The Revised Classification of Eukaryotes

Total Page:16

File Type:pdf, Size:1020Kb

The Revised Classification of Eukaryotes Published in Journal of Eukaryotic Microbiology 59, issue 5, 429-514, 2012 which should be used for any reference to this work 1 The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. MITCHELL,l SHARON E. MOZLEY-STANRIDGE,p LAURA W. PARFREY,q JAN PAWLOWSKI,r SONJA RUECKERT,s LAURA SHADWICK,t CONRAD L. SCHOCH,u ALEXEY SMIRNOVv and FREDERICK W. SPIEGELt aDepartment of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada, and bDepartment of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and cDepartment of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA, and dBiology Center and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, Cˇeske´ Budeˇjovice, Czech Republic, and eZoology Department, Natural History Museum, London, SW7 5BD, United Kingdom, and fWadsworth Center, New York State Department of Health, Albany, New York, 12201, USA, and gDepartment of Biochemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada, and hDepartment of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, and iDepartment of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany, and jDepartment of Parasitology, Charles University, Prague, 128 43, Praha 2, Czech Republic, and kForschungsinstitut Senckenberg, DZMB – Deutsches Zentrum fu¨r Marine Biodiversita¨tsforschung, D-26382, Wilhelmshaven, Germany, and lInstitute of Biology, University of Neuchaˆtel, Neuchaˆtel, CH-2009, Switzerland, and mMuse´um National d’Histoire Naturellem, UMR 7138 Syste´matique, Adaptation et Evolution, Paris, 75231, Cedex Paris 05, France, and nDepartment of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada, and oDepartment of Biological Sciences, LeMoyne College, Syracuse, New York, 13214, USA, and pDepartment of Biology, Middle Georgia College, Cochran, Georgia, 31014, USA, and qDepartment of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309, USA, and rDepartment of Genetics and Evolution, University of Geneva, 1211, Geneva 4, Switzerland, and sSchool of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, United Kingdom, and tDepartment of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA, and uGenBank taxonomy, NIH/NLM/NCBI, Bethesda, Maryland, 20892-6510, USA, and vDepartment of Invertebrate Zoology, St.Petersburg State University, St. Petersburg, 199034, Russia ABSTRACT. This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phyloge- netic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information. Key Words. Algae, amoebae, biodiversity, ciliates, flagellates, fungi, parasites, protozoa, systematics, taxonomy. HE classification proposed by Adl et al. (2005) on behalf current revision reflects the need to have a classification of T of The Society established name stability as well as a syn- protistan eukaryotes that incorporates recent advances thesis of the overall structure of the classification of eukary- wrought both by the widespread use of phylogenomic-scale otes, based on the information available at that time, and phylogenetic analyses and by massively increased taxon sam- after the upheaval introduced by molecular phylogenetic stud- pling in rRNA-based phylogenies, partly due to a renaissance ies over the preceding two decades. Overall, the system pro- in novel organism discovery. With the current revision, we posed was conservative enough to largely avoid erroneous or have again tried to strike a conservative balance between premature groupings, whilst eliminating wherever possible updating the classification where needed and avoiding formal known polyphyletic groups or groups of convenience, encour- recognition of uncertain groupings where further investigation aging correction of many of the errors in text books. The would be warranted. One notable advance since 2005 is the consolidation of a classification founded on robust phylogenetic relatedness. The super-groups formalized by Adl et al. (2005) are mostly retained, although some have been assembled into still higher Correponding Author: Sina M. Adl, Department of Soil Science, order groupings (Table 1, see below). One notable exception is University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N – the Chromalveolata, which was retained then as useful 5A8, Canada Telephone number: +306 966 6866; FAX number: although controversial, and with the authors noting concerns +306 966 6881; e-mail: [email protected] 1 Present Address: Department of Zoology, University of British with this grouping of Cryptophyceae, Haptophyta, Strameno- Columbia, Vancouver, BC, V6T 1Z4, Canada. piles, and Alveolata. Since then, evidence has mounted that 2 Table 1. The classification of eukaryotes at the highest ranks. system despite changes; and (iv) separating naming clades from assembling nested hierarchies – in contrast to rank- based nomenclature that treats these steps as part of the same process (Adl et al., 2007; Cantino, 2004; Kron, 1997; Pleijel and Rouse 2003). This approach provides a more stable classifica- tion that preserves names, while allowing revisions to reflect our changing understanding of evolutionary history. We have also relied on ideas borrowed from phylogenetic nomenclature, dis- tinguishing groups with definitions based on apomorphies, nodes, branches, or combinations of these. These kinds of defi- nitions are more suited to a classification based on phylogenetic trees, and can be written as phylogenetic hypotheses that can be tested. The most significant changes introduced in this revision are as follows: First, we recognize the grouping of Amoebozoa with Opi- sthokonta. Since 2005, this has become a commonly recog- nized probable clade, and at present it is usually referred to by the informal name “unikont”, sometimes rendered as the more formal sounding “Unikonta”. However, the underlying hypothesis of a monociliated (with only one ciliated basal body) ancestry for this cluster of organisms (Cavalier-Smith, 2002) is almost certainly incorrect (Kim et al. 2006; Roger and Simpson, 2009). There is no requirement that names of taxa reflect the ancestral state of the clade. However, the name “unikonts” causes confusion because of the apomorphy hypothesized for the ancestral character. To address, this we introduce a new formal name for the probable clade. We have formalized this clade as a new taxon, Amorphea, with a node- Chromalveolates are probably polyphyletic (Baurain et al. based phylogenetic definition: 2010; Parfrey et al. 2010; Stiller et al. 2009). Instead, multi- gene phylogenetics and phylogenomic studies generally sup- port Stramenopiles and Alveolata as specifically related to Amorphea: the least inclusive clade containing Homo sapi- Rhizaria (Burki et al. 2009, 2010, 2012; Hampl et al. 2009; ens Linnaeus 1758, Neurospora crassa Shear & Dodge 1927 Parfrey et al. 2010). The two remaining major lineages that (both Opisthokonta), and Dictyostelium discoideum Raper were formerly assigned to the chromalveolates – Haptophyta 1935 (Amoebozoa). This is a node-based definition in and Cryptophyceae/cryptomonads – have been more challeng- which all of the specifiers are extant; it is intended to apply ing to place phylogenetically (Burki et al. 2010, 2012), and are to a crown clade; qualifying clause – the name does not two examples of several where stable, deep relationships still apply if any of the following fall within the specified clade remain to be established. Analyses with abundant data for – Arabidopsis thaliana (Linnaeus) Heynhold 1842 (Archaep- each taxon are subject to systematic biases that can lead to lastida), Tetrahymena thermophila Nanney & McCoy 1976 high support for incorrect clades (Hedtke et al. 2006; Zwickl (Alveolata), Thalassiosira pseudonana Hasle & Hiemdal and Hillis 2002). Broader taxonomic sampling is likely the 1970 (Stramenopiles), Bigelowiella natans Moestrup & most important factor in alleviating these kinds of systematic Sengco 2001 (Rhizaria), Euglena gracilis Klebs 1883 (Ex- biases (Heath et al. 2008; Hedtke et al. 2006; Zwickl and Hil- cavata), and Emiliania huxleyi (Lohmann) Hay & Mohler lis 2002), although adding more taxa may also introduce addi- 1967 (Haptophyta). tional missing sequence data (Wiens 2006). Thus, emerging Note that the term Amorphea (a, Gr. – without; morphe, relationships should be confirmed by multiple studies before Gr. – form, shape) relates to the cells of most taxa in this proposing revisions to the classification. It is
Recommended publications
  • A Six-Gene Phylogeny Provides New Insights Into Choanoflagellate Evolution Martin Carr, Daniel J
    A six-gene phylogeny provides new insights into choanoflagellate evolution Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, Barry S.C. Leadbeater, Frank Nitsche To cite this version: Martin Carr, Daniel J. Richter, Parinaz Fozouni, Timothy J. Smith, Alexandra Jeuck, et al.. A six- gene phylogeny provides new insights into choanoflagellate evolution. Molecular Phylogenetics and Evolution, Elsevier, 2017, 107, pp.166 - 178. 10.1016/j.ympev.2016.10.011. hal-01393449 HAL Id: hal-01393449 https://hal.archives-ouvertes.fr/hal-01393449 Submitted on 7 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Molecular Phylogenetics and Evolution 107 (2017) 166–178 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A six-gene phylogeny provides new insights into choanoflagellate evolution ⇑ Martin Carr a, ,1, Daniel J. Richter b,1,2, Parinaz Fozouni b,3, Timothy J. Smith a, Alexandra Jeuck c, Barry S.C. Leadbeater d, Frank Nitsche c a School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK b Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA c University of Cologne, Biocentre, General Ecology, Zuelpicher Str.
    [Show full text]
  • Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 10-1-2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life Laura Wegener Parfrey University of Massachusetts Amherst Jessica Grant Smith College Yonas I. Tekle Smith College Erica Lasek-Nesselquist Marine Biological Laboratory Hilary G. Morrison Marine Biological Laboratory See next page for additional authors Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Parfrey, Laura Wegener; Grant, Jessica; Tekle, Yonas I.; Lasek-Nesselquist, Erica; Morrison, Hilary G.; Sogin, Mitchell L.; Patterson, David J.; and Katz, Laura A., "Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life" (2010). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/126 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Authors Laura Wegener Parfrey, Jessica Grant, Yonas I. Tekle, Erica Lasek-Nesselquist, Hilary G. Morrison, Mitchell L. Sogin, David J. Patterson, and Laura A. Katz This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/bio_facpubs/126 Syst. Biol. 59(5):518–533, 2010 c The Author(s) 2010. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syq037 Advance Access publication on July 23, 2010 Broadly Sampled Multigene Analyses Yield a Well-Resolved Eukaryotic Tree of Life LAURA WEGENER PARFREY1,JESSICA GRANT2,YONAS I. TEKLE2,6,ERICA LASEK-NESSELQUIST3,4, 3 3 5 1,2, HILARY G.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Clerissi-2018-Frontiersmicrobi
    Protists Within Corals: The Hidden Diversity Camille Clerissi, Sébastien Brunet, Jeremie Vidal-Dupiol, Mehdi Adjeroud, Pierre Lepage, Laure Guillou, Jean-Michel Escoubas, Eve Toulza To cite this version: Camille Clerissi, Sébastien Brunet, Jeremie Vidal-Dupiol, Mehdi Adjeroud, Pierre Lepage, et al.. Protists Within Corals: The Hidden Diversity. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.2043. 10.3389/fmicb.2018.02043. hal-01887637 HAL Id: hal-01887637 https://hal.archives-ouvertes.fr/hal-01887637 Submitted on 7 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-09-02043 August 30, 2018 Time: 10:39 # 1 ORIGINAL RESEARCH published: 31 August 2018 doi: 10.3389/fmicb.2018.02043 Protists Within Corals: The Hidden Diversity Camille Clerissi1*, Sébastien Brunet2, Jeremie Vidal-Dupiol3, Mehdi Adjeroud4, Pierre Lepage2, Laure Guillou5, Jean-Michel Escoubas6 and Eve Toulza1* 1 Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France, 2 McGill University and Génome Québec Innovation Centre, Montréal, QC, Canada, 3 IFREMER, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, Montpellier, France, 4 Institut de Recherche pour le Développement, UMR 9220 ENTROPIE & Laboratoire d’Excellence CORAIL, Université de Perpignan, Perpignan, France, 5 CNRS, UMR 7144, Sorbonne Universités, Université Pierre et Marie Curie – Paris 6, Station Biologique de Roscoff, Roscoff, France, 6 CNRS, IHPE UMR 5244, Univ.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • A Guide to 1.000 Foraminifera from Southwestern Pacific New Caledonia
    Jean-Pierre Debenay A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM Debenay-1 7/01/13 12:12 Page 1 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Debenay-1 7/01/13 12:12 Page 2 Debenay-1 7/01/13 12:12 Page 3 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Jean-Pierre Debenay IRD Éditions Institut de recherche pour le développement Marseille Publications Scientifiques du Muséum Muséum national d’Histoire naturelle Paris 2012 Debenay-1 11/01/13 18:14 Page 4 Photos de couverture / Cover photographs p. 1 – © J.-P. Debenay : les foraminifères : une biodiversité aux formes spectaculaires / Foraminifera: a high biodiversity with a spectacular variety of forms p. 4 – © IRD/P. Laboute : îlôt Gi en Nouvelle-Calédonie / Island Gi in New Caledonia Sauf mention particulière, les photos de cet ouvrage sont de l'auteur / Except particular mention, the photos of this book are of the author Préparation éditoriale / Copy-editing Yolande Cavallazzi Maquette intérieure et mise en page / Design and page layout Aline Lugand – Gris Souris Maquette de couverture / Cover design Michelle Saint-Léger Coordination, fabrication / Production coordination Catherine Plasse La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article L.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Reconstruction of Protein Domain Evolution Using Single-Cell Amplified
    Reconstruction of protein domain evolution using single-cell amplified royalsocietypublishing.org/journal/rstb genomes of uncultured choanoflagellates sheds light on the origin of animals Research David López-Escardó 1,2 , Xavier Grau-Bové 1,3,4 , Amy Guillaumet-Adkins 5,6 , Marta Gut 5,6 , Michael E. Sieracki 7 and Iñaki Ruiz-Trillo 1,3,8 Cite this article: López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Ruiz-Trillo I. 2019 Reconstruction of protein 08003 Barcelona, Catalonia, Spain 2Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain domain evolution using single- cell amplified 3Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain genomes of uncultured choanoflagellates sheds 4Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK light on the origin of animals. Phil. 5CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Trans. R. Soc. B 374 : 20190088. Barcelona, Spain 6Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain http://dx.doi.org/10.1098/rstb.2019.0088 7National Science Foundation, Arlington, VA 22314, USA 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain Accepted: 15 June 2019 DL-E, 0000-0002-9122-6771; XG-B, 0000-0003-1978-5824; IR-T, 0000-0001-6547-5304 One contribution of 18 to a discussion meeting Understanding the origins of animal multicellularity is a fundamental biologi- cal question. Recent genome data have unravelled the role that co-option of issue ‘Single cell ecology ’.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
    Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N.
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]