ganglion → submandibular and sublingual glands Geniculate ganglion → greater petrosal n. → pterygopalatine ganglion → zygomatic and lacrimal nerves to lacrimal gland and nasal and palatine branches to nasal mucosa XI Inferior salivatory nucleus → glossopharyngeal nerve → tympanic plexus → lesser petrosal n. → otic ganglion → auriculotemporal n. → parotid gland and oral mucosa X Dorsal nucleus of vagus → vagus n. → minute ganglia in respiratory tract, heart, kidneys and gastrointestinal viscera from oesophagus to mid transverse colon. Most vagal fibres are afferent, there is a very large ratio of postganglionic to preganglionic efferent fibres. S2-4 Anterior rami → sacral spinal nerves → pelvic viscera and pelvic plexus → bladder, erectile tissue, gonads, uterus and uterine tubes, hindgut from mid transverse colon to rectum Sympathetic anatomy Preganglionic efferent Lateral column cell body → ventral root → white ramus communicans → sympathetic trunk → synapse in trunk or other ganglia or adrenal Postganglionic May ascend or descend in the trunk, rejoin all spinal nerves via grey rami communicantes or leave in direct branches to vessels or viscera Distribution Cranial Internal carotid plexus arises from superior cervical ganglion and Thoracic Anatomy 3.G.1.2 James Mitchell (December 24, 2003) accompanies carotid into the cranium and along anterior and middle cerebral arteries and ophthalmic artery Cervical Sympathetic chain condenses usually into three ganglia on each side: superior (C2-3), middle (C6) and cervicothoracic (stellate, T1) cervical ganglia Cardiac plexus Derived from T1-4 (and X) via cervical and thoracic ganglia Surrounds heart, great vessels and coronaries Pulmonary plexuses Coeliac plexus Two ganglia opposite T12-L1 with large condensation of autonomic fibres Gives rise to phrenic, splenic, hepatic, left gastric, intermesenteric, suprarenal, renal, gonadal, superior and inferior mesenteric plexuses which accompany arteries to their target organs Superior hypogastric plexus Inferior hypogastric plexus Supplies hindgut, ureter, bladder, gonads, sex organs Somatic levels of visceral afferents Organ Sympathetic Parasympathetic Heart T1-5 X Lungs T2-4 X Oesophagus T5-6 X Stomach T6-10 X Liver, gallbladder T6-10 X Pancreas, spleen T6-10 X Small bowel T9-10 X Large bowel T11-12 X to mid transverse Kidney, ureter T10-L2 X, S2-4 Adrenal T8-L1 none Gonads T10-11 S2-4 Bladder T11-L2 S2-4 Prostate T11-L1 S2-4 Uterus T10-L1 S2-4 Thoracic Anatomy 3.G.1.3 James Mitchell (December 24, 2003).
Recommended publications
  • Simple Ways to Dissect Ciliary Ganglion for Orbital Anatomical Education
    OkajimasDetection Folia Anat. of ciliary Jpn., ganglion94(3): 119–124, for orbit November, anatomy 2017119 Simple ways to dissect ciliary ganglion for orbital anatomical education By Ming ZHOU, Ryoji SUZUKI, Hideo AKASHI, Akimitsu ISHIZAWA, Yoshinori KANATSU, Kodai FUNAKOSHI, Hiroshi ABE Department of Anatomy, Akita University Graduate School of Medicine, Akita, 010-8543 Japan –Received for Publication, September 21, 2017– Key Words: ciliary ganglion, orbit, human anatomy, anatomical education Summary: In the case of anatomical dissection as part of medical education, it is difficult for medical students to find the ciliary ganglion (CG) since it is small and located deeply in the orbit between the optic nerve and the lateral rectus muscle and embedded in the orbital fat. Here, we would like to introduce simple ways to find the CG by 1): tracing the sensory and parasympathetic roots to find the CG from the superior direction above the orbit, 2): transecting and retracting the lateral rectus muscle to visualize the CG from the lateral direction of the orbit, and 3): taking out whole orbital structures first and dissecting to observe the CG. The advantages and disadvantages of these methods are discussed from the standpoint of decreased laboratory time and students as beginners at orbital anatomy. Introduction dissection course for the first time and with limited time. In addition, there are few clear pictures in anatomical The ciliary ganglion (CG) is one of the four para- textbooks showing the morphology of the CG. There are sympathetic ganglia in the head and neck region located some scientific articles concerning how to visualize the behind the eyeball between the optic nerve and the lateral CG, but they are mostly based on the clinical approaches rectus muscle in the apex of the orbit (Siessere et al., rather than based on the anatomical procedure for medical 2008).
    [Show full text]
  • The Neuroanatomy of Female Pelvic Pain
    Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis.
    [Show full text]
  • Neuronal Types and Their Specification Dynamics in the Autonomic Nervous System
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM Alessandro Furlan Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB © Alessandro Furlan, 2016 ISBN 978-91-7676-419-0 On the cover: abstract illustration of sympathetic neurons extending their axons Credits: Gioele La Manno NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM THESIS FOR DOCTORAL DEGREE (Ph.D.) By Alessandro Furlan Principal Supervisor: Opponent: Prof. Patrik Ernfors Prof. Hermann Rohrer Karolinska Institutet Max Planck Institute for Brain Research Department of Medical Biochemistry and Research Group Developmental Neurobiology Biophysics Division of Molecular Neurobiology Examination Board: Prof. Jonas Muhr Co-supervisor(s): Karolinska Institutet Prof. Ola Hermansson Department of Cell and Molecular Biology Karolinska Institutet Department of Neuroscience Prof. Tomas Hökfelt Karolinska Institutet Assistant Prof. Francois Lallemend Department of Neuroscience Karolinska Institutet Division of Chemical Neurotransmission Department of Neuroscience Prof. Ted Ebedal Uppsala University Department of Neuroscience Division of Developmental Neuroscience To my parents ABSTRACT The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbation of autonomic nervous system activity can lead to a broad spectrum of disorders collectively known as dysautonomia and other diseases such as hypertension.
    [Show full text]
  • The Sacral Autonomic Outflow Is Sympathetic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery The sacral autonomic outflow is sympathetic Isabel Espinosa-Medina1,†, Orthis Saha1,†, Franck Boismoreau1, Zoubida Chettouh1, Francesca Rossi1, William D. Richardson2 and Jean-François Brunet1* 1 Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, École Normale Supérieure, PSL Research University, Paris, 75005 France. 2 Wolfson Institute for Biomedical Research, University College London, London UK. †These authors contributed equally to this work *Correspondence to [email protected] 1 Abstract In the autonomic nervous system of mammals and birds, sacral preganglionic neurons are considered parasympathetic, as are their targets in the pelvic ganglia that prominently control rectal, bladder and genital functions. The allocation of the sacral autonomic outflow to the parasympathetic nervous system —i.e. as the second tier of a “cranio-sacral outflow”— has an ancient history: rooted in the work of Gaskell 1, formalized by Langley2 and universally accepted ever since (e.g. 3). The rationale lied in several perceived similarities between the sacral and cranial outflows: anatomical —separation from the thoracolumbar, sympathetic outflow by a gap at limb levels 1, a target territory less diffuse than that of the latter and a lack of projections to the paravertebral sympathetic chain 1; physiological —an influence on some organs opposite to that of the thoracolumbar outflow 4; and pharmacological — an overall sensitivity to muscarinic antagonists2. However, cell-phenotypic criteria have been lacking and were never sought. Here we uncover fifteen phenotypic and ontogenetic features that distinguish pre- and postganglionic neurons of the cranial parasympathetic outflow from those of the thoracolumbar sympathetic outflow.
    [Show full text]
  • Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer
    Ernsberger and Rohrer Neural Development (2018) 13:20 https://doi.org/10.1186/s13064-018-0117-6 REVIEW Open Access Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies Uwe Ernsberger* and Hermann Rohrer Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system. Keywords: Sympathetic, Parasympathetic, Transcription factor, Preganglionic, Postganglionic, Autonomic nervous system, Sacral, Pelvic ganglion, Heart Background interplay of nervous and hormonal control in particular The “great sympathetic”... “was the principal means of mediated by the sympathetic nervous system and the ad- bringing about the sympathies of the body”. With these renal gland in adapting the internal
    [Show full text]
  • Nerve Cell Bodies and Small Ganglia in the Connective Tissue Stroma of Human Submandibular Glands
    Neuroscience Letters 475 (2010) 53–55 Contents lists available at ScienceDirect Neuroscience Letters journal homepage: www.elsevier.com/locate/neulet Nerve cell bodies and small ganglia in the connective tissue stroma of human submandibular glands Konstantinos I. Tosios a,∗, Michail Nikolakis a, Andreas Christoforos Prigkos a, Smaragda Diamanti a,b, Alexandra Sklavounou a a Department of Oral Pathology, Dental School, National and Kapodistrian University of Athens, 11527 Athens, Greece b Stomatology Clinic, 251 Hellenic Air Force General Hospital, Athens, Greece article info abstract Article history: The objective of the study was to investigate the presence and distribution of nerve cell bodies and Received 13 February 2010 small ganglia in the stroma of human submandibular gland. A retrospective immunohistochemical study Received in revised form 15 March 2010 in 13 human submandibular glands, fixed in neutral buffered formalin and embedded in paraffin wax, Accepted 16 March 2010 was undertaken. Six glands were excised in the course of radical neck dissection for oral squamous cell carcinoma and were disease-free, six showed sialadenitis, and one was involved by tuberculosis. Primary Keywords: antibodies applied were neuron specific enolase, synaptophysin, and glial fibrilliary acidic protein. Neuron Salivary glands specific enolase and synaptophysin positive nerve cell bodies and small ganglia were found in 8/13 and Submandibular gland Nerve tissue 13/13 glands, respectively. They were found in the interlobular connective tissue stroma of human SMG, Ganglion cells in close association to salivary parenchymal cells and blood vessels, and some of them were incorporated in GFAP positive peripheral nerves. To our knowledge, nerve cell bodies and small ganglia have been described only in the connective tissue stroma of autotransplanted human SMG and their functional importance is not clear.
    [Show full text]
  • Morphology of Sympathetic Chain in Saguinus Niger
    Anais da Academia Brasileira de Ciências (2013) 85(1): 365-370 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Morphology of sympathetic chain in Saguinus niger MARINA P.E. PINTO1, ÉRIKA BRANCO1, EMERSON T. FIORETTO2, LUIZA C. PEREIRA3 and ANA R. LIMA1 1Universidade Federal Rural da Amazônia (UFRA), Instituto de Saúde e Produção Animal – ISPA, Faculdade de Medicina Veterinária, Avenida Perimetral, 2501, Belém, PA, Brasil 2 Universidade Federal de Sergipe (UFS), Cidade Universitária Professor José Aloísio de Campos, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristovão, Aracajú, SE, Brasil 3 Empresa Hydro LTDA, Mina de Bauxita – Paragominas, PA, Brasil Manuscript received on March 20, 2012; accepted for publication on October 2, 2012 ABSTRACT Saguinus niger popularly known as Sauim, is a Brazilian North primate. Sympathetic chain investigation would support traumatic and/or cancer diagnosis which are little described in wild animals. The aim of this study was to describe the morphology and distribution of sympathetic chain in order to supply knowledge for neurocomparative research. Three female young animals that came death by natural causes were investigated. Animals were fixed in formaldehyde 10% and dissected along the sympathetic chain in neck, thorax and abdomen. Cranial cervical ganglion was located at the level of carotid bifurcation, related to carotid internal artery. In neck basis the vagosympathetic trunk divides into the sympathetic trunk and the parasympathetic vagal nerve. Sympathetic trunk ran in dorsal position and originated the stellate ganglia, formed by the fusion of caudal cervical and first thoracic ganglia.
    [Show full text]
  • Synaptic Transmission and Modulation in Submandibular Ganglia: Aspects of a Current-Clamp Study
    Bull. Tokyo dent. Coll., Vol. 41, No. 4, pp.149ϳ167, November, 2000 149 Review Article SYNAPTIC TRANSMISSION AND MODULATION IN SUBMANDIBULAR GANGLIA: ASPECTS OF A CURRENT-CLAMP STUDY TAKASHI SUZUKI Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan Received 8 September, 2000/Accepted for Publication 10 October, 2000 Abstract The superior salivatory nucleus in the medulla oblongata is the parasympathetic center of the sublingual and the submandibular (SM) glands. The preganglionic axons originating in this parasympathetic center connect postganglionic neurons in the sub- mandibular ganglia. In spite of an earlier electrophysiological study by Langley in 189013), intracellular electrical studies on SM ganglion neurons had not been done because of the technical difficulties in impaling neurons. It was in only 1972 that the authors begun the intracellular electrical studies of SM ganglia in adult rats and hamsters. In this review, we describe the membrane properties of neurons, spontaneous activities of neurons, types of connection between pre- and post-ganglionic neurons, synaptic potentials including fast EPSP, slow IPSP, slow EPSP and slow hyperpolarizing synaptic potential, characteris- tics of the reflex spike discharges and modulation of synaptic transmission by biogenic substances in SM ganglion neurons. Transfer of information within the ganglia is more complex than simple nicotinic-cholinergic relay, and seems to be specialized for compat- ibility with the salivary glands. These data reflect the specific characteristics of synaptic transmission in the SM ganglia. Key words: Membrane properties—Spontaneous membrane activities— Postsynaptic potentials—Biogenic substances—Reflex spike discharges INTRODUCTION humans, it causes release of small amounts of saliva with rich organic constituents from The salivary glands5,13) are supplied with major salivary glands.
    [Show full text]
  • The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction
    Journal of Cardiovascular Development and Disease Review The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction Laura Fedele * and Thomas Brand * Developmental Dynamics, National Heart and Lung Institute (NHLI), Imperial College, London W12 0NN, UK * Correspondence: [email protected] (L.F.); [email protected] (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.) Received: 17 August 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
    [Show full text]
  • The Effects of Sympathetic Nerve Damage on Satellite Glial Cells in The
    Autonomic Neuroscience: Basic and Clinical 221 (2019) 102584 Contents lists available at ScienceDirect Autonomic Neuroscience: Basic and Clinical journal homepage: www.elsevier.com/locate/autneu The effects of sympathetic nerve damage on satellite glial cells in the mouse superior cervical ganglion T ⁎ Rachel Feldman-Goriachnik, Menachem Hanani Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel Faculty of Medicine, Hebrew University of Jerusalem, Israel ARTICLE INFO ABSTRACT Keywords: Neurons in sensory, sympathetic, and parasympathetic ganglia are surrounded by satellite glial cell (SGCs). Superior cervical ganglion There is little information on the effects of nerve damage on SGCs in autonomic ganglia. We studied the con- Satellite glial cells sequences of damage to sympathetic nerve terminals by 6-hydroxydopamine (6-OHDA) on SGCs in the mouse Gap junctions superior cervical ganglia (Sup-CG). Immunostaining revealed that at 1–30 d post-6-OHDA injection, SGCs in Sup- Purinergic receptors CG were activated, as assayed by upregulation of glial fibrillary acidic protein. Intracellular labeling showed that Sympathetctomy dye coupling between SGCs around different neurons increased 4-6-fold 1-14 d after 6-OHDA injection. Trigeminal ganglion Behavioral testing 1–7 d post-6-OHDA showed that withdrawal threshold to tactile stimulation of the hind paws was reduced by 65–85%, consistent with hypersensitivity. A single intraperitoneal injection of the gap junction blocker carbenoxolone restored normal tactile thresholds in 6-OHDA-treated mice, suggesting a contribution of SGC gap junctions to pain. Using calcium imaging we found that after 6-OHDA treatment responses of SGCs to ATP were increased by about 30% compared with controls, but responses to ACh were reduced by 48%.
    [Show full text]
  • THE ANATOMY of the SYMPATHETHIC TRUNKS in MAN by MARTIN WRETE Histological Department, the University of Uppsala, Sweden
    [ 448 ] THE ANATOMY OF THE SYMPATHETHIC TRUNKS IN MAN BY MARTIN WRETE Histological Department, The University of Uppsala, Sweden INTRODUCTION Even a cursory study of the anatomical descriptions of the cervical parts of the sympathetic trunks given in modern text-books or articles discloses that, now as earlier, great confusion exists with respect to terminology. This applies even to monographs and more specialized presentations. The primary cause of this confusion is the very marked variability of the trunks in the neck region, which gives wide scope for arbitrary interpretations of the arrangement; some uncertainty about the terminology and notation of other parts of the trunks also persists. It is true that the terms to be used for the sympathetic nervous system were fixed by the International Anatomical Nomenclature Committee (Nomina Anatomica, Paris, 1955). This does not, however, prevent some of the individual terms being used to denote different anatomical units, and for practical reasons (such as limiting printing costs) comprehensive explanations could not always be given in the annota- tions to the Parisian Nomina Anatomica. As one of the three members of the Sub- Committee responsible for the nomenclature of the peripheral nervous system, I wish to define more exactly my views on the terminology adopted for the sympathetic trunks. I also take this opportunity of revising a few terms I used in certain papers published some twenty years ago. In Nomina Anatomica the term truncus sympathicus is followed by the names of its ganglia, ganglia trunci sympathici, as well as of its connecting rami interganglio- nares. But, also under the heading ganglia trunci sympathici, the term ganglia intermedia is used to denote ganglia on the rami communicantes and certain ganglia on the trunks in the rami interganglionares between the other ganglia-namely the ganglion cervicale superius, ganglion cervicale medium, ganglion cervicothoracicum (s.
    [Show full text]
  • Plasticity of Neurons in Mouse Major Pelvic Ganglia in Response to Loss of Physiological
    Plasticity of neurons in mouse major pelvic ganglia in response to loss of physiological input in cases of nerve injury and spinal cord injury A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Cindy Kyi Dr. David Schulz, Dissertation Advisor May 2018 i The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled PLASTICITY OF NEURONS IN MOUSE MAJOR PELVIC GANGLIA IN RESPONSE TO LOSS OF PHYSIOLOGICAL INPUT IN CASES OF NERVE INJURY AND SPINAL CORD INJURY Presented by Kyi, Cindy (MU-Student) A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. David J. Schulz Dr. Michael L. Garcia Dr. Andrew D. McClellan Dr. Kevin J. Cummings Dedicated to Mom and Dad iii ACKNOWLEDGEMENTS First of all, I would like to thank God for guiding me and being with me and my family since the day I left Myanmar (Burma). He has been my rock and shelter through all the challenges along the way. I am very grateful to my advisor Dr. David Schulz for granting me with the opportunity to work in his laboratory and believing in me to take on a new project. Thank you very much for all your guidance, patience, training, and for giving me room to grow under your mentorship. I would also like to thank my committee members Dr. Andrew McClellan, Dr. Michael Garcia, and Dr. Kevin Cummings for all of their support in providing me with feedback not only on the details of experimental protocols but also helping me relate my experimental findings to a big picture context.
    [Show full text]