Integrated Production of Algal Biomass

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Production of Algal Biomass INTEGRATED PRODUCTION OF ALGAL BIOMASS By Alessandro Marco Lizzul A thesis submitted in fulfilment of the requirements for graduation of an Engineering Doctorate (EngD). From the Department of Civil, Environmental and Geomatic Engineering, Centre for Urban Sustainability and Resilience. Academic Supervisors: Dr Luiza Campos, Dr Saul Purton, Dr Frank Baganz Industrial Supervisor: Mr Joe McDonald UNIVERSITY COLLEGE LONDON SEPTEMBER 2015 Declaration of Authorship I, Alessandro Marco Lizzul declare that this thesis and the work presented within are my own, generated as the result of original research. Likewise, I can confirm that this work was done wholly while in candidature for a research degree at University College London. Any reference or quotation from the published work of others is always clearly attributed. I have also gone to great lengths to acknowledge all sources of assistance during the project. This includes contributions from work done in collaboration with others, which are stated in the contributions section. Due to the industrial relevance of this project care has been taken to ensure that none of the proprietary intellectual property of the involved parties has been plagiarised or misrepresented. Some sections within this thesis have already undergone publication and are declared as such in the publications section. Signed…………………………………………………… ALESSANDRO MARCO LIZZUL Date……………………………………………………… 2 Publications A.M. Lizzul, P. Hellier, S. Purton, F. Baganz, N. Ladommatos, L. Campos (2013). Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresource Technology. 151:12-18. K. Koutita, A.M. Lizzul, L. Campos, N. Rai, T. Smith, J. Stegemann (2015). A Theoretical Fluid Dynamic Model for Estimation of the Hold-up and Liquid Velocity in an External Loop Airlift Bioreactor. International Journal of Applied Science and Technology, 5, 1-29. A. M. Lizzul, M. Allen (Article in Press). Book Chapter. Algal Cultivation Technologies. Biofuels and Bioenergy. Wiley-Blackwell. Acknowledgements In the first instance I would like to acknowledge the financial support received from the engineering and physical sciences research council (EPSRC) in providing provision for the urban sustainability and resilience (USAR) EngD centre alongside my doctoral project. I would also like to thank the generous support of University College London, Varicon Aqua Solutions and the Royal Commission for the Exhibition of 1851, without whom the full scope of my project would have been largely unrealised. The considerable support, guidance and financial assistance I have received from my academic supervisors were of particular importance to the completion of this thesis. I owe a debt of gratitude to Dr Luiza Campos who has given me considerable academic freedom during the undertaking of this project, allowing me to better develop my own research ideas and themes. Secondly, I would like to thank Dr Saul Purton and Dr Frank Baganz who as second and third supervisors respectively, have provided me with extensive theoretical and practical insight into the applied aspects of algal cultivation. I would also like to thank my industrial supervisor Mr Joe McDonald (Varicon Aqua Solutions) for his guidance, both in 3 terms of my personal development and with regards to his significant expertise in applied phycology and photobioreactor design. Furthermore, a special thank you goes to my long term collaborators; Dr Paul Hellier, with whom I undertook considerable work growing algae from waste, as well as co-authoring my first research paper. I must also take the opportunity to thank Konstantina Koutita whose considerable expertise in fluid dynamic and biological modelling made for an excellent collaboration during the course of my research, and allowed for the co-authoring of a second research paper. Finally, the assistance and collaboration with Richard Beckett of The Bartlett deserves a particular mention, as it offered a different perspective on my research, as well as generating some of the technical illustrations used within the thesis. I must also thank the army of students who have worked on various aspects of the project at different times, both for the input, headache and joy they generated. In chronological order of involvement that includes; Gregory Nordberg, Yasmine Nazmy, Hugo Averalo-Bacon, Xin Jin, Hayder Al Emera, Brendan O’Connor, Matthew Kaczmarczyk, Aitor Lekuona, Eric Dai, Yidong Chen and Peter Sinner. A very special mention has to go to Aitor Lekuona and Peter Sinner, who as visiting research students contributed greatly to many aspects of the practical work during their internships at UCL. This included work with Haematococcus pluvialis at various scales, microscale platform development, measurements for reactor modelling, as well as membrane reactor testing. It has to be said that without the involvement of all of these students the project would have undoubtedly been more constrained in its scope. Finally, a special thank you has to go to all the other members of Algae@UCL, for their help with day to day laboratory activities, queries, equipment and the sharing of practical techniques. I would also like to acknowledge the advice and technical support received by the Environmental Engineering technicians Ian Sturtevant, Ian Seaton, Catherine Unsworth and Dr Judith Zho. Furthermore, I would like to thank Dr Cecile Standford (Southern Water) and Rokiah Yaman (Community By Design) for supplying suitable wastewaters for parts of the project. Last and most importantly of all, I would like to thank my friends, family and girlfriend; Stacey Joanne Hemmings. All of whom have put up with me and my algal obsession over the five years it has taken me to complete my doctorate. 4 Contributions Chapter 1 - Introduction written by A. M. Lizzul, using some sections of re-worked material from previous submissions within his MRes and EngD programme. Chapter 2 - Background written by A. M. Lizzul, using some re-written material from his MRes report as part of the EngD programme. Chapter 3 - Written by A M. Lizzul. Chapter 4 - Microscale work planned and directed by A. M. Lizzul and undertaken with the assistance of P. Sinner. Chapter 5 - Growth of Chlorella sorokiniana on waste; Material submitted for publication in Bioresource Technology (Lizzul et al. 2014). Biological growth experiments and wastewater quantification undertaken by A. M. Lizzul, with gas analysis undertaken by Dr P. Hellier, Department of Mechanical Engineering. Chapter 6 - Chapter contains several excerpts from the book Chapter ‘Algal Cultivation Technologies,’ written by A. M. Lizzul and supervised by M. Allen (PML) (Lizzul and Allen 2015). Chapter 7 - Experimentation, data collection and original reactor modelling undertaken by A. M. Lizzul. Further novel model development undertaken by K. Koutita, and summarised in Appendix 10.1.4.1 and 10.1.5.2 (K. Koutita 2015). Subsequent validation experiments undertaken by A. M. Lizzul with assistance from A. Lekuona, P. Sinner and Y. Chen. Chapter 8 - Cost model developed by A. M. Lizzul in collaboration with E. Dai, under supervision of S. Balboni (ME, UCL), using literature values and experimental data from A. M. Lizzul. Chapter 9 - Written by A. M. Lizzul. Chapter 10 - Written by A. M. Lizzul. 5 The Engineering Doctorate (EngD) A Note The Engineering doctorate (EngD) is a postgraduate qualification scheme initiated in 1992 and is supported by the Engineering and Physical Sciences Research Council (EPSRC). The programme is split between a Masters of Research (MRes) component in the first year and a three year doctoral component. It is similar in many respects to a PhD, except for the added requirement for an industrial sponsor and a component consisting of taught modules. The fundamental purpose of an EngD is to undertake research that is of PhD standard but with greater industrial relevance to the sponsoring company. In this respect an EngD may differ somewhat from a traditional PhD, with the research usually found to be more application orientated. In practice this means that many EngD projects will give particular consideration to factors and findings that would add commercial advantage to a sponsoring company. Industrial Sponsor The project was initiated by Battle McCarthy (Ltd), an architectural design consultancy based in London. As a result the original aims of the project were orientated more towards the built environment, and included the development of a suitable photobioreactor for use as a building façade. Litigation with UCL resulted in the sponsorship being rescinded, and a new sponsor was sought out. After a period of undertaking research with no industrial sponsor, the current industrial partnership with Varicon Aqua Solutions (Ltd) was initiated, with Mr Joe McDonald (Managing Director) taking the role of industrial supervisor. Varicon Aqua Solutions is an original equipment manufacturer based in the UK. They have over 20 years' experience in the design, construction and deployment of algal photobioreactors and aquaculture production systems. A major part of their business is the supply, installation and commissioning of both laboratory and industrial platforms for the cultivation of algae to a broad range of global partners. To date they have deployed over 120 photobioreactor systems across the world. These installations include horizontal tubular systems such as the BioFence™ platform, as well as serpentine systems such as the Phyco-Flow™, and an internally illuminated
Recommended publications
  • [BIO32] the Development of a Biosensor for the Detection of PS II Herbicides Using Green Microalgae
    The 4th Annual Seminar of National Science Fellowship 2004 [BIO32] The development of a biosensor for the detection of PS II herbicides using green microalgae Maizatul Suriza Mohamed, Kamaruzaman Ampon, Ann Anton School of Science and Technology, Universiti Malaysia Sabah, Locked Beg 2073, 88999 Kota Kinabalu, Sabah, Malaysia. Introduction Material & Methods Increasing concern over the presence of herbicides in water body has stimulated Equipments and Chemicals research towards the development of sensitive Fluorometer used was TD700 by Turner method and technology to detect herbicides Designs with 13mm borosilicate cuvettes. residue. Biosensors are particularly of interest Excitation and emission wavelength were for the monitoring of herbicides residue in 340nm-500nm and 665nm. Lamp was water body because various classes of daylight white (185-870nm). Equipment for herbicides have a common biological activity, photographing algae was Nikon which can potentially be used for their Photomicrographic Equipment, Model HIII detection. The most important herbicides are (Eclipse 400 Microscope and 35 mm film the photosystem II herbicide group that photomicrography; prism swing type, inhibits PSII electron transfer at the quinone automatic expose and built-in shutter). binding site resulting in the increase of Chlorophyll standards for fluorometer chlorophyll fluorescence (Merz et al., 1996) calibration were purchased from Turner . Designs, USA. PS II herbicides used were diuron (3-(3,4-dicholorophenyl)-1,1 Signal dimethylurea or DCMU), and propanil (3′,4′- PS II FSU herbicide dichloropropionanilide). Non PS II herbicides used as comparison were 2,4-D (2,4- Meter dichlorophenoxy)acetic acid) and Silvex Algal Chlorophyll Transducer (2,4,5-trichlorophenoxypropionic acid) (Aldrich Sigma).
    [Show full text]
  • Genetic Engineering of Green Microalgae for the Production of Biofuel and High Value Products
    GENETIC ENGINEERING OF GREEN MICROALGAE FOR THE PRODUCTION OF BIOFUEL AND HIGH VALUE PRODUCTS Joanna Beata Szaub Department of Structural and Molecular Biology University College London A thesis submitted for the degree of Doctor of Philosophy August 2012 DECLARATION I, Joanna Beata Szaub confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: 1 ABSTRACT A major consideration in the exploitation of microalgae as biotechnology platforms is choosing robust, fast-growing strains that are amenable to genetic manipulation. The freshwater green alga Chlorella sorokiniana has been reported as one of the fastest growing and thermotolerant species, and studies in this thesis have confirmed strain UTEX1230 as the most productive strain of C. sorokiniana with doubling time under optimal growth conditions of less than three hours. Furthermore, the strain showed robust growth at elevated temperatures and salinities. In order to enhance the productivity of this strain, mutants with reduced biochemical and functional PSII antenna size were isolated. TAM4 was confirmed to have a truncated antenna and able to achieve higher cell density than WT, particularly in cultures under decreased irradiation. The possibility of genetic engineering this strain has been explored by developing molecular tools for both chloroplast and nuclear transformation. For chloroplast transformation, various regions of the organelle’s genome have been cloned and sequenced, and used in the construction of transformation vectors. However, no stable chloroplast transformant lines were obtained following microparticle bombardment. For nuclear transformation, cycloheximide-resistant mutants have been isolated and shown to possess specific missense mutations within the RPL41 gene.
    [Show full text]
  • Isolation and Evaluation of Microalgae Strains from the Northern Territory
    Isolation and evaluation of microalgae strains from The Northern Territory and Queensland - Australia that have adapted to accumulate triacylglycerides and protein as storage Van Thang Duong Master of Environmental Sciences A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Agriculture and Food Sciences Abstract Biodiesel and high-value products from microalgae are researched in many countries. Compared to first generation biofuel crops, advantages of microalgae do not only lead to economic benefits but also to better environmental outcomes. For instance, growth rate and productivity of microalgae are higher than other feedstocks from plant crops. In addition, microalgae grow in a wide range of environmental conditions such as fresh, brackish, saline and even waste water and do not need to compete for arable land or biodiverse landscapes. Microalgae absorb CO2 and sunlight from the atmosphere and convert these into chemical energy and biomass. Thus, the removal of CO2 from the atmosphere plays a very important role in global warming mitigation, as the produced biofuel would replace an equivalent amount of fossil fuel. Based on their high protein contents and rapid growth rates, microalgae are also highly sought after for their potential as a high-protein containing feedstock for animal feed and human consumption. However, despite the promising characteristics of microalgae as a feedstock for feed and fuel, their stable cultivation is still difficult and expensive, as mono-species microalgae can often get contaminated with other algae and grazers. To address this issue I hypothesized that indigenous strains have a highly adaptive capacity to local environments and climatic conditions and therefore may provide good growth rates in the same geographic and climatic locations where they have been collected from.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Efecto Del Consumo De Nitrógeno De La
    Programa de Estudios de Posgrado EFECTO DEL CONSUMO DE NITRÓGENO DE LA MICROALGA Desmodesmus communis SOBRE LA COMPOSICIÓN BIOQUÍMICA, PRODUCTIVIDAD DE LA BIOMASA, COMUNIDAD BACTERIANA Y LONGITUD DE LOS TELÓMEROS TESIS Que para obtener el grado de EFECTO DEL CONSUMOMaestro DE NITROGENO en EN Ciencias LA MICROALGA Desmodesmus communis SOBRE LA COMPOSICIÓN BIOQUÍMICA, PRODUCTIVIDAD DE LA BIOMASA, COMUNIDAUso,D BACTERIANAManejo y Preservación Y LONGITUD deDE LOSlos RecursosTELÓMEROS Naturales (Orientación en Biotecnología) P r e s e n t a Jessica Guadalupe Elias Castelo La Paz, Baja California Sur, mayo 2018. CONFORMACIÓN DE COMITÉS Comité tutorial Co-Director de tesis Dra. Bertha Olivia Arredondo Vega - CIBNOR Co-Director de tesis Dr. Juan Pedro Luna Arias - CINVESTAV Tutor de tesis Dra. Thelma Rosa Castellanos Cervantes - CIBNOR Comité revisor Dra. Bertha Olivia Arredondo Vega Dr. Juan Pedro Luna Arias Dra. Thelma Rosa Castellanos Cervantes Jurado de examen Dra. Bertha Olivia Arredondo Vega Dr. Juan Pedro Luna Arias Dra. Thelma Rosa Castellanos Cervantes Suplente Dr. Dariel Tovar Ramírez i Resumen Las microalgas son organismos fotosintéticos que contienen clorofila y acumulan compuestos de interés biotecnológico. En condiciones de estrés como la disminución de la concentración de nitrógeno en el medio, incrementan la concentración de especies reactivas de oxígeno (ERO). Las ERO causan daño a biomoléculas como los lípidos, el ADN y sus telómeros, siendo estos responsables de la senescencia celular. La ausencia de daño estructural se debe a moléculas con capacidad antioxidante como los carotenoides. En el presente trabajo se evaluó el efecto del consumo de nitrógeno en el medio de cultivo y nitrógeno elemental interno así como sus razones isotópicas durante el crecimiento Desmodesmus communis sobre la tasa de crecimiento, productividad de la biomasa, la composición bioquímica, comunidad bacteriana y longitud de los telómeros.
    [Show full text]
  • Marine Botany Midterm 2014 Name:______
    Marine Botany Midterm 2014 Name:_________________________ Compare and Contrast the following items (20pts): 1) spore vs gamete Spore: unicellular, must settle & grow, product of mitosis(Mt) or meiosis (Me) Gamete: unicellular, must fuse or die, product of mitosis(Mt) or meiosis (Me) 2) monoecious vs dioecious Dioecious- having the male & female reproductive structure borne on separate individual plants; said of the species -two houses Monoecious- having the male & female reproductive structure borne on the same individual plants -one house 3) phycoplast vs. phragmoplast Phycoplast: microtubules parallel to dividing plane -rare in algae Phragmoplast: double microtubules perpendicular to dividing plane-common in algae & land plants 4) haplontic vs diplontic Haplontic: 1N thallus, the zygote is the only diploid stage Diplontic: 2N thallus, the gametes are the only haploid stage 5) parenchymatous vs. coenocytic thallus construction Parenchyma – undifferentiated, isodiometric cells generated by a meristem Cells division in any plane , not filamentous Coenocytic – thallus made up of filaments, multi-nucleate, lacking crosswalls, siphonous 1 Marine Botany Midterm 2014 Name:_________________________ Match with the correct Division: Chlorophyta, Heterokontophyta, both, or neither (12 points) a. Plantae __Chloro__________________ b. Chlorophyll A _Both___________________ c. Flowers _______Neither_____________ d. Phycobilins _____Neither_______________ e. Amylose ___Chloro_________ f. Thylakoids in stacks of 2-6 _________Chloro___ g. Bacteria ______Neither____________ h. Flagella ____Both_____________ i. Haplontic life history _____Chloro_________ j. 2 endosymobiotic event ____Hetero__________ k. Chromalvaeolates ______Hetero_________ l. Mannitol___________Hetero___________ Match the following Classes or Orders to the appropriate characteristic, term, or genus. Each term will be used only once. (10 points) Cladophorales ___C_____ A. parenchymatous thallus Ulotricales ___J_____ B. clockwise basal body orientation Chlorophyceae _____B____ C.
    [Show full text]
  • Utilization of Simulated Flue Gas for Cultivation of Scenedesmus
    Bioresource Technology 128 (2013) 359–364 Contents lists available at SciVerse ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus ⇑ ⇑ Yinli Jiang, Wei Zhang , Junfeng Wang, Yu Chen, Shuhua Shen, Tianzhong Liu Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China highlights " Scenedesmus dimorphus showed excellent tolerance to high CO2 (2–20%) and NO concentrations (150–500 ppm). " The maximum SO2 concentration S. dimorphus could tolerant was 100 ppm. " The extremely low pH as well as the accumulation of bisulfite caused by SO2 inhibited algae growth. " By neutralization with CaCO3, S. dimorphus could grow well on flue gas. " The toxicity of flue gas could be overcome by intermittent sparging and CO2 utilization efficiency was enhanced. article info abstract Article history: Effects of flue gas components on growth of Scenedesmus dimorphus were investigated and two methods Received 27 April 2012 were carried out to eliminate the inhibitory effects of flue gas on microalgae. S. dimorphus could tolerate Received in revised form 3 September 2012 CO2 concentrations of 10–20% and NO concentrations of 100–500 ppm, while the maximum SO2 concen- Accepted 8 October 2012 tration tolerated by S. dimorphus was 100 ppm. Addition of CaCO during sparging with simulated flue gas Available online 2 November 2012 3 (15% CO2, 400 ppm SO2, 300 ppm NO, balance N2) maintained the pH at about 7.0 and the algal cells grew well (3.20 g LÀ1). By intermittent sparging with flue gas controlled by pH feedback, the maximum bio- Keywords: mass concentration and highest CO utilization efficiency were 3.63 g LÀ1 and 75.61%, respectively.
    [Show full text]
  • Reconstruction of the Flagellar Apparatus and Microtubular Cytoskeleton in Pyramimonas Gelidicola (Prasinophyceae, Chlorophyta)
    Protoplasma 121, 186--I98 (1984) PROTOPLASMA by Springer-Verlag 1984 Reconstruction of the Flagellar Apparatus and Microtubular Cytoskeleton in Pyramimonas gelidicola (Prasinophyceae, Chlorophyta) G. I. McFADDEN * and R. WETHERBEE School of Botany, University of Melbourne Received September 5, 1983 Accepted November 9, 1983 Summary primitive, heterogeneous group of scaly green monads that comprise the Prasinophyceae Christensen ex Silva The absolute configuration of the flagellar apparatus in Pyramimonas gelidicola MCFADDENet al. has been determined and shows identity (MANTON 1965, NORRIS 1980, STEWART and MATTOX with P. obovata, indicating that they are closely related. Comparison 1978, MOESTRUP and ETTL 1979, MELKONIAN 1982a, with the flagellar apparatus of quadriflagellate zoospores from the MOESTRUP 1982). Recently, the prasinophyte more advanced Chlorophyeeae suggest that Pyramimonasmay be a Mesostigma viride has been shown to have primitive ancestral form. The microtubular cytoskeleton has been characteristics aligning it with both the examined in detail and is shown to be unusual in that it does not Charophyceae attach to the flagellar apparatus. CytoskeletaI microtubules are (ROGERS et al. 1981, MELKONIAN 1983) and the nucleated individually, and this is interpreted as an adaptation to the Chlorophyceae (MELKONIAN 1983) indicating that it is methods of mitosis and scale deployment. In view of the primitive probably similar to the ancestoral flagellate from which nature of these processes, it is proposed that this type of cytoskeletal the two major streams of evolution diverged. organization may represent a less advanced condition than that of the flagellar root MTOCs (microtubule organizing centers) observed in Mesostigma is closely related to another genus of the the Chlorophyceae.
    [Show full text]
  • Ultrastructure of Mitosis and Cytokinesis in the Multinucleate Green Alga Acrosiphonia
    ULTRASTRUCTURE OF MITOSIS AND CYTOKINESIS IN THE MULTINUCLEATE GREEN ALGA ACROSIPHONIA PEGGY R . HUDSON and J . ROBERT WAALAND From the Department of Botany, University of Washington, Seattle, Washington 98195 ABSTRACT The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide . Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei . Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules . No other microtubules are associated with the furrow . Characteris- tics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae . INTRODUCTION In multinucleate cells, nuclear division may occur band remain scattered in the cytoplasm at some synchronously, asynchronously, or in a wave distance from the band and do not participate in spreading from one part of the cell to another (for mitosis. The recently divided nuclei soon scatter a general discussion, see Agrell, 1964 ; Grell, 1964; into the cytoplasm. Thus, as in uninucleate cells, Erickson, 1964). Cytokinesis may or may not be nuclear and cell division in Acrosiphonia are associated with nuclear division (Grell, 1964; Jbns- closely coordinated spatially and temporally, but son, 1962; Kornmann, 1965, 1966 ; Schussnig, in the multinucleate Acrosiphonia, a substantial 1931, 1954 ; Lewis, 1909).
    [Show full text]
  • Identification and Taxonomic Studies of Scenedesmus and Desmodesmus Species in Some Mbanza-Ngungu Ponds in Kongo Central Province, DR Congo
    IJMBR 6 (2018) 20-26 ISSN 2053-180X Identification and taxonomic studies of Scenedesmus and Desmodesmus species in some Mbanza-Ngungu ponds in Kongo Central Province, DR Congo Muaka Lawasaka Médard1, Luyindula Ndiku2, Mbaya Ntumbula2 and Diamuini Ndofunsu2 1Département de Biologie-Chimie, Institut Supérieur Pédagogique de, Mbanza-Ngungu, DR Congo. 2Commissariat Général à L'energie Atomique, Kinshasa, DR Congo. Article History ABSTRACT Received 02 February, 2018 Scenedesmus and Desmodemus are two genera belonging to the Received in revised form 05 Scenedesmaceae family. The present study sampled two genera of micro-algae April, 2018 Accepted 10 April, 2018 in three ponds located at Mbanza-Ngungu, Kongo Central Province, DR Congo. In the study, 14 species (10 species of Scenesdemus and 4 species of Keywords: Desmodemus) from the two genera were identified and described. They include Micro-algae, Scenedesmus acuminatus (Lagerheim) Chodat, S. alternants Reinsh, S. armatus Phytoplankton, (Chodat) G. M. Smith, S. dimorphus (Turpin) Kuetzing, S. quadricauda (Turpin) Scenedesmus, Brebissonii, S. ecornis [Ehrenberg, Chodat, S. obliquus (Turpin)], Scenedesmus Desmodesmus. sp., Desmodesmus abundans (Kirchner) E. Hegewald, D. intermedius (Chodat) E. Hegewald, D. magnus (Meyen) Tsarenko and D. opoliensis (P.G. Richter) E. Article Type: Hegewald. The diversity of these two genera species is greater in Kola pond and Full Length Research Article mostly in Voke. ©2018 BluePen Journals Ltd. All rights reserved INTRODUCTION Like all aquatic ecosystems, ponds are ecosystems that sequences. The results did not support Acutodesmus as are rich in freshwater micro-algae. They contain nearly all being a genus. Desmodesmus and Scenedesmus, the algal groups except Rhodophyta and Phaeophyceae however, were confirmed as genera belonging to (Zongo et al., 2008).
    [Show full text]
  • Division: Chlorophyta (Green Algae) II. Algal Taxonomy
    Division: Chlorophyta (green algae) I. General Characteristics II. Distinguishing Classes III. Morphology IV. Classes in Detail ~ 16,000 species ~ 90% freshwater 1 II. Algal taxonomy Hierarchical system of classification: Level: suffix: example: Domain Eukaryote Group Plantae Division -phyta Chlorophyta Class -phyceae Ulvophyceae Order -ales Ulvales Family -aceae Ulvaceae Genus Ulva species fenestrata 2 1 DOMAIN Groups (Kingdom) 1.Bacteria- cyanobacteria (blue green algae) 2.Archae “Algae” 3.Eukaryotes 1. Alveolates- dinoflagellates 2. Stramenopiles- diatoms, heterokonyophyta 3. Rhizaria- unicellular amoeboids 4. Excavates- unicellular flagellates 5. Plantae- rhodophyta, chlorophyta, seagrasses 6. Amoebozoans- slimemolds 7. Fungi- heterotrophs with extracellular digestion 8. Choanoflagellates- unicellular 3 9. Animals- multicellular heterotrophs Glaucophytes Plantae Rhodophyta Chlorophytes Chl b, Charophytes starch Land Plants 4 Adapted from Sadava 2014 2 Phylogenetics of Chlorophyta (morphological, molecular data) 5 classes: Chlorophyceae Chlorophyta Trebouxiophyceae Chl b, starch Ulvophyceae Prasinophyceae Encasement of egg Charophytes Charophyceae Embryo, cuticle Land plants 5 I. General Green Characteristics: 1) Pigments: ? 2) Chloroplast structure?: 3) Storage product? 4) Flagella? 6 3 Classes: Chlorophyceae = freshwater Trebouxiophyceae = freshwater, soil and marine Ulvophyceae = marine macroalgae Prasinophyceae = primarily marine flagellates, some freshwater; modern representatives of earliest green algae Charophyceae = freshwater;
    [Show full text]