Marine Botany Midterm 2014 Name:______

Total Page:16

File Type:pdf, Size:1020Kb

Marine Botany Midterm 2014 Name:______ Marine Botany Midterm 2014 Name:_________________________ Compare and Contrast the following items (20pts): 1) spore vs gamete Spore: unicellular, must settle & grow, product of mitosis(Mt) or meiosis (Me) Gamete: unicellular, must fuse or die, product of mitosis(Mt) or meiosis (Me) 2) monoecious vs dioecious Dioecious- having the male & female reproductive structure borne on separate individual plants; said of the species -two houses Monoecious- having the male & female reproductive structure borne on the same individual plants -one house 3) phycoplast vs. phragmoplast Phycoplast: microtubules parallel to dividing plane -rare in algae Phragmoplast: double microtubules perpendicular to dividing plane-common in algae & land plants 4) haplontic vs diplontic Haplontic: 1N thallus, the zygote is the only diploid stage Diplontic: 2N thallus, the gametes are the only haploid stage 5) parenchymatous vs. coenocytic thallus construction Parenchyma – undifferentiated, isodiometric cells generated by a meristem Cells division in any plane , not filamentous Coenocytic – thallus made up of filaments, multi-nucleate, lacking crosswalls, siphonous 1 Marine Botany Midterm 2014 Name:_________________________ Match with the correct Division: Chlorophyta, Heterokontophyta, both, or neither (12 points) a. Plantae __Chloro__________________ b. Chlorophyll A _Both___________________ c. Flowers _______Neither_____________ d. Phycobilins _____Neither_______________ e. Amylose ___Chloro_________ f. Thylakoids in stacks of 2-6 _________Chloro___ g. Bacteria ______Neither____________ h. Flagella ____Both_____________ i. Haplontic life history _____Chloro_________ j. 2 endosymobiotic event ____Hetero__________ k. Chromalvaeolates ______Hetero_________ l. Mannitol___________Hetero___________ Match the following Classes or Orders to the appropriate characteristic, term, or genus. Each term will be used only once. (10 points) Cladophorales ___C_____ A. parenchymatous thallus Ulotricales ___J_____ B. clockwise basal body orientation Chlorophyceae _____B____ C. marimo balls Charophyceae ____G____ D. modern representative of ancestral green (most primitive) Trebouxiophyceae ____F____ E. one nucleus & radial symmetry Dasycladales __E______ F. e.g. Prasiola Caulerpales ___I_____ G. broad band microtubule roots, closely related to land plants Fucales _____H___ H. monoecious or dioecious Prasinophyceae ____D____ I. group contains coenocytic mass-spawners Ulvales ______A____ J. Codiolum phase 2 Marine Botany Midterm 2014 Name:_________________________ Define the terms below (20pts): 1) algae: convenience term encompassing various distinctly related groups of aquatic photsynthetic eukaryoes polyphyletic group containing, cyanobacteria, diatoms, dinoflgellates, red, green and brown algae 2) physode: special vesicles in the cytoplasm of heterokonts that store tannins 3) hypnozygote: thick walled resting stage of the 2n zygote in Chlamdymonous sexual life history when there is not enough light or nitrogen 4) saxicolous: Growing on rock 5) plurilocular sporangia: structure where spores are formed that is divided into many small chambers :one spore/gamete per chamber 6) functional anisogamy: Gametes look the same but act differently in heterokontophyta, female gamete release phermones and males swim towards females 7) pneumatocyst: -a large float containing gas found in heterokontophyta -provide buoyancy to lift the blades toward the surface, allowing them to receive more sunlight for Ps - can hold O2, CO2, CO 8) holocarpic reproduction: - Entire thallus turns into gametes 9) ectocarpene: pheromone released by female gamete in ectocarpales 10) alginic acid- found in cell walls of heterokontophyta, surrounds the microfibrills,allows cell walls to be elastic,flexible, and to osmoregulate 3 Marine Botany Midterm 2014 Name:_________________________ Create a dichotomous key to separate the following genera: Fucus, Codium, Silvetia, Chlamydomonas, Cladophora. You may not use taxonomic names of divisions, classes, or orders, but should instead use characteristics of the divisions, classes, orders or genera (10 pts) Codium, Cladophora, Clamydomonas- Chl B, lutien,neoxanthin, starches (Amylose, Amylopectin), 2 membranes, thylakoids stacks 2-6, flagella-isokont, variable #, haplontic Codium & Cladophora- counterclockwise basal bodies,cruciate microtubule roots, cell wall, closed spindle,furrowing,phragmoplast Codium- ceonocytic, siphonous, biflagellate, anisogamous,multinucleate, no division of cytoplasm with cell walls, clotting compounds, diplontic, utricles, gametangium, invasive on the east coast Cladophora-large, multinucleate cells divided by crosswalls,isomorphic alteration of generations, reticulate or multiple discoid chloroplasts,can form marimo balls,branched filamentous, Chlamydomonas-haplontic,unicells,hypnozygote, palmenoid stage,cupshaped chloroplast,orange eyespot,mapped genome,cruciate microtubules,clockwise basal bodies,cell wall,closed spindle,phycoplast, furrowing Fucus, Silvetia- Chl C,fucoxanthin, sugars (Laminarian,Chrysolaminarian,Mannitol), 4 membranes, thylakoids stacks of 3, heterokont- one is hairy, diplontic, oogamous, parenchymatous, apical growth, receptical, conceptical, Fucus- midrib, 8 eggs per oogonium Silvetia- playdough stipe, 2 eggs per oogonium Please label the components (A through E) of the P-I curve below (7pts): A_Photosynthetic Rate (y axis) B Compenstion point (photosynthesis= respiration) E C initial slope = photsynthetic A efficiency, theta C D light intensity or irradiance (x axis) E __photoinhibition________ B D What aspect of the light reactions in photosynthesis might cause a higher value for P-max? More PSU 4 Marine Botany Midterm 2014 Name:_________________________ Draw a life history diagram as indicated below. Please label ploidy (N or 2N) of all stages, when meiosis and mitosis occur, and sketch (very generally) the algae look like. (20 pts) 1) Circle the order you are illustrating: Either Ulotrichales or Fucales What type of life history does it exhibit?___Haplontic or Diplontic________________ Ulotricales- haplontic 1N thallus (1N gametophyte) mitosis1N gametesfuse2N zygote meiosis occurs in zygote1N codiolumLife Cyc stagele of th1Ne U sporeslotrich (zoospores)ales 1N thallus Haplontic e.g. Ulothrix syngamy 1N gametes 2N zygote meiosis occurs in zygote 1N gametophytes 1N codiolum stage 1N zoospores Fucales- diplontic- oogamous 2N thallus meiosis1N gametes(one flagellated, and one not )fuse2N zygote grows 2N thallus 2) Isomorphic Alternation of Generations: gametophyte & sporophyte loof the same What order exhibits this life history?___Ulvales 1N gametophytemitosis1N gametes (2 flagella look the same)fuse2Nzygote2N sporophytemeiosis1N zoospores ( four flagella)grow into 1N gametophyte 5 Marine Botany Midterm 2014 Name:_________________________ Short Answer (25 pts): 1. What determines the upper and lower limits of algae in the intertidal? Upper limit- abiotic factors- tide, temperature, light intensity, sand & physiological tolerance of the species Lower limit- biotic factors- herbivory, competition 2. Explain how Luchenco & Cubit changed the way people thought about heteromorphic life histories of certain marine algae as adaptations to variation in herbivory? Heteromorphic life histories was thought to be due to seasonal conditions, but proved that they were driven by herbivory. When herbivores were excluded upright morphs grew no matter the season. 3. In the paper by Sousa, Disturbance in marine boulder fields: the non equilibrium maintenance of species diversity. Which size boulders had the highest diversity? How did he determine this? Medium sized boulder highest diversity Surveyed small, medium and large boulder to count number of species Secured small & medium boulder so that they wouldn’t roll, look at how diversity changed to factor out size of boulder from disturbance level 4. Explain the phenology of sexual reproduction by green algae on Caribbean Coral Reefs as described by Clifton and Clifton. Holocarpic reproduction- seasonallybefore the wet season begins-gamete release is synchronous and species and gender specific, different genuses release at similar times, while similar species release gametes at different times 5. What happens during a secondary endosymbiotic event? Heterotrophic eukaryote eats photosynthetic eukaryote Nucleus from photosynthetic eukaryote is lost Results in photosynthetic eukaryote. Chloroplast has 4 membranes. 6 Marine Botany Midterm 2014 Name:_________________________ Short essay: (20 pts) 1) Light is one of the most important factors affecting photosynthetic organisms and how light travels through water is important in algal growth. Describe in detail the effects of light on algal growth. Include in your answer a description of light attenuation (what is it, how do different wavelengths respond, and how do algae deal with it). Attenuate: to lessen in severity, intensity, or amount At ~ 100 m even in clearest water, only 1% of surface radiance makes it through Light attenuation is due to: Absorption (red-long wave length, low-energy wavelengths absorbed first, by water itself.) Scattering (violet-high energy, short wave lengths scatter due to water molecules and particulates) Across species: Different Divisions have different pigments, allow species to gather different wavelengths of light Within species Irradiance not spectral quality 1) produce more accessory pigments-change ratio of accessory pigments 2) produce more photosynthetic pigments- Change size of PSUs-antennae + reaction
Recommended publications
  • Phragmoplast Microtubule Dynamics – a Game of Zones Andrei Smertenko1,2,‡, Seanna L
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs203331. doi:10.1242/jcs.203331 REVIEW SPECIAL ISSUE: PLANT CELL BIOLOGY Phragmoplast microtubule dynamics – a game of zones Andrei Smertenko1,2,‡, Seanna L. Hewitt2,3, Caitlin N. Jacques2,4, Rafal Kacprzyk1, Yan Liu2,5, Matthew J. Marcec2,6, Lindani Moyo2,6, Aaron Ogden1,2, Hui Min Oung1,2, Sharol Schmidt1,2 and Erika A. Serrano-Romero2,5 ABSTRACT during anaphase from the remnants of the central spindle (Segui- Plant morphogenesis relies on the accurate positioning of the partition Simarro et al., 2004). It consists of microtubules, actin, membrane (cell plate) between dividing cells during cytokinesis. The cell plate is compartments and proteins that associate with or regulate the above synthetized by a specialized structure called the phragmoplast, which (Boruc and Van Damme, 2015; Lipka et al., 2015). The microtubule consists of microtubules, actin filaments, membrane compartments component of the phragmoplast consists of two aligned arrays that and associated proteins. The phragmoplast forms between daughter flank the so-called phragmoplast midzone, where cell plate assembly nuclei during the transition from anaphase to telophase. As cells are takes place (Fig. 1). The initial phragmoplast has a disk shape with a commonly larger than the originally formed phragmoplast, the diameter that approximately equals that of the daughter nuclei construction of the cell plate requires phragmoplast expansion. (Fig. 1); however, the parental cell is generally wider. For example, This expansion depends on microtubule polymerization at the the length of a cambium cell exceeds the diameter of the disk-shaped phragmoplast forefront (leading zone) and loss at the back (lagging phragmoplast during late anaphase by up to 100 fold (Larson, 1994).
    [Show full text]
  • Internal Microbial Zonation Assists in the Massive Growth of Marimo, a Lake Ball of Aegagropila Linnaei in Lake Akan
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.20.434239; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Internal microbial zonation assists in the massive growth of marimo, a lake ball of 2 Aegagropila linnaei in Lake Akan 3 Ryosuke Nakai,1,* Isamu Wakana,2 Hironori Niki1,3,¶ 4 1 Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National 5 Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540 Japan 6 2 Kushiro International Wetland Center, 7-5 Kuroganecho, Kushiro, Hokkaido 085-8505, Japan 7 3 Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111, 8 Yata, Mishima, Shizuoka 411-8540 Japan 9 * Present address: Microbial Ecology and Technology Research Group, Bioproduction Research 10 Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, 11 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan 12 ¶ Correspondence to: Hironori Niki, Microbial Physiology Laboratory, Department of Gene 13 Function and Phenomics, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411- 14 8540 Japan; E-mail: [email protected]; Tel: +81-55-981-6827; Fax: +81-55-981-6870 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.20.434239; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 15 Abstract 16 Marimo (lake ball) is an uncommon ball-like aggregation of the green alga, Aegagropila linnaei.
    [Show full text]
  • Role of the BUB3 Protein in Phragmoplast Microtubule Reorganization During Cytokinesis
    UC Davis UC Davis Previously Published Works Title Publisher Correction: Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis. Permalink https://escholarship.org/uc/item/1gw1799k Journal Nature plants, 4(9) ISSN 2055-0278 Authors Zhang, Hongchang Deng, Xingguang Sun, Baojuan et al. Publication Date 2018-09-01 DOI 10.1038/s41477-018-0215-9 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLES https://doi.org/10.1038/s41477-018-0192-z Corrected: Publisher Correction Role of the BUB3 protein in phragmoplast microtubule reorganization during cytokinesis Hongchang Zhang1,2,6, Xingguang Deng2,3,6, Baojuan Sun2,4, Sonny Lee Van2, Zhensheng Kang5, Honghui Lin3, Yuh-Ru Julie Lee 2* and Bo Liu 2* The evolutionarily conserved WD40 protein budding uninhibited by benzimidazole 3 (BUB3) is known for its function in spindle assembly checkpoint control. In the model plant Arabidopsis thaliana, nearly identical BUB3;1 and BUB3;2 proteins decorated the phragmoplast midline through interaction with the microtubule-associated protein MAP65-3 during cytokinesis. BUB3;1 and BUB3;2 interacted with the carboxy-terminal segment of MAP65-3 (but not MAP65-1), which harbours its microtubule- binding domain for its post-mitotic localization. Reciprocally, BUB3;1 and BUB3;2 also regulated MAP65-3 localization in the phragmoplast by enhancing its microtubule association. In the bub3;1 bub3;2 double mutant, MAP65-3 localization was often dissipated away from the phragmoplast midline and abolished upon treatment of low doses of the cytokinesis inhibitory drug caffeine that were tolerated by the control plant. The phragmoplast microtubule array exhibited uncoordinated expansion pat- tern in the double mutant cells as the phragmoplast edge reached the parental plasma membrane at different times in differ- ent areas.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Formation and Structure of Filamentous Systems for Insect Flight and Mitotic Movements Melvyn Dennis Goode Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Formation and structure of filamentous systems for insect flight and mitotic movements Melvyn Dennis Goode Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons Recommended Citation Goode, Melvyn Dennis, "Formation and structure of filamentous systems for insect flight and mitotic movements " (1967). Retrospective Theses and Dissertations. 3391. https://lib.dr.iastate.edu/rtd/3391 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. FORMATION AND STRUCTURE OF FILAMENTOUS SYSTEMS FOR INSECT FLIGHT AND MITOTIC MOVEMENTS by Melvyn Dennis Goode A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Cell Biology Approved: Signature was redacted for privacy. In Charge oi Major Work Signature was redacted for privacy. Chairman Advisory Committee Cell Biology Program Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa: 1967 ii TABLE OF CONTENTS Page I. INTRODUCTION 1 PART ONE. THE MITOTIC APPARATUS OF A GIANT AMEBA 5 II. THE STRUCTURE AND PROPERTIES OF THE MITOTIC APPARATUS 6 A. Introduction .6 1. Early studies of mitosis 6 2. The mitotic spindle in living cells 7 3.
    [Show full text]
  • Kinetochore Protein Depletion Underlies Cytokinesis Failure And
    RESEARCH ARTICLE Kinetochore protein depletion underlies cytokinesis failure and somatic polyploidization in the moss Physcomitrella patens Elena Kozgunova1*, Momoko Nishina2, Gohta Goshima2* 1International Collaborative Programme in Science, Graduate School of Science, Nagoya University, Nagoya, Japan; 2Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan Abstract Lagging chromosome is a hallmark of aneuploidy arising from errors in the kinetochore–spindle attachment in animal cells. However, kinetochore components and cellular phenotypes associated with kinetochore dysfunction are much less explored in plants. Here, we carried out a comprehensive characterization of conserved kinetochore components in the moss Physcomitrella patens and uncovered a distinct scenario in plant cells regarding both the localization and cellular impact of the kinetochore proteins. Most surprisingly, knock-down of several kinetochore proteins led to polyploidy, not aneuploidy, through cytokinesis failure in >90% of the cells that exhibited lagging chromosomes for several minutes or longer. The resultant cells, containing two or more nuclei, proceeded to the next cell cycle and eventually developed into polyploid plants. As lagging chromosomes have been observed in various plant species in the wild, our observation raised a possibility that they could be one of the natural pathways to polyploidy in plants. DOI: https://doi.org/10.7554/eLife.43652.001 *For correspondence: [email protected] (EK); [email protected] (GG) Competing interests: The Introduction authors declare that no The kinetochore is a macromolecular complex that connects chromosomes to spindle microtubules competing interests exist. and plays a central role in chromosome segregation. Kinetochore malfunction causes checkpoint- Funding: See page 14 dependent mitotic arrest, apoptosis, and/or aneuploidy-inducing chromosome missegregation (Potapova and Gorbsky, 2017).
    [Show full text]
  • Electron Microscope Studies on the Mitotic Figure II . Phragmoplast and Cell Plate1
    98 Cytologia 24 Electron Microscope Studies on the Mitotic Figure II . Phragmoplast and cell plate1 Syoiti Sato BotanicalInstitute, Faculty of Science,University of Tokyo, Tokyo,Japan ReceivedDecember 18, 1958 The fine structure of the metaphase spindle, in his first report of "electron microscope studies on the mitotic figure" , has been already described by the present author (1958). In the present paper, both the phragmoplast appearing at the end of anaphase and completed in telophase of plant mitotic cells, and also the cell plate arising in the equatorial zone of the phrag moplast, are by the help of the electron microscope described with reference to their fine structures, and also with reference to the origin and the develop ment of both apparatus. The hypotheses on the formation of the cell wall are also discussed. Material and methods The material used was the pollen mother cell of Lilium lancifolium Thunb. It was fixed in CdCl2 solution used by Wada and Fukunaga (1957). This method was already described by the present author in a previous paper (1958). The procedure of preparation of samples was as follows: pollen mother cells, in either anaphase or telophase stage, were fixed in an equivalent mixture of 10-1M CdCl2 solution and 100 per cent alcohol for 30 minutes. Later, the materials were dehydrated through the alcohol series, and were embedded in 7 parts n-buthyl methacrylate and 3 parts methyl methacrylate and polymerized at 45•Ž. Sections were cut with the Hitachi Ultra-Microtome. The electron microscope used, was the Hitachi Type HU-10. Results and discussion The phragmoplast The fine structure of the metaphase spindle which has been described by the present author in a former paper (1958), is considered to be sub stantially common to both plant and animal cells.
    [Show full text]
  • A Short History of Plant Light Microscopy
    1 From the identification of ‘Cells’, to Schleiden & Schwann’s Cell Theory, to Confocal 2 Microscopy and GFP lighting up the Plant Cytoskeleton, to Super-Resolution 3 Microscopy with Single Molecule Tracking: Here’s... 4 A Short History of Plant Science Chapter 5: 5 A Short History of Plant Light Microscopy 6 Marc Somssich 7 School of BioSciences, the University of Melbourne, Parkville 3010, VIC, Australia 8 Email: [email protected] ; Twitter: @somssichm 9 http://dx.doi.org/10.5281/zenodo.4682573 10 When the microscope was first introduced to scientists in the 17th century it started a 11 revolution. Suddenly a whole new world, invisible to the naked eye, opened up to curious 12 explorers. In response to this realization Nehemiah Grew, one of the early microscopists, 13 noted in 1682 ‘that Nothing hereof remains further to be known, is a Thought not well 14 Calculated.’1. And indeed, with ever increasing resolution, there really does not seem to be an 15 end to what can be explored with a microscope. 16 The Beginnings: Plant Internal Structures and ‘Cells’ (1600-1835) 17 While simple lenses were being used as magnifying glasses for several centuries, the early 18 17th century brought the invention of the compound microscope, and with it launched the 19 scientific field of microscopy2. It is not clear who invented the first microscope, but it was 20 most likely developed from early telescopes2. Galileo Galilei built his first telescope in the 21 early 1600s and used it to chart the stars2. He subsequently published his treatise ‘Sidereus 22 nuncius’ (1610) about his observations2,3.
    [Show full text]
  • Invasive Zebra Mussels Confirmed in Aquarium Product Sold in Iowa
    3/9/2021 March 8 Iowa Outdoors FOR IMMEDIATE RELEASE March 8, 2021 Invasive zebra mussels confirmed in aquarium product sold in Iowa The Iowa Department of Natural Resources (DNR) has confirmed that a popular aquarium product sold at some aquarium supply stores and pet stores in Iowa may contain zebra mussels, a highly invasive species that can cause severe damage to the food chain and infrastructure if released in lakes and rivers. The affected products are moss (Marimo) balls, which are commonly sold in pet stores to help absorb harmful nutrients in the water and limit the growth of undesirable algae in home aquariums. Moss balls recently distributed nationwide were contaminated with zebra mussels. A container of Marimo balls sold as “Betta Buddy” was first found to be contaminated with an adult zebra mussel at a Petco store in Washington state on March 3. Since then, contaminated Marimo balls have been found in pet and aquarium stores in several states. Pet stores across the nation, including Iowa, have removed the product from their shelves. “State and federal law enforcement have been checking pet stores across Iowa and removing the moss balls if they hadn't been removed already,”said Kim Bogenschutz, aquatic invasive species coordinator for the Iowa DNR. Aquarium owners are urged not to purchase this product from stores or online. If you have bought this item in the last month, dispose of it properly and sanitize your tank(s) using the following guidelines to prevent the spread of zebra mussels from aquariums. Disposal and Sanitation Guidelines Place the Marimo ball in a sealable plastic bag and freeze for at least 24 hours, OR Place the moss ball in boiling water for at least 1 full minute, OR Submerge the moss ball in chlorine bleach, diluted to one cup of bleach per gallon of water, OR Submerge the moss ball in undiluted white vinegar for 20 minutes.
    [Show full text]
  • A Geometrical Approach Explains Lake Ball (Marimo) Formations in The
    OPEN A geometrical approach explains Lake SUBJECT AREAS: Ball (Marimo) formations in the green THEORETICAL ECOLOGY CONSERVATION alga, Aegagropila linnaei Tatsuya Togashi1, Hironobu Sasaki2 & Jin Yoshimura1,3,4 Received 5 August 2013 1Marine Biosystems Research Center, Chiba University, Kamogawa 299-5502, Japan, 2Department of Mathematics and Accepted Informatics, Faculty of Science, Chiba University, Chiba, 263-8522, Japan, 3Graduate School of Science and Technology and 4 23 December 2013 Department of Mathematical Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan, Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY Published 13210, USA. 20 January 2014 An extremely rare alga, Aegagropila linnaei, is known for its beautiful spherical filamentous aggregations called Lake Ball (Marimo). It has long been a mystery in biology as to why this species forms 3D ball-like Correspondence and aggregations. This alga also forms two-dimensional mat-like aggregations. Here we show that forming requests for materials ball-like aggregations is an adaptive strategy to increase biomass in the extremely limited environments should be addressed to suitable for growth of this alga. We estimate the maximum biomass attained by ball colonies and compare it T.T. (togashi@faculty. to that attained by mat colonies. As a result, a ball colony can become larger in areal biomass than the mat colony. In the two large ball colonies studied so far, they actually have larger biomasses than the mat chiba-u.jp) colonies. The uniqueness of Lake Balls in nature seems to be due to the rarity of such environmental conditions.
    [Show full text]
  • Reconstruction of the Flagellar Apparatus and Microtubular Cytoskeleton in Pyramimonas Gelidicola (Prasinophyceae, Chlorophyta)
    Protoplasma 121, 186--I98 (1984) PROTOPLASMA by Springer-Verlag 1984 Reconstruction of the Flagellar Apparatus and Microtubular Cytoskeleton in Pyramimonas gelidicola (Prasinophyceae, Chlorophyta) G. I. McFADDEN * and R. WETHERBEE School of Botany, University of Melbourne Received September 5, 1983 Accepted November 9, 1983 Summary primitive, heterogeneous group of scaly green monads that comprise the Prasinophyceae Christensen ex Silva The absolute configuration of the flagellar apparatus in Pyramimonas gelidicola MCFADDENet al. has been determined and shows identity (MANTON 1965, NORRIS 1980, STEWART and MATTOX with P. obovata, indicating that they are closely related. Comparison 1978, MOESTRUP and ETTL 1979, MELKONIAN 1982a, with the flagellar apparatus of quadriflagellate zoospores from the MOESTRUP 1982). Recently, the prasinophyte more advanced Chlorophyeeae suggest that Pyramimonasmay be a Mesostigma viride has been shown to have primitive ancestral form. The microtubular cytoskeleton has been characteristics aligning it with both the examined in detail and is shown to be unusual in that it does not Charophyceae attach to the flagellar apparatus. CytoskeletaI microtubules are (ROGERS et al. 1981, MELKONIAN 1983) and the nucleated individually, and this is interpreted as an adaptation to the Chlorophyceae (MELKONIAN 1983) indicating that it is methods of mitosis and scale deployment. In view of the primitive probably similar to the ancestoral flagellate from which nature of these processes, it is proposed that this type of cytoskeletal the two major streams of evolution diverged. organization may represent a less advanced condition than that of the flagellar root MTOCs (microtubule organizing centers) observed in Mesostigma is closely related to another genus of the the Chlorophyceae.
    [Show full text]
  • Ultrastructure of Mitosis and Cytokinesis in the Multinucleate Green Alga Acrosiphonia
    ULTRASTRUCTURE OF MITOSIS AND CYTOKINESIS IN THE MULTINUCLEATE GREEN ALGA ACROSIPHONIA PEGGY R . HUDSON and J . ROBERT WAALAND From the Department of Botany, University of Washington, Seattle, Washington 98195 ABSTRACT The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide . Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei . Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules . No other microtubules are associated with the furrow . Characteris- tics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae . INTRODUCTION In multinucleate cells, nuclear division may occur band remain scattered in the cytoplasm at some synchronously, asynchronously, or in a wave distance from the band and do not participate in spreading from one part of the cell to another (for mitosis. The recently divided nuclei soon scatter a general discussion, see Agrell, 1964 ; Grell, 1964; into the cytoplasm. Thus, as in uninucleate cells, Erickson, 1964). Cytokinesis may or may not be nuclear and cell division in Acrosiphonia are associated with nuclear division (Grell, 1964; Jbns- closely coordinated spatially and temporally, but son, 1962; Kornmann, 1965, 1966 ; Schussnig, in the multinucleate Acrosiphonia, a substantial 1931, 1954 ; Lewis, 1909).
    [Show full text]